Abstract




 
   

IJE TRANSACTIONS C: Aspects Vol. 30, No. 9 (August 2017) 1353-1363    Article in Press

PDF URL: http://www.ije.ir/Vol30/No9/C/8.pdf  
downloaded Downloaded: 0   viewed Viewed: 64

  IMPLEMENTATION OF D3Q19 LATTICE BOLTZMANN METHOD WITH A CURVED WALL BOUNDARY CONDITION FOR SIMULATION OF PRACTICAL FLOW PROBLEMS
 
E. Ezzatneshan
 
( Received: February 05, 2017 – Accepted: July 07, 2017 )
 
 

Abstract    In this paper, implementation of an extended form of a no-slip wall boundary condition is presented for the three-dimensional (3-D) lattice Boltzmann method (LBM) for solving the incompressible fluid flows with complex geometries. The boundary condition is based on the off-lattice scheme with a polynomial interpolation which is used to reconstruct the curved or irregular wall boundary on the neighboring lattice nodes. This treatment improves the computational efficiency of the solution algorithm to handle complex geometries and provides much better accuracy comparing with the staircase approximation of bounce-back method. The efficiency and accuracy of the numerical approach presented are examined by computing the fluid flows around the geometries with curved or irregular walls. Three test cases considered herein for validating the present computations are the flow calculation around the NACA0012 wing section and through the two different porous media in various flow conditions. The study shows the present computational technique based on the implementation of the three-dimensional Lattice Boltzmann method with the employed curved wall boundary condition is robust and efficient for solving laminar flows with practical geometries and also accurate enough to predict the flow properties used for engineering designs.

 

Keywords    Three-dimensional lattice Boltzmann method, irregular wall boundary condition, laminar fluid flows, complex geometries

 

چکیده    در مقاله حاضر، یک نوع شرط مرزی دیواره تعمیم­یافته برای روش شبکه بولتزمن سه­بعدی اعمال شده که سبب افزایش توانمندی و دقت آن در شبیه­سازی جریان­های تراکم­ناپذیر حول هندسه­های پیچیده می­شود. این روش از یک الگوریتم درون­یابی چندجمله­ای جهت تخمین محل دیواره منحنی دلخواه و میان­یابی آن روی نقاط شبکه اطراف دیواره استفاده می­کند. این الگوریتم کارآیی روش حل عددی و دقت آن را نسبت به روش­های مرسوم Bounce-Back برای حل جریان حول هندسه­های پیچیده افزایش می­دهد. براي نشان‌دادن صحت و دقت الگوریتم مورد استفاده بر اساس روش شبکه بولتزمن سه­بعدی، جریان حول یک بال با مقطع هیدروفویل NACA0012 و جریان گذرنده از دو محیط متخلخل مجزا در شرایط مختلف مورد بررسی قرار گرفته و نتايج حاصل با نتايج قابل دسترس مقايسه و ارزيابي شده¬است. نتايج به¬دست¬آمده از حل حاضر نشان مي‌دهند که الگوریتم توسعه داده‌شده براساس روش شبکه بولتزمن، جهت تحلیل جریان¬های تراکم­ناپذیر با هندسه­های پیچیده و کاربردی همچنین برای تخمین مشخصات جریان جهت استفاده در طراحی­های مهندسی بسيار مناسب و مؤثر است.

References    1. Chen, S., Chen, H., Martinez, D.O. and Matthaeus, W.H., “Lattice Boltzmann model for simulation of magnetohydrodynamics”, Phys. Rev. Lett., Vol. 67, (1991), 3776-3779. 2. Premnath, K.N. and Abraham, J., “Three-dimensional multi-relaxation time (MRT) lattice-Boltzmann models for multiphase flow”, Journal of Computational Physics, Vol. 224, (2007), 539-559. 3. Chakraborty, S. and Chatterjee, D., “An enthalpy-based hybrid lattice-Boltzmann method for modelling solid-liquid phase transition in the presence of convective transport”, Journal of Fluid Mechanics, Vol. 592, (2007),155-175. 4. Ashorynejad, H.R., Sheikholeslami, M. and Fattahi, E., “Lattice Boltzmann Simulation of Nanofluids Natural Convection Heat Transfer in Concentric Annulus”, International Journal of Engineering (IJE) Transactions B: Application, Vol. 26, No. 8, (2013), 895-904. 5. Luo, K., Yao, F.J., Yi, H.L. and Tan, H.P., “Lattice Boltzmann simulation of convection melting in complex heat storage systems filled with phase change materials”, Applied Thermal Engineering, Vol. 86, (2015), 238-250. 6. Shu, C., Liu, N. and Chew, Y. “A novel immersed boundary velocity correction-lattice Boltzmann method and its application to simulate flow past a circular cylinder”, Journal of Computational Physics, Vol. 226, (2007), 1607–1622. 7. Ziegler, D.P., “Boundary conditions for lattice Boltzmann simulations”, J. Stat. Phys., Vol. 71, (1993), 1171. 8. Ginzbourg, I. and Adler, P.M., “Boundary flow condition analysis for the three-dimensional lattice Boltzmann model”, Journal de Physique, Vol. 4, (1994), 191–214. 9. Verberg, R. and Ladd, A.J.C., “Lattice-Boltzmann model with sub-grid-scale boundary conditions”, Phys Rev Lett, Vol. 84, (2000), 2148-2151. 10. Filippova, O. and Hänel, D., “Boundary fitting and local grid refinement for lattice-BGK models”, International Journal of Modern Physics C, Vol. 9, (1998), 1271–1279. 11. Mei, R., Luo, L.S. and Shyy, W., “An accurate curved boundary treatment in the lattice Boltzmann method”, Journal of Computational Physics, Vol. 155, (1999), 307–330. 12. Guo, Z., Zheng, C., and Shi, B., “An extrapolation method for boundary conditions in lattice Boltzmann method”, Phys. Fluids, Vol. 14, (2002), 2007–2010. 13. Lätt, J., Chopard, B., Malaspinas, O., Deville, M. and Michler, A., “Straight velocity boundaries in the lattice Boltzmann method”, Physical Review E, Vol. 77, No. 5, (2008), 056703. 14. Verschaeve, J. and Müller, B., “A curved no-slip boundary condition for the lattice Boltzmann method”, Journal of Computational Physics, Vol. 229, (2010), 6781–6803. 15. Zou, Q. and He, X., “On pressure and velocity boundary conditions for the lattice Boltzmann BGK model”, Phys. Fluids, Vol. 9, (1997), 1592–1598. 16. Boek, E.S., Chin, J. and Coveney, P.V., “Lattice Boltzmann simulation of the flow of non-Newtonian fluids in porous media”, Int. J. Mod. Phys. B, Vol. 17, (2003), 99-102. 17. Sullivan, S.P., Gladden, L.F. and Johns, M.L., “Simulation of power-law fluid flow through porous media using lattice Boltzmann techniques”, J. Non-Newton. Fluid Mech., Vol. 133, (2006), 91-98. 18. Jahanshahi Javaran, E., Gandjalikhan Nassab, S.A. and Jafari, S., “Numerical Simulation of a Three-Layered Radiant Porous Heat Exchanger Including Lattice Boltzmann Simulation of Fluid Flow”, International Journal of Engineering (IJE) Transactions A: Basics, Vol. 24, No. 3, (2011), 301-319. 19. Fattahi, E., Waluga, C., Wohlmuth, B., Rüde, U., Manhart, M. and Helmig, R., “Lattice Boltzmann methods in porous media simulations: From laminar to turbulent flow”, Computers & Fluids, Vol. 140, (2016), 247-259. 20. Wu, Z.S., Dong, P.C., Lei, G., Yang, S. and Cao, N., “Lattice Boltzmann Simulation of Fluid Flow in Complex Porous Media Based on CT Image”, Journal of Industrial and Intelligent Information, Vol. 4, No. 1, (2016), 65-68. 21. Hoarau, Y., Braza, M., Ventikos, Y., Faghani, D. and Tzabiras, G., “Organized modes and the three-dimensional transition to turbulence in the incompressible flow around a NACA0012 wing”, J. Fluid Mech., Vol. 496, (2003), 63-72. 22. Ergun, S.,“Fluid flow through packed columns”, Chemical Engineering Progress, Vol. 48, (1952), 89-94.


Download PDF 



International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir