IJE TRANSACTIONS C: Aspects Vol. 28, No. 12 (December 2015) 1802-1807   

PDF URL: http://www.ije.ir/Vol28/No12/C/14-2153.pdf  
downloaded Downloaded: 124   viewed Viewed: 2134

S. Saedodin, M. J. Noroozi and D. D. Ganj
( Received: July 03, 2015 – Accepted: December 24, 2015 )

Abstract    In this paper, the non-Fourier heat conduction in a semi-infinite body was examined. The heat wave non-Fourier heat conduction model was used for thermal analysis. Thermal conductivity was assumed temperature-dependent which resulted in a non-linear equation. The heat source was also considered temperature-dependent which resulted in a non-homogeneous equation. The Mac-Cormack predictor-corrector numerical method was employed to solve the equations. It was concluded that, the non-linear analysis of the non-Fourier heat transfer problems is of great importance. Also, the case which assumed a temperature-dependent heat source had a considerable difference with the case where a constant heat source was assumed.


Keywords    Non-Fourier, Heat Conduction, Numerical Method, Non-Linear Equation, Non-Homogeneous Equation.


چکیده    در این مقاله مسأله­ ی انتقال حرارت غیر فوریه ­ای در یک جسم نیمه بی­نهایت مورد بررسی قرار گرفت. برای تحلیل حرارتی مسئله از مدل هدایت حرارتی غیر فوریه­ ای موج حرارتی استفاده شد. ضریب هدایت حرارتی متغیر با دما فرض شد و بدین ترتیب معادله­ ی غیر خطی بدست آمد. علاوه بر آن منبع تولید حرارت نیز متغیر با دما در نظر گرفته شد که معادله ­ای غیر همگن بدست آمد. برای حل معادلات، روش عددی پیشگو-اصلاحگر مک کورمک به کار گرفته شد. نتیجه گرفته شد که تحلیل غیر خطی مسائل انتقال حرارت غیر فوریه­ ای اهمیت زیادی دارند و همچنین متغیر فرض کردن منبع حرارتی با دما، تغییرات زیادی را درنتایج نسبت به حالتی که منبع تولید حرارت ثابت فرض شود، به وجود می­ آورد



1.        Fourier, J.B., “Théorie analytique de la chaleur” (English translation by Freeman, A., (1955) The analytical theory of heat. Dover Publications, Inc., NewYork), (1822).

2.        Peshkov, V., “Second Sound in Helium II.”, Journal of Physics, USSR, Vol. 3, (1944), 381-389.

3.        Shirmohammadi, R., “Thermal Response of Microparticles Due to Laser Pulse Heating”, Nanoscale and Microscale Thermophysical Engineering, Vol. 15, No. 3, (2011), 151–164.

4.        Tung, M.M., Trujillo, M., López Molina, J. A., Rivera, M. J. and Berjano, E. J., “Modeling the Heating of Biological Tissue Based on the Hyperbolic Heat Transfer Equation”, Mathematical and Computer Modelling, Vol. 50, No. 5-6, (2009), 665–672.

5.        Morse, M. and Feshbach, P.,  “Methods of Theoretical Physics. Part I”, McGraw-Hill, (1953).

6.        Cattaneo, C., “A Form of Heat Conduction Equation Which Eliminates the Paradox of Instantaneous Propagation.” Compute rendus, Vol. 247, (1958), 431–433.

7.        Vernotte, P., “Some Possible Complications in the Phenomenon of Thermal Conduction”, Compute Rendus, Vol. 247, (1961), 2190–2191.

8.        Joseph, D. D. and Preziosi, L., “Heat Waves”, Reviews of Modern Physics, Vol. 61, No. 1, (1989), 41–73.

9.        Özişik, M. N. and Tzou, D. Y., “On the Wave Theory in Heat Conduction”, Journal of Heat Transfer, Vol. 116, No. 3, (1994), 526–535.

10.     Bargmann, S. and Favata, A., “Continuum Mechanical Modeling of Laser-Pulsed Heating in Polycrystals: A Multi-Physics Problem of Coupling Diffusion, Mechanics, and Thermal Waves”, ZAMM - Journal of Applied Mathematics and Mechanics, Vol. 94, No. 6, (2014), 487–498.

11.     Sasmal, A. and Mishra, S. C., “Analysis of Non-Fourier Conduction and Radiation in a Differentially Heated 2-D Square Cavity”, International Journal of Heat and Mass Transfer, Vol. 79, (2014), 116–125.

12.     Rahbari, I., Mortazavi, F. and Rahimian, M. H., “High Order Numerical Simulation of Non-Fourier Heat Conduction: An Application of Numerical Laplace Transform Inversion”, International Communications in Heat and Mass Transfer, Vol. 51, (2014), 51–58.

13.     Zhao, W. T., Wu, J. H. and Chen, Z., “Analysis of Non-Fourier Heat Conduction in a Solid Sphere Under Arbitrary Surface Temperature Change”, Archive of Applied Mechanics, Vol. 84, No.4, (2013), 505–518.

14.     Mishra, S. C. and Sahai, H., “Analysis of Non-Fourier Conduction and Volumetric Radiation in a Concentric Spherical Shell Using Lattice Boltzmann Method and Finite Volume Method”, Heat and Mass Transfer, Vol. 68, (2014), 51–66.

15.     Fong, E. D. and Lam, T. T., “Asymmetrical Collision of Thermal Waves in Thin Films: An Analytical Solution”, International Journal of Thermal Sciences, Vol. 77, (2014), 55–65.

16.     Bidabadi, M., Beidaghy Dizaji, H., Faraji Dizaji, F. and Mostafavi, S. A., “A parametric study of lycopodium dust flame”, Journal of Engineering Mathematics, Vol. 92, No. 1, (2015), 147-165.

17.     Bidabadi, M., Faraji Dizaji, F., Beidaghy Dizaji, H. and Safari Ghahsareh, M., “Investigation of effective dimensionless numbers on initiation of instability in combustion of moisty organic dust:, Journal of Central South University, Vol. 21, No. 1, (2014), 326-337.

18.     Beidaghy Dizaji, H., Faraji Dizaji, F. and Bidabadi, M., “Determining thermo-kinetic constants in order to classify explosivity of foodstuffs”, Combustion, Explosion, and Shock Waves, Vol. 50, No. 4, (2014), 454-462.

19.     Bidabadi, M., Mostafavi, S. A.,  Beidaghy Dizaji, H. and Faraji Dizaji, F., “Lycopodium dust flame characteristics considering char yield”, Scientica Iranica B, Vol. 20, (2013), 1781-1791.

20.     Bidabadi, M., Mostafavi, S. A., Faraji Dizaji, F. and Beidaghy Dizaji, H., “An Analytical Model For Flame Propagation Through Moist Lycopodium Particles With Non-Unity Lewis Number”, International Journal of Engineering-Transactions B: Applications, Vol. 27, No. 5, (2014), 793-802.

21.     Bidabadi, M., Noroozi, M. J. and Fereidooni, J., “Heat Recirculation Effect on the Structure of Wood Dust Flame Propagation,” International Journal of Engineering-Transactions B: Applications, Vol. 25, No. 2, (2012), 143–150.

22.     Bidabadi, M. and Noroozi, M. J., “Effect of Heat Recirculation in Biomass Flame Stability within a Cylindrical Micro-Combustor”, International Journal of Engineering-Transactions C: Aspects, Vol. 28, No. 3, (2015), 454-459.

23.     Zare Ghadi, A., Noroozi, M. J. and Hemmat Esfe, M., “Nanofluid implementation for heat transfer augmentation of magneto hydrodynamic flows in a lid-driven cavity using experimental-based correlations”, International Journal of Applied Electromagnetics and Mechanics, Vol. 42, (2013), 589–602.

24.     Hemmat Esfe, M., Zare Ghadi, A. and Noroozi, M. J., “Numerical Simulation of Mixed Convection within Nanofluid-Filled Cavities with Two Adjadent Moving Walls”, Transactions of the Canadian Society for Mechanical Engineering, Vol. 37, No. 4, (2013), 1073–1089.

25.     Drozda, T. G., “Computational Fluid Mechanics and Heat Transfer”, AIAA Journal, Vol. 51, No. 11, (2013), 2751-2761.

26.     Lewandowska, M. and Malinowski, L., “Hyperbolic Heat Conduction in the Semi-Infinite Body with the Heat Source Which Capacity Linearly Depends on Temperature”, Heat and Mass Transfer, Vol. 33, No. 5-6, (1998), 389–393.

27.     Saedodin, S. and Nasirikia, A., “solution of hyperbolic heat conduction equation in spherical media with nonlinear boundary conditionAerospace Mechanics  Journal, Vol. 10, No. 2, (2014), 65-75.   

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir