IJE TRANSACTIONS C: Aspects Vol. 28, No. 12 (December 2015) 1796-1801   

PDF URL: http://www.ije.ir/Vol28/No12/C/13-2144.pdf  
downloaded Downloaded: 214   viewed Viewed: 2109

A.B. Ubale, D. Pangavhane, A. Autic and Warke
( Received: September 25, 2015 – Accepted: December 24, 2015 )

Abstract    An evacuated tube solar collector drier is designed and developed to study analytically and experimentally drying kinetics of Thompson seedless grapes in Pune, India. Drying experiments are carried out in the month of April- June for continuous three years from 2013-2015. During the experimentation, temperatures of hot and cold air at various places, ambient relative humidity and humidity variation in drying chamber, wind velocity and mass of the grape are measured on hourly basis. 10 kg of Thompson seedless grapes are dried in forced convection heat transfer mode from initial moisture content of 76% (wb) to final moisture content 15%(wb) in 37 hours. The drying is carried out under the uncontrolled conditions. The average evacuated tube solar collector efficiency is found 24.5% where as the stacked type dryer which is insulated from outside has given drying efficiency up to 37.1%. To study drying behavior analytically nine different drying models have been tested. It is observed that, Page model describe the drying behavior accurately with highest coefficient of determination (R2 = 0.993), lowest reduced chi-square (χ2 = 5.19x10-5) and lowest root mean square error (RMSE = 0.02071).


Keywords    Evacuated tube solar dryer, Thompson grapes, drying kinetics, forced convection


چکیده    یک خشک کن کلکتور خورشیدی لوله توخالی طراحی و توسعه یافت و مطالعه تحلیلی و تجربی سینتیک خشک کردن انگور تامپسون بیدانه در پونا، هند، انجام گرفت. آزمایش های خشک کردن در ماه آوریل- ژوئن در سه سال متوالی از 2013 تا 2015 انجام شده است. در طول آزمایش، دمای هوای سرد و گرم در مکان های مختلف، رطوبت نسبی محیط و تنوع رطوبت در محفظه خشک کن، سرعت باد و وزن انگور به صورت ساعتی اندازه گیری شد. 10 کیلوگرم انگور تامپسون بیدانه در حالت انتقال حرارت همرفت اجباری از رطوبت اولیه 76٪ (وزنی) تا رطوبت نهایی 15٪ (وزنی) در 37 ساعت خشک شد. فرایند خشک کردن تحت شرایط کنترل نشده انجام شد. متوسط ​​راندمان کلکتور خورشیدی لوله توخالی 5/24درصد بود در حالی که خشک کن انباشته که از خارج عایق شده بود بهره وری خشک کردن تا 1/37 درصد داشت. برای مطالعه رفتار خشک کردن به صورت تحلیلی، نه مدل مختلف خشک کردن آزمایش شد. مشاهده شد که مدل پیج با بالاترین دقت ضریب تعیین (R2 = 0.993)، کمترین کاهش مجذور کای (χ2 = 5.19x10-5) و کمترین ریشه میانگین مربعات خطا (RMSE = 0.02071) رفتار خشک کردن را توصیف می کند.



1.     Sundaria, A.U., Neelamegamb, P. and Subramanianc, C., "Drying kinetics of muscat grapes in a solar drier with evacuated tube collector", International Journal of Engineering-Transactions B: Applications,  Vol. 27, No. 5, (2013), 811.

2.     Pangavhane, D. and Sawhney, R., "Review of research and development work on solar dryers for grape drying", Energy conversion and management,  Vol. 43, No. 1, (2002), 45-61.

3.     Doymaz, İ., "Thin-layer drying behaviour of mint leaves", Journal of Food Engineering,  Vol. 74, No. 3, (2006), 370-375.

4.     Ertekin, C. and Yaldiz, O., "Drying of eggplant and selection of a suitable thin layer drying model", Journal of Food Engineering,  Vol. 63, No. 3, (2004), 349-359.

5.     Fudholi, A., Sopian, K., Ruslan, M., Alghoul, M. and Sulaiman, M., "Review of solar dryers for agricultural and marine products", Renewable and Sustainable Energy Reviews,  Vol. 14, No. 1, (2010), 1-30.

6.     Ayyappan, S. and Mayilsamy, K., "Experimental investigation on a solar tunnel drier for copra drying", Journal of Scientific and Industrial Research,  Vol. 69, No. 8, (2010), 635-638.

7.     Moradi, M. and Zomorodian, A., "Thin layer solar drying of cuminum cyminum grains by means of solar cabinet dryer", American-Eurasian J. Agric. & Environ. Sci,  Vol. 5, No. 3, (2009), 409-413.

8.     Chanchal, L., "Evaluation of air drying characteristics of sliced ginger (zingiber officinale) in a forced convective cabinet dryer and thermal conductivity measurement", Journal of Food Processing & Technology,  (2012).

9.     Mohanraj, M. and Chandrasekar, P., "Performance of a solar drier with and without heat storage material for copra drying", International Journal of Global Energy Issues,  Vol. 31, No. 2, (2009), 112-121.

10.   Ayyappan, S. and Mayilsamy, K., "Solar tunnel drier with thermal storage for drying of copra", International Journal of Energy Technology and Policy,  Vol. 8, No. 1, (2012), 3-13.

11.   Bennamoun, L. and Belhamri, A., "Numerical simulation of drying under variable external conditions: Application to solar drying of seedless grapes", Journal of Food Engineering,  Vol. 76, No. 2, (2006), 179-187.

12.   Mohanraj, M. and Chandrasekar, P., "Performance of a forced convection solar drier integrated with gravel as heat storage material for chili drying", Journal of Engineering Science and Technology,  Vol. 4, No. 3, (2009), 305-314.

13.   Tchaya, G.B., Kamta, M. and Kapseu, C., "Improvement of an indirect solar dryer with forced convection by variation of airflow mode", International journal of emerging technology and advance engineering,  Vol. 4, No. 1, (2014), 518-522.

14.   A.B., U., Pangavhane, D.R. and Warke, A., "Performance improvisation of conventional grape drying method by introducing forced air exhaust", American International Journal of  Research in Science, Technology, Engineering & Mathematics,  Vol. 4, No. 1, (2014), 1-6.

15.   Pangavhane, D., Sawhney, R. and Sarsavadia, P., "Effect of various dipping pretreatment on drying kinetics of thompson seedless grapes", Journal of Food Engineering,  Vol. 39, No. 2, (1999), 211-216.

16.   Sundari, A.U., Neelamegam, P. and Subramanian, C., "Performance evaluation of a forced convection solar drier with evacuated tube collector for drying amla".

17.   Pardhi, C.B. and Bhagoria, J.L., "Development and performance evaluation of mixed-mode solar dryer with forced convection", International Journal of Energy and Environmental Engineering,  Vol. 4, No. 1, (2013), 1-8.

18.   Wiriyaumpaiwong, S. and Jamradloedluk, J., "Forced convection solar drying: Experimental investigation and mathematical modeling of pork strips", KKU Eng J,  Vol. 34, (2012), 243-250.

19.   EL-Mesery, H.S. and Mwithiga, G., "The drying of onion slices in two types of hot-air convective dryers", African Journal of Agricultural Research,  Vol. 7, No. 30, (2012), 4284-4296.

20.   Zare, D. and Chen, G., "Evaluation of a simulation model in predicting the drying parameters for deep-bed paddy drying", Computers and Electronics in Agriculture,  Vol. 68, No. 1, (2009), 78-87.

21.   Zomorodian, A. and Dadashzadeh, M., "Indirect and mixed mode solar drying mathematical models for sultana grape", Journal of Agricultural Science and Technology,  Vol. 11, (2009).

22.   Gürlek, G., Özbalta, N. and Güngör, A., "Solar tunnel drying characteristics and mathematical modelling of tomato", Journal of Thermal Science and Technology,  Vol. 29, No. 1, (2009), 15-23.

23.   Lahsasni, S., Kouhila, M., Mahrouz, M., Mohamed, L. and Agorram, B., "Characteristic drying curve and mathematical modeling of thinlayer solar drying of prickly pear cladode (opuntia ficus indica)", Journal of food process engineering,  Vol. 27, No. 2, (2004), 103-117.

24.   Xiao, H.-W., Pang, C.-L., Wang, L.-H., Bai, J.-W., Yang, W.-X. and Gao, Z.-J., "Drying kinetics and quality of monukka seedless grapes dried in an air-impingement jet dryer", Biosystems Engineering,  Vol. 105, No. 2, (2010), 233-240.

25.   Pangavhane, D.R., Sawhney, R. and Sarsavadia, P., "Design, development and performance testing of a new natural convection solar dryer", Energy,  Vol. 27, No. 6, (2002), 579-590.

Download PDF 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir