IJE TRANSACTIONS C: Aspects Vol. 31, No. 3 (March 2018) 405-414    Article in Press

PDF URL: http://www.ije.ir/Vol31/No3/C/2-2711.pdf  
downloaded Downloaded: 82   viewed Viewed: 1331

J. Hosseini Molla, T. Barforoushi and J. Adabi Firouzjaee
( Received: May 06, 2017 – Accepted in Revised Form: October 12, 2017 )

Abstract    Abstract – Distributed generation (DG) technology is known as an efficient solution for applying in distribution system planning (DSP) problems. Load growth uncertainty associated with distribution network is a significant source of uncertainty which highly affects optimal management of DGs. In order to handle this problem, a novel model is proposed in this paper based on DG solution, considering load uncertainty. This model is designed to minimize network costs including operation and losses. Genetic algorithm is used with the purpose of finding the optimal places, sizes as well as times for DGs. Load uncertainty is also modeled through Markov tree. To illustrate the effectiveness of the proposed model, it is tested in different scenarios considering the effects of the purchased power price, DG penetration factor and DG operation intervals. These scenarios are conducted in two different phases, with and without uncertainty and the results are then compared and discussed. Moreover, by considering load uncertainty in planning, planning models would be robust against network future load variations.


Keywords    Distributed Generation (DG), Distribution System Planning (DSP), Load Growth, Genetic Algorithm, Markov Tree, Uncertainty


چکیده    یکی از راهکارهای موثر در برنامه ریزی توسعه سیستمهای توزیع انری الکتریکی، استفاده از تولید پراکنده می باشد. عدم قطعیت در رشد بار شبکه یکی از موضوعات قابل توجه است که می تواند مدیریت بهره برداری و برنامه ریزی توسعه DG ها را تحت تاثیر قرار دهد. به این منظور در این مقاله مدلی تصادفی جدید مبتنی بر راهکار توسعه تولید پراکنده با ملاحظه عدم قطعیت در رشد بار شبکه توزیع ارائه می شود. برای حل مسئله بهینه سازی (تعیین مکان، ظرفیت و زمان نصب مولدها) از الگوریتم ژنتیک استفاده می شود. همچنین عدم قطعیت در رشد بار شبکه توسط درخت مارکوف مدل می شود.برای نشان دادن اثربخشی مدل پیشنهادی سناریوهای متنوعی با ملاحظه اثرات قیمت برق خریداری شده از شبکه بالادست، ضریب نفوذ مولدها و دوره های بهره برداری مولدها مورد مطالعه قرار می گیرد. این سناریوها با ملاحظه عدم قطعیت و بدون آن مطالعه و با یکدیگر مقایسه می شوند. شبیه سازیها نشان می دهند که با ملاحظه عدم قطعیت، مدلهای برنامه ریزی توسعه در برابر تغییرات بار شبکه مقاوم تر خواهند بود.

References    [1]     E. Naderi,Hossein Seifi and M. S. Sepasian, “A Dynamic Approach for Distribution System Planning Considering Distributed Generation,” IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 27, NO. 3, JULY 2012. [2]     W. El-Khattam, Y. G. Hegazy, and M. M. A. Salama, “An integrated distributed generation optimization model for distribution system planning,”IEEE Trans. Power Syst., vol. 20, no. 2, pp. 1158–1165, May 2005. [3]     Y. M. Atwa, E. F. El-Saadany, M. M. A. Salama, and R. Seethapathy, “Optimal renewable resources mix for distribution system energy loss minimization,” IEEE Trans. Power Syst., vol. 25, no. 1, pp. 360–370, Feb. 2010. [4]     N. Khalesi, N. Rezaei, and M.-R.Haghifam, “DG allocation with application of dynamic programming for loss reduction and reliability improvement,” Int. J. Electr. Power Energy Syst., vol. 33, no. 2, pp. 288–295, Feb. 2011. [5]     Z. Liu, F. Wen, and G. Ledwich, “Optimal siting and sizing of distributed generators in distribution systems considering uncertainties,”IEEE Trans. Power Del., vol. 26, no. 4, pp. 2541–2551, Oct. 2011. [6]     C. Novoa and T. Jin, “Reliability centered planning for distributed generation considering wind power volatility,” Elect. Power Syst. Res., vol. 81, no. 8, pp. 1654–1661, Aug. 2011. [7]     A. Kumar and W. Gao, “Optimal distributed generation location using mixed integer non-linear programming in hybrid electricity markets,” IET Gener. Transm.Distrib., vol. 4, no. 2, pp. 281–298, Feb. 2010. [8]     J.-H. Teng, Y.-H.Liu, C.-Y.Chen, and C.-F. Chen, “Value-based distributed generator placements for service quality improvements,” Int..J. Elect. Power Energy Syst., vol. 29, no. 3, pp. 268–274, Mar. 2007. [9]     W. Prommee and W. Ongsakul, “Optimal multiple distributed generation placement in microgrid system by improved reinitialized social structures particle swarm optimization,” Euro. Trans. Electr. Power, vol. 21, no. 1, pp. 489–504, Jan. 2011. [10]   Mauricio E. Samper, and Alberto Vargas, “Investment Decisions in Distribution Networks Under Uncertainty With Distributed Generation—Part I:Model Formulation”IEEE Trans. Power Syst., vol. 28, no. 3, pp. 2331–2340, Aug. 2013. [11]   Mauricio E. Samper, and Alberto Vargas, “Investment Decisions in Distribution Networks Under Uncertainty With Distributed Generation—Part II:Implementation and Results,”IEEE Trans. Power Syst., vol. 28,no.3,pp.2341–2351,Aug. 2013. [12]   Haffner, S., Pereira, L.F.A., Pereira, L.A., and Barreto, L.S., Multistage model for distribution expansion planning with distributed generation—part I: problem formulation, IEEE Trans. Power Del. vol. 23, no. 2, pp. 915–923 (Apr. 2008). [13]   Haffner, S., Pereira, L.F.A., Pereira, L.A., and Barreto, L.S., Multistage model for distribution expansion planning with distributed generation—part II: numerical results, IEEE Trans. Power Del. vol. 23, no. 2, pp. 924–929 (Apr. 2008). [14]   Celli, G., Ghiani, E.,Mocci, S., and Pilo, F., A multi objective evolutionary algorithm for the sizing and sitting of distributed generation, IEEE Trans. Power Syst. vol. 20, no. 2, pp. 750–757 (May. 2008). [15]   Siano, P., Ochoa, L.F., Harrison, G.P., and Piccolo, A., Assessing the strategic benefits of distributed generation ownership for DNOs, IET Gener. Transm.Distrib., 2009, vol. 3, iss. 3, pp. 225–236 (Sep. 2008). [16]   Piccolo, A., and Siano, P., Evaluating the impact of network investment deferral on distributed generation expansion, IEEE Trans. Power Syst. vol. 24, no. 3, pp. 1559–1567, (Aug. 2009). [17]   Favuzza, S., Graditi, G, Ippolito, M.G., and Sanseverino, E.R., Optimal electrical distribution systems reinforcement planning using gas micro turbines by dynamic ant colony search algorithm, IEEE Trans. Power Syst. vol. 22, no. 2, pp. 580–587 (May. 2007). [18]   Gil, H.A., and Joos, G., Models for quantifying the economic benefits of distributed generation, IEEE Trans. Power Syst. vol. 23, no. 2, pp. 327–335 (May. 2008). [19]   Wang, L., and Singh, C., Reliability-constrained optimum placement of reclosers and distributed generators in distribution networks using an ant colony system algorithm,” IEEE Trans. Power Syst. vol. 39, no. 6, pp. 757–764 (Nov. 2008).

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir