IJE TRANSACTIONS C: Aspects Vol. 30, No. 9 (August 2017) 1318-1327    Article in Press

PDF URL: http://www.ije.ir/Vol30/No9/C/4.pdf  
downloaded Downloaded: 0   viewed Viewed: 119

M. Hoseinzadeh and S. Pourzeynali
( Received: January 20, 2017 – Accepted: July 07, 2017 )

Abstract    This study addresses the effect of parameters influencing pounding in bridges. Pounding phenomenon is a result of a collision between two parts of the deck and/or the deck and lateral piers (abutments) at the separation distance during the earthquake. Investigated parameters include: period ratio of the adjacent frames, ground motion spatial variation effects and soil-structure interaction. Accordingly, 144 different models of bridge generated by changing the piers characteristics and spans length. These models are subjected to non-linear dynamic analysis. The results showed that ignoring the effects of soil-structure interaction and ground motion spatial variation leads to the calculation of unrealistic responses in the bridges. Also, designing the bridges with frames having similar or close period is not a proper solution to reduce pounding effects in the bridges.


Keywords    Bridge, Pounding, Ground motion spatial variation, Soil-structure interaction


چکیده    این مطالعه به بررسی اثر پارامترهای موثر بر ایجاد ضربه در پل‌ها می‌پردازد. پدیده ضربه در اثر برخورد بین دو بخش از عرشه و یا عرشه و پایه­‌‌های کناری پل در محل درزهای انقطاع به علت پاسخ‌های غیر هم‌فاز در هنگام زلزله رخ می دهد. پارامترهای مورد برسی شامل: نسبت دوره تناوب قاب‌های مجاورهم، حرکات ناهمگون زمین و اندرکنش خاک- سازه می‌باشند. بدین منظور 144 نمونه مختلف از پل با تغییر در مشخصات پایه‌ها و اندازه دهانه‌ها ایجاد گردیده و تحت تحلیل‌های دینامیکی غیرخطی قرار می‌گیرند. نتایج نشان می‌دهد که عدم ملاحظه اثر اندرکنش خاک- سازه و حرکات ناهمگون زمین موجب محاسبه پاسخ‌های غیر واقعی در پل‌ها می‌گردد. همچنین به علت پاسخ‌های غیر هم‌فاز ایجاد شده در اثر حرکات ناهمگون زمین و اندرکنش خاک- سازه، طراحی پل‌ها با قاب‌های دارای دوره تناوب مشابه و یا نزدیک به هم، راهکار مناسبی برای کاهش خسارات ناشی از پدیده ضربه نمی‌باشد.

References    [1] Hao, H., “A parametric study of the required seating length for bridge decks during earthquake”, Earthquake Engineering and Structural Dynamics, Vol. 27, No 1, (1998), 91–103. [2] Chouw, N. and Hao, H., “Significance of SSI and non-uniform near-fault ground motions in bridge response I: effect on response with conventional expansion joint”, Engineering Structures, Vol. 30, No 1, (2008), 141–153. [3] Cui, L.L., Guo, A.X. and Li, H., “Investigation of the parameters of hertz impact model for the pounding analysis of highway bridge”, Procedia Engineering, Vol. 14, (2011), 2773–2778. [4]Japan Road Association, “Specifications for Highway Bridges. Part V. Seismic Design”, Tokyo, Japan, (2002). [5] Caltrans SDC, “Caltrans seismic design criteria version 1.7”, California Department of Transportation, Sacramento, California, (2013). [6]  Zerva, A. and Zervas, V., “Spatial variation of seismic ground motions: An overview”, American Society of Mechanical Engineers, Vol. 55, No. 3, (2002). [7] Hao, H., Oliveira, C.S. and Penzien, J., “Multiple-station ground motion processing and simulation based on SMART-1 array data”, Nucl. Eng. Des., Vol. 111, (1989), 293–310. [8] Bi, K., Hao, H. and Chouw, N., “Influence of ground motion spatial variation, site condition and SSI on the required separation distances of bridge structures to avoid seismic pounding”, Earthquake Engineering and Structural Dynamics, Vol. 40, (2011), 1027–1043. [9] Makris, N., Badoni, D., Delis, E. and Gazetas, G., “Prediction of observed bridge response with soil–pile–structure interaction”, Journal of Structural Engineering, Vol. 120, No. 10, (1994), 2992–3011. [10] Spyrakos, C.C. and Vlassis, A.G., “Effect of soil-structure interaction on seismically isolated beiges”, Journal of Earthquake Engineering, Vol. 6, No. 3, (2002), 391–429. [11] Hoseinzadeh, M. and Pourzeynali, S., “Evaluation of Pounding Effect on Seismic Response of Bridges under Soil-Structure Interaction”, Transportation Infrastructure Engineering”, Vol. 2, No. 3, (2016), 95-116, (In Persian). [12] Ruangrassamee, A. and Kawashima K., “Relative displacement response spectra with pounding effect”, Earthquake EngngStruct. Dyn., , Vol. 30, No. 15, (2001), 11–1538. [13] DesRoches, R. and Muthukumar, S., “Effect of pounding and restrainers on seismic response of multi-frame bridges”, Journal of Structural Engineering, Vol. 128, No. 7, (2002), 860–869. [14] Chouw, N. and Hao, H., “Significance of SSI and non uniform near-fault ground motions in bridge response II: effect on response with modular expansion joint”, Engineering Structures, Vol. 30, No. 1, (2008), 154–162. [15] Bi, K., Hao, H. and Chouw, N., “Required separation distance between decks and at abutments of a bridge crossing a canyon site to avoid seismic pounding”, Earthquake Engineering and Structural Dynamics, Vol. 39, No. 3, (2010), 303–323. [16] Bi, K. and Hao, H., “Numerical simulation of pounding damage to bridge structures under spatially varying ground motions”, Engineering Structures, Vol. 46, (2013), 62–76. [17] Zheng, Y., Xiao, X., Zhi, L. and Wang, G. “Evaluation on impact interaction between abutment and steel girder subjected to nonuniform seismic excitation”, Shock and Vibration, (2015). [18] Pourzeynali, S. and Steki, Sh., “Optimization of the TMD parameters to suppress the vertical vibrations of suspension bridges subjected to earthquake excitations”, International Journal of Engineering, Transaction B: Applications, Vol. 22, No. 1, (2009), 23-34. [19] Pourzeynali, S., Malekzadeh, M. and Esmaeilian F., “Multi-objective optimization of semi-active control of seismically exited buildings using variable damper and genetic algorithms”, International Journal of Engineering, Transaction A: Basics, Vol. 25, No. 3, (2012), 265-276. [20] Jankowski, R., Wilde, K. and Fujino, Y., “Reduction of pounding effects in elevated bridges during earthquakes”, Earthquake Engineering & Structural Dynamics, Vol. 29, No. 2, (2000), 195–212. [21] Jankowski, R., “Non-linear viscoelastic modelling of earthquake-induced structural pounding”, Earthquake Engineering and Structural Dynamics, Vol. 34, (2005), 595–611. [22] Jankowski, R., “Analytical expression between the impact damping ratio and the coefficient of restitution in the non-linear viscoelastic model of structural pounding”, Earthquake Engineering and Structural Dynamics, Vol. 35, (2006), 517–524. [23] Jankowski, R., “Experimental study on earthquake-induced pounding between structural elements made of different building materials”, Earthquake Engineering and Structural Dynamics, Vol. 39, (2010), 343–354. [24] Ruangrassamee, A. and Kawashima, K., “Control of nonlinear bridge responses with pounding effects by variable dampers”, Engineering Structures, Vol. 25, (2003), 593–606. [25] Guo, A., Qingjie, Z. and Li, H., “Experimental study of a highway bridge with shape memory alloy restrainer focusing on the mitigation of unseating and pounding”, Earthquake Eng Eng Vib, Vol. 11, No. 2, (2012), 195–204. [26] Wolf, J.P., “Dynamic Soil-Structure Interaction”, Prentice-Hall: Englewood Cliffs, NJ, (1985). [27] Wolf J.P., “Foundation vibration analysis using simple physical models”, Prentice-Hall: Englewood Cliffs, NJ, (1994). [28] Saatcioglu, M. and Ozcebe, G., “Response of reinforced concrete columns to simulated seismic loading”, Aci Structural Journal, Vol. 86, No. 1,  (1989), 3–12. [29] Saiidi, M. and Sozen, M.A., “Simple and complex models for nonlinear seismic response of Reinforced Concrete Structures”, Structural research series No. 465, University of Illinois, Urbana, (1979). [30] Megerdichian, A. “Dynamics of structures and earthquake engineering”, Roozbahan, Tehran, Iran, (2006) (In Persian). [31] American Society of Civil Engineers, “Prestandard and Commentary for the Seismic Rehabilitation of Buildings”, prepared for the SAC Joint Venture, published by the Federal Emergency Management Agency, FEMA-356, Washington, D.C., (2000). [32] CEN, “EN 1998-1:2004. Eurocode 8. design of structures for earthquake resistance-Part 1: general rules, seismic actions and rules for buildings”, European Committee for Standardization,  Brussels, (2004). [33] Maison, B. F. and Kasai, K., “Analysis for type of structural pounding”, Structural Engineering, Vol. 116, (1990), 957-977. [34] Zerva, A., “Spatial variation of seismic ground motions: modeling and engineering”, Taylor & Francis Group, (2009). [35] Harichandran, R. S. and Vanmarcke, E. H., “Stochastic variation of earthquake ground motion in space and time”, Engineering Mechanics, Vol. 112, No. 2, (1986), 4–15174. [36] Clough R. W. and Penzien J., “Dynamics of Structures”, McGraw-Hill, New York, (1975). [37] Deodatis G., “Non-stationary stochastic vector processes: seismic ground motion applications”, Probabilistic Engineering Mechanics, Vol. 11, (1996), 149—168.

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir