IJE TRANSACTIONS C: Aspects Vol. 28, No. 12 (December 2015) 1693-1701   

PDF URL: http://www.ije.ir/Vol28/No12/C/1-2147.pdf  
downloaded Downloaded: 216   viewed Viewed: 2083

G. Allaedini, S.M. Tasirin, Z. Yaakob and M.Z. Meor Talib
( Received: November 11, 2015 – Accepted: December 24, 2015 )

Abstract    The hydrodynamic studies of fluidized bed reactor has been reported in terms of pressure drop, minimum fluidization velocity and bed volume expansion to contribute to the optimization of the CNTs production parameters in fluidized bed reactors. Minimum fluidization velocity and pressure drop, as the most important parameters, were taken into account for the investigation of the hydrodynamic behavior of the material inside the fluidized bed. The volume bed expansion of carbon nanotubes has been also investigated and the effect of the N2:CH4 flow rate ratio to obtain the highest bed volume expansion for maximum carbon nanotubes accumulation has been reported


Keywords    fluidized bed chemical vapor deposition (FBCVD), Hydrodynamic studies, CNTs production


چکیده    در این مقاله نانو لوله های کربنی با موفقیت در راکتورهای بستل سیال نشست بخاردر مجاور کاتالیزور دو گانه کبالت پالادیم مگنزیم اکسایدسننتز شده اند. مطالعات هیدرودینامیکی راکتور درباره ی افت فشار میزان حداقل حالت فولوئیدی و گستردگی بستل راکتور برای تولید نشست بیشتر نانو کربن گزارش داده شده است .تاثیر نسبت گاز کربنی به گاز بی اثر ( متان: نیتروژن) توسط طراحی آزمایش بررسی شده است. اینچنین نتیجه گیری شد که وقتی نسبت گاز نیتروژن به متان 3:5 است. بالاترین میزان نانولوله های کربنی به دست می آید. نانو لوله های کربنی چند دیواره با قطر 14 نانومتر هستند و بیشترین میزان گسترش بستل راکتور در رابطه با نشست نانو کربن زمانی است که نسبت نیتروژن به متاان 3:5 است و این میزان 85% میباشد.



1.     Pipes, R.B. and Hubert, P., "Helical carbon nanotube arrays: Mechanical properties", Composites Science and Technology,  Vol. 62, No. 3, (2002), 419-428.

2.     Mohammadian, M. and Fereidoon, A., "Young s modulus of single and double walled carbon nanocones using finite element method (technical note)", International Journal of Engineering-Transactions C: Aspects,  Vol. 27, No. 9, (2014), 1467.

3.     Moshrefzadeh-Sani, H., Saboori, B. and Alizadeh, M., "A continuum model for stone-wales defected carbon nanotubes", International Journal of Engineering-Transactions C: Aspects,  Vol. 28, No. 3, (2015), 433.

4.     Robertson, J., "Realistic applications of cnts", Materials Today,  Vol. 7, No. 10, (2004), 46-52.

5.     Gohari, M.S., Ebadzadeha, T. and Rashidi, A., "An experimental study on the thermal conductivity of carbon nanotubes/oil",  Vol., No.

6.     Li, J., Zhang, Q. and Chan-Park, M.B., "Simulation of carbon nanotube based p–n junction diodes", Carbon,  Vol. 44, No. 14, (2006), 3087-3090.

7.     Singh, I., Rehni, A.K., Kumar, P., Kumar, M. and AboulEnein, H.Y., "Carbon nanotubes: Synthesis, properties and pharmaceutical applications", Fullerenes, Nanotubes and Carbon Nanostructures,  Vol. 17, No. 4, (2009), 361-377.

8.     Kociak, M., Kasumov, A.Y., Guéron, S., Reulet, B., Khodos, I., Gorbatov, Y.B., Volkov, V., Vaccarini, L. and Bouchiat, H., "Superconductivity in ropes of single-walled carbon nanotubes", Physical Review Letters,  Vol. 86, No. 11, (2001), 2416.

9.     Bonard, J.-M., Weiss, N., Kind, H., Stöckli, T., Forró, L.s., Kern, K. and Chatelain, A., "Tuning the field emission properties of patterned carbon nanotube films", Advanced materials,  Vol. 13, No. 3, (2001), 184-188.

10.   Chambers, A., Park, C., Baker, R.T.K. and Rodriguez, N.M., "Hydrogen storage in graphite nanofibers", The Journal of Physical Chemistry B,  Vol. 102, No. 22, (1998), 4253-4256.

11.   Endo, M., Strano, M.S. and Ajayan, P.M., Potential applications of carbon nanotubes, in Carbon nanotubes., Springer. (2008) 13-61.

12.   Ajayan, P., Ebbesen, T., Ichihashi, T., Iijima, S., Tanigaki, K. and Hiura, H., "Opening carbon nanotubes with oxygen and implications for filling", Nature,  Vol. 362, No. 6420, (1993), 522-525.

13.   Varshney, K., "Carbon nanotubes: A review on synthesis, properties and applications",  Physical Review Letters,  Vol. 99, No. 6, (2002), 1145-1156

14.   Allaedini, G., Aminayi, P. and Tasirin, S.M., "The effect of alumina and magnesia supported germanium nanoparticles on the growth of carbon nanotubes in the chemical vapor deposition method", Journal of Nanomaterials,  Vol. 501, (2015), 961231.

15.   Shyu, Y.-M. and Hong, F.C.-N., "Low-temperature growth and field emission of aligned carbon nanotubes by chemical vapor deposition", Materials Chemistry and Physics,  Vol. 72, No. 2, (2001), 223-227.

16.   Hsieh, C.-T., Lin, Y.-T., Chen, W.-Y. and Wei, J.-L., "Parameter setting on growth of carbon nanotubes over transition metal/alumina catalysts in a fluidized bed reactor", Powder Technology,  Vol. 192, No. 1, (2009), 16-22.

17.   See, C.H. and Harris, A.T., "Caco3 supported cofe catalysts for carbon nanotube synthesis in fluidized bed reactors", AIChE Journal,  Vol. 54, No. 3, (2008), 657-664.

18.   Zhang, Q., Zhao, M.-Q., Huang, J.-Q., Nie, J.-Q. and Wei, F., "Mass production of aligned carbon nanotube arrays by fluidized bed catalytic chemical vapor deposition", Carbon,  Vol. 48, No. 4, (2010), 1196-1209.

19.   Bethune, D.S., Klang, C.H., de Vries, M.S., Gorman, G., Savoy, R., Vazquez, J. and Beyers, R., "Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls", Nature,  Vol. 363, No. 6430, (1993), 605-607.

20.   Allaedini, G., Tasirin, S.M., Sahari, J., Talib, M. and Zainal, M., "The effect of co/pd mgo supported catalyst calcination temperature on the yield and morphology of cnts via methane decomposition", in Advanced Materials Research, Trans Tech Publ. Vol. 983, No. Issue, (2014), 148-151.

21.   Mohamed, N.M., Chech, T.Y. and Masrom, K., "High resolution transmission electron microscopy of catalytically grown carbon nanotubes (cnts)" International Journal of Hydrogen Energy, ,  Vol.4, No.2, (2004), 99-115.

22.   Bokobza, L. and Zhang, J., "Raman spectroscopic characterization of multiwall carbon nanotubes and of composites", Express Polym. Lett,  Vol. 6, No., (2012), 601-608.

23.   Muradov, N., "Thermocatalytic co2-free production of hydrogen from hydrocarbon fuels", in Proceedings of the 2000 Hydrogen Program Review, NREL/CP-570-28890. Vol., No. Issue, (2000).

24.   Pinilla, J., Suelves, I., Lázaro, M., Moliner, R. and Palacios, J., "Parametric study of the decomposition of methane using a nicu/al 2 o 3 catalyst in a fluidized bed reactor", International Journal of Hydrogen Energy,  Vol. 35, No. 18, (2010), 9801-9809.

25.   Pinilla, J., Moliner, R., Suelves, I., Lázaro, M., Echegoyen, Y. and Palacios, J., "Production of hydrogen and carbon nanofibers by thermal decomposition of methane using metal catalysts in a fluidized bed reactor", International Journal of Hydrogen Energy,  Vol. 32, No. 18, (2007), 4821-4829.

26.   Escudero, D.R., "Characterization of the hydrodynamic structure of a 3d acoustic fluidized bed",  (2014).

27.   Yang, W.-c., "Handbook of fluidization and fluid-particle systems, CRC press, (2003).

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir