IJE TRANSACTIONS C: Aspects Vol. 31, No. 3 (March 2018) 450-455    Article in Press

PDF URL: http://www.ije.ir/Vol31/No3/C/7-2716.pdf  
downloaded Downloaded: 87   viewed Viewed: 1371

M. H. Mahmood, Suryanto, M. H. F. Al Hazza and F. I Haidera
( Received: July 11, 2017 – Accepted in Revised Form: October 12, 2017 )

Abstract    Copper alloys are widely used in the manufacturing of heat transfer applications, this due to their excellent heat transfer properties. Copper contamination is one of the serious industrial problems in the boiler feed water system. This contamination commonly resulted from copper corrosion reactions in boiler feed water environment. The best way to reduce the copper contamination is by improving copper corrosion resistance. This research studies the developing of copper corrosion resistant by using anodization technique. The anodization experiments are conducted in oxalate solutions of concentrations from 0.1 to 0.5 M, at a temperature range from 24 to 0 ο C and applied potential from 7.5 to 9 V. Anodized coating analyzed using Field emission scanning microscope, energy dispersive X-ray spectroscopy, and X-ray diffraction. Characterization results referred to the formation of copper oxide anodized coating with grain size range from 25 to 68 nm. The corrosion resistance of the anodized copper samples carried out in simulated boiler feed water. Results show that the corrosion resistance of the anodized samples was enhanced. The corrosion protection efficiencies for the anodized coating increased 86.2% and 74.5% in testing solutions contains 3.5% NaCl, and 2 mg/l NH3, respectively.


Keywords    Copper corrosion, Copper oxide, Anodization technique, Corrosion protection


چکیده    خواص عالی انتقال حرارت مس، آن را در تولید تجهیزات مختلف برنامه های کاربردی انتقال حرارت استفاده می شود. آلودگی آب توسط مس در سیستم گردش آب یکی از مشکلات صنعتی جدی است [1]. این آلودگی معمولا ناشی از واکنش خوردگی مس در محیط آب خوراکی دیگ بخار است. آلودگی مس با افزایش مقاومت خوردگی مس در آب کاهش می یابد. در اين تحقيق، بهبود مقاومت به خوردگي مس با استفاده از روش آنوديزاسيون مورد بررسي قرار گرفته است. آزمایش های آنودیزاسیون در محلول های اگزالاتی از غلظت های 0.1 تا 0.5 M در محدوده دما از 24 تا C˚0 و پتانسیل اعمال شده از 7.5 تا V 9 انجام میشود. پوشش آنودایز با استفاده از میکروسکوپ اسکن انتشار میدان، اشعه ایکس پراکنده انرژی طیف سنجی و پراش اشعه ایکس بررسی شد. نتایج توصیفی به شکل گیری پوشش آنودایز اکسید مس با محدوده اندازه دانه از 25 تا 68 نانومتر اشاره کرد. آزمونهای مقاومت خوردگی نمونههای مس آنودایز در آب خوراکی دیگ بخار انجام شده است. نتایج نشان دهنده افزایش مقاومت به خوردگی نمونههای آنودایز است. راندمان محافظت در برابر خوردگی برای پوشش آنودایز در محلول های آزمایش حاوی 3.5 درصد اسید کلریدریک و mg / l 2 آمونیاک به ترتیب 86.2٪ و 74.5٪ افزایش یافته است.

References    Sherif, S. ''Electrochemical and gravimetric study on the corrosion and corrosion inhibition of pure copper in sodium chloride solutions by two azole derivatives'', International Journal of Electrochemical Science, 7 (2012), 1482–1495.Xu, L. “Novel urchin-like CuO synthesized by a facile reflux method with efficient olefin epoxidation catalytic performance,” Chem. Mater, vol. 21, no. 7, pp. (2009), 1253–1259.Yong, M. “Natural and Biomimetic Artificial Surfaces for Superhydrophobicity, Self-Cleaning, Low Adhesion, and Drag Reduction Dissertation,” The Ohio State University, (2009).Singh, H. “Fabrication, and Characterization of Copper Nanowires,” J. Nanosci. Nanoeng. Appl., vol. 1, no. 1, (2011).   Badiei, E. ''Graphene Oxide Antibacterial Sheets : Synthesis and Characterization'', International Journal of Engineering, vol 27 no. 12, (2014), 1803–1808.Jamal, M.. ''Thermal conductivity of Cu and Al-water nanofluids''. International Journal of Engineering, Transactions B: Applications, vol 26 no. 8, (2013), 821–828. Jamshidi, N. ''Experimental investigation on the viscosity of nanofluids'', International Journal of Engineering, Transactions B: Applications, vol 25 no. 3, (2012), 201–209. Lowalekar, V. Oxalic Acid Based Chemical Systems for Electrochemical Mechanical Planarization of Copper. The University of ArizonaCaballero, F. (2010). ''Evidence and analysis of parallel growth mechanisms in Cu2O films prepared by Cu anodization'', Electrochimica Acta, vol 55 no. 14, (2006), 4353–4358. Zerbino, J. Effect of Oxalate on The Growth of Cuprous Oxide Layers on Copper Electrodes  Ellipsometric and Isoelectric Point Study. Acta Chimica Slovenica, vol 56, (2009),  124–130.Nageh, K. ''Electrochemical fabrication of complex copper oxide nano-architectures via copper anodization in aqueous and non-aqueous electrolytes''. Materials Letters, vol 65 no. 12, (2011), 1949–1955.Ben Salem.. Study and characterization of porous copper oxide produced by electrochemical anodization for radiometric heat absorber. Nanoscale Research Letters, vol 9 no. 1, (2014), 577. Ozkazanc, H.. Electrochemical synthesis of polypyrrole (PPy) and PPymetal composites on copper electrode and investigation of their anticorrosive properties. Progress in Organic Coatings, vol 76 no. 4, (2013), 720–728.Romeiro, A.. ''Polyphenazine films as inhibitors of copper corrosion''. Journal of Electroanalytical Chemistry, vol 688, (2013) 282–288. Monshi, A.. Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. World Journal of Nano Science and Engineering, vol 2 no. 3, (2012), 154–160. Spinks, G. ''Electroactive Conducting Polymers for Corrosion Control''. J. Solid State Electrochem, vol 6 no. 2, (2002), 73–84.

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir