
IJE TRANSACTIONS B: Applications Vol. 32, No. 8, (August 2019) 1117-1125

Please cite this article as: H. Bypour, M. Farhadi, R. Mortazavi, An Efficient Secret Sharing-based Storage System for Cloud-based Internet of

Things, International Journal of Engineering (IJE), IJE TRANSACTIONS B: Applications Vol. 32, No. 8, (August 2019) 1117-1125

International Journal of Engineering

J o u r n a l H o m e p a g e : w w w . i j e . i r

An Efficient Secret Sharing-based Storage System for Cloud-based Internet of Things

H. Bypoura, M. Farhadi*a, R. Mortazavib

a School of Mathematics and Computer Science, Damghan University, Damghan, Iran
b School of Engineering, Damghan University, Damghan, Iran

P A P E R I N F O

Paper history:
Received 23December 2018

Received in revised form 15 May 2019

Accepted 05 July 2019

Keywords:
Internet of Things

Cloud Storage
Secret Sharing Scheme

Aggregate Data

A B S T R A C T

Internet of things (IoTs) is the newfound information architecture based on the internet that develops
interactions between objects and services in a secure and reliable environment. As the availability of

many smart devices rises, secure and scalable mass storage systems for aggregate data is required in IoTs

applications. In this paper, we propose a new method for storing aggregate data in IoTs by the use of
(�, �)-threshold secret sharing scheme in the cloud storage. In this method, original data is divided into �
blocks that each block is considered as a share. The edge server does not send these shares (blocks)

directly (through the secure channel) to cloud service providers (���s). Rather, the edge server hides

the shares (blocks) with XORing two secret values and publishes the result. Indeed, with this method,

none of ���s has an amount of block information.This scheme is also verifiable, i.e., in the verification

phase, each ��� can verify its quasi-share. Moreover, before data retrieval, the edge server checks the

correctness of provided quasi-share from ���s of an authorized group. Also, the proposed scheme is

scalable, since new data can be inserted or part of the original data can be deleted, without changing

shares. It is worth noting that the proposed scheme is more efficient compared with the other scheme
since heavy and complex computation is not required.

doi: 10.5829/ije.2019.32.08b.07

1. INTRODUCTION

The concept of the internet of things was first introduced

by Ashton [1] in 1999. He describes a world in which

everything has its own digital identity and allows

computers to manage them. The most important feature

of IoTs is the ability to connect various types of objects

to the virtual world.

The model of IoTs and its standards have been

reviewed and surveyed in several literature studies [2-8].

Miraz et al. [5] discussed the the Internet of Things

(IoTs), Internet of Everything (IoE), and Internet of Nano

Things (IoNTs). They have distinguished the difference

between IoTs and IoE which are wrongly considered to

be the same by many people. Moreover, Lin et al. [4], first

explore the relationship between Cyber-Physical

Systems (CPS) and IoTs. Then they present existing

architectures, enabling technologies, and security and

privacy issues in IoTs to enhance the understanding of

the state of the art IoTs development.

*Corresponding Author Email: farhadi@du.ac.ir (M. Farhadi)

The challenges in IoTs have been addressed in several

studies. Andra et al. [9] presented security vulnerabilities

and challenges in IoTs and explored the security

requirements for IoTs and provided a classification of the

security challenges in IoTs systems using a new unique

classification method consisting of four classes of

attacks: physical, network, software, and encryption

attacks. Moreover, Botta et al. [10] presented the

integration of cloud computing and IoTs. In addition,

Samuel [6] reviewed connectivity challenges in the IoTs-

smart home. Also Wei et al. [11] presented survey work

on the challenges issues and opportunities in IoTs.

Generally, the IoTs system requires confidentiality,

integrity, authentication and access control. Privacy and

access control are also the major challenges of IoTs [12].

As the availability of many smart devices rises, fast

and easy access to data as well as sharing more

information is felt. Moreover, secure and scalable mass

storage systems for aggregate data are required in IoTs

applications [4]. Mollah et al. [13] proposed a new

1118 H. Bypour et al. / IJE TRANSACTIONS B: Applications Vol. 32, No. 8, (August 2019) 1117-1125

cryptographic scheme that smart devices can share data

securely with others at the edge of cloud-assisted IoTs

with checking the integrity of decrypted data in data

sharing and downloading phase. Furthermore, they

proposed data-searching scheme to search desired

data/shared data by authorized users on storage where all

data are in encrypted form.

One of the methods used in the IoTs is to employ the

secret sharing scheme [14]. A secret sharing scheme is

designed to safeguard a secret by splitting it into shares

and distributing them among a group of participants. In

1979, (�, �) -threshold secret sharing schemes were

proposed by Blackley [15] and Shamir [16],

independently. In a (�, �) -threshold secret sharing

scheme, a secret can be shared among � participants such

that � or more participants can reconstruct the secret, but

� − 1 or fewer participants can not share it.

To adapt the IoTs applications, a cloud service

provider offers rapid access to flexible, low-cost

resources. Cloud computing is the most cost-effective

method for utilization, protection, and upgrading the

program and data. The advantage of using cloud

computing is the almost unlimited storage space.

Therefore, there is no need to concern about possible

space shortages and to increase storage space. Also, since

the information is stored in the cloud, preparing a backup

version and restoring the information is much easier than

storing the same information on a physical device.

Therefore, most cloud service providers compete for data

retrieval.

Asadi and Hamidi [17] point to the privacy issues of

big data distributed in the cloud computing and analyze

the privacy issue with the Petri model. Chen et al. [18]

and Shen et al. [19] used the revised Blakley's and

Shamir's secret sharing schemes, respectively, in a secure

distributed file system. Then, Jiang et al. [14] proposed a

secure and scalable storage system for aggregate data in

IoTs, using the method proposed by Shen et al. [19]. Jiang

et al. [14] introduced big data with � bytes which was

divided into blocks with � − 1 bytes for storage. Then,

for each block, a polynomial of degree � − 1 is generated,

and each byte of each block is considered as a coefficient

of a polynomial. Moreover, in this scheme, new data can

be inserted, or part of the original data can be deleted,

without changing shares.

In this paper, we proposed a new scheme based on the

method Jiang et al. [14] for storing aggregate data in IoTs

in cloud storage. In this scheme, we use a (�, �) -threshold

secret sharing scheme. Our proposed scheme has the

following properties:

1. The edge server divides the data into � blocks, and

each block is considered as a share. However, the

edge server does not send these shares (blocks)

directly (through the secure channel) to ���s, but

the shares are generated by published

information.

2. The correctness of published information about ���s

can be verified by ���s in the verification phase.

3. In the data retrieval phase, before the data retrieval,

the correctness of provided information by � ���s

checked by the edge server. Thus, the edge server can

prevent the cheating of some malicious ���s.

4. The edge server is responsible for receiving, sharing

and retrieving data. However, if the security of the

edge server is compromised, then � ���s can retrieve

the data in collaboration with each other and with the

information, they had.

5. The new data can be inserted or part of original data

can be deleted, without changing shares.

6. We have only simple and easy calculations of the

hash function, and we only use “⨁” (bitwise

exclusive OR) and “||” (concatenation) operators in

the calculations. These operators make our scheme

less costly and more efficient than other schemes [13,

14].

The rest of the paper is structured in the following

sections: in section 2 we provide some definitions. In

section 3, we propose the new method for storing

aggregate data of IoTs applications in cloud storage.

Section 4 involves analyzing the proposed method. In this

section, we will describe some of the features and

performance of the proposed scheme. Finally, section 5

concludes our paper.

2. PRELIMINARIES

2. 1. Overall System Architecture Data owner

The data owner is the possessor of the sensitive data that

he/she wants to store his/her data in the cloud storage

environment. He/she registers in the cloud account and

uploads his/her data by PC or laptop or smart devices.

Then, whenever necessary, he/she will be able to access

the data by requesting the data in his/her cloud account.

Edge server This part of the cloud receives data from

the data owner and, for storing it, divides the data into

shares by the secret sharing scheme. We do not have

absolute trust in this party, which means that the edge

server may be misled in generating and publishing

values.

Cloud Service Provider (���) This party receives a

share from the edge server. The ���s of an authorized

subset send their shares to the edge server for retrieving

the data. We do not have trust in this party, which means

that this party maybe sends an invalid share to the edge

server in the data retrieval phase.

Bulletin Board (BB) One of ��� is considered as a

bulletin board, which public values published in it. We

suppose that only the edge server can publish the values

on the bulletin board, and only it can change the values

H. Bypour et al. / IJE TRANSACTIONS B: Applications Vol. 32, No. 8, (August 2019) 1117-1125 1119

on the bulletin board, and the other (���s) can only view

the published values.

2. 2. Security Properties Correctness If edge

server and ���s act honestly, the data retrieve by shares

of any authorized subset of ���s.

Verifiability Each ��� must be able to check the

accuracy of its share. Furthermore, before retrieving data,

the edge server must be able to verify the accuracy of the

shares received by the ���s in order to prevent the

cheating of ���s.

Secrecy The basic requirement is that an adversary

cannot learn any information about the data, or it is

impossible for any collusion of less than � ���s to obtain

any information about the data.

2. 3. Cryptographic Method We say that hash

function � is cryptographically secure if � satisfies the

following conditions:

• The hash function should be preimage resistant, i.e.,

for a given output � of �, it should be difficult to find

a message � such that � = �(�).

• The hash function should be second preimage

resistant, i.e., for a given ��, it should be difficult to

find a message �� ≠ �� such that �(��) = �(��).

• The hash function should be collision resistant, i.e.,

it should be difficult to find two different messages

�� and �� such that �(��) = �(��).

The difficulty of finding a collision depends on the size

of the hash value.

2. 4. Threat Model Insider threats Malicious

insiders such as ���s that want to access/disclose/modify

the stored data.

Outsider threats Outside intruders are those who

want to access the data, alone or with the collaboration of

some unauthorized subsets of ���s.

3. THE PROPOSED SCHEME

In this section, we describe our proposed scheme. We

need some notations and values in Table 1.

In the proposed scheme, we assume that each ���� has

���� , ���� which receives them with ���2�
′ !

"#
= �(��2�)

from CA (certificate authority). Also, CA sends ���� to the

edge server.

The steps of the proposed scheme are as follows:

• Submitting the data

- Registration

As shown in Figure 1, the data owner selects a

username and registers her/his information. Then,

he/she receives a password (note that the data owner

can change the password).

TABLE 1. The notations used in the proposed scheme

Notation Meaning

� Data

$ The size of data �

� The number of cloud service providers (���s)

� The threshold of ���s

� The size of � blocks of data �

�(∙) The secure hash function

{0, 1}∗
 The set of all binary strings of arbitrary finite bit length

{0, 1}*
 The set of all binary strings of fixed length +

�, The hash value of the data �

���� The �th cloud service provider

-� The �th block with size +

. The number of authorized groups

|| Concatenation

⊕ Bitwise exclusive 01 operator

-2�3 The hash value of (Block �||4)

�, The hash value of data �

5� The quasi share of ����

563 The public value

7�3 The public value (value of masked -2�3)

�3 The hash value of 5�||5�|| … ||59||4

:�3 The public value (value of masked block -�)

� The chosen randomly value by the edge server

�� The hash value of �||����||����

5;� The value of masked quasi-share 5�

5�
<
 The hash value of quasi-share 5�

Figure 1. Registration and submission of data by the data

owner

- Login and submitting

1. The data owner logs into a nearby edge server from

a smart device using the username and password

and submits the data �.
2. The data owner also submits some related keywords

of the data such that any authorized recipient users

are allowed to view to find the data. In this case, the

1120 H. Bypour et al. / IJE TRANSACTIONS B: Applications Vol. 32, No. 8, (August 2019) 1117-1125

data owner can introduce some users to access data.

There are two cases when users of the group want

to access the data using keywords:
- Users of the group are authorized to access the data.

In this case, authorized users request the data by

providing keywords. Then, the edge server provides

the data to them.

- The data owner revokes access of some users to the

data in the group. In this case, the data owner

revokes access of some users (=�) by providing (���,

keywords, $>?) to the edge server (note that we

assume $>? is a sign of revocation of access to the

data). Once, when the user =� requests the data by

providing the keyword, the edge server checks the

user =� access to the data. In this case, the edge

server will display “unauthorized access” to the user

=�.

• Construction

1. After submitting the data � by the data owner, the

edge server first publishes an access structure @ =
{A�, A�, … , AB} on the BB, where A3 (4 =
1, 2, … , .) is an authorized group. Then, the edge

server splits the data into � blocks with size �. If

� ∤ |Data| , then the edge server appends the

randomly generated padding strings to the end of

the data such that � | |Data || padding|.

2. Suppose |�| = |Data| = $ or |�| =
|Data || padding| = $ and � | $.So

� = L��L�� . . . L�N||L��L�� . . . L�N||. . . ||L9�L9�. . . L9N
OPPPPPPPPPPPPPPQPPPPPPPPPPPPPPR

S

-TUVW 1: L��L�� … L�N

-TUVW 2: L��L�� … L�N

⋮

-TUVW �: L9�L9� … L9N

3. The edge server chooses a secure hash function

�: {0,1}∗ ⟶ {0, 1}* and computes

�, = �(�) (1)

4. Now, the edge server acts based on the following

cases:

- If |Block [| \]

1. The edge server appends the randomly generated

padding strings to the end of each block such that

the length of the block equals to +.

-� = Block � || padding �, � = 1, 2, … , � (2)

⟹ |-�| = +

-2�3 = �(Block �||4) (3)

2. Each ���� sends ℐ`� = ���� ⨁ ���� , {����
< }�A to the

edge server. The edge server first obtains ���� =

ℐ`� ⨁ ���� , ����
<< = �(����) and then compares ����

<<

with {����
< }"#. If two hash values are equal, then the

edge server accepts ����, otherwise rejects it. After

this, the edge server obtains for every ���� in an

authorized group A3

∀5�, 5�, … , 5b ∈ {0, 1}* , ∃ 563 ∈ {0, 1}* s.t.

 �, =⊕efgh∈#i
5� ⨁ 563

(4)

7�3 = -2�3 ⨁ �, (5)

�3 = �(5�||5�|| … ||59||4) (6)

:�3 = -�⨁-2�3 ⨁ �3 (7)

�� = �(�||����||����), � ∈j {0, 1}* (8)

5;� = 5�⨁�� (9)

5�
< = �(5�) (10)

where � = 1, 2, … , �, 4 = 1, 2, … , ..

3. The edge server sends 5;� to ���� and publishes

�, 563 , 5�
′ , 7�4, :�4, and Hash function � on the BB

(�, 563 , 5�
′ for ���� and 7�3 , :�3 for itself). Indeed, each

���� just gets 5� as quasi-share and in the

Verification phase, it just needs to verify the

validity of 5�. Then, the edge server stores the size

of paddings.

Figure 2 shows the construction phase of the

proposed scheme.

- If |Block [|=] or |Block [|= k]

1. In case |Block �|= +, it is not necessary to perform

the padding for Block � in Eq. (2).
2. In case |Block �|= W+, the edge server considers

W-2�3 = -2�3||-2�3||. . . ||-2�3
OPPPPQPPPPR

l

.
(11)

Similar to Equation (11), the edge server considers

W�,, W��3 instead of �,, ��3. Then, the edge server performs

the rest of the calculation in the same way as the case

|Block �|\ +.

Figure 2. The Construction phase of the proposed scheme

H. Bypour et al. / IJE TRANSACTIONS B: Applications Vol. 32, No. 8, (August 2019) 1117-1125 1121

- If |Block [|m]

Suppose

(W − 1)+ \|Block �| \ W+.

Note that the size of the block here is greater than + and

is not divisible by +. In this case, the edge server

performs as follows:

∀� = 1, 2, … , � -� = Block �||padding �

s.t. |-�| = W+
(12)

Then, the edge server performs the rest of the

calculation in the same way as case |Block �|= W+.

• Verification

Each ���� computes

�� = �(�||����||����),

5� = 5;�⨁��

5�
<< = �(5�)

and then checks

5�
<< ≟ 5�

<. (13)

If Equality (13) holds, the published hash value 5�
< is

valid. Otherwise 5�
< is invalid.

After successful verification, the edge server

deletes ���� , � = 1, 2, … , �.

• Data requesting and retrieval

We only show data retrieval for the first case where

|Block �|\ +, and the two remaining cases are

similarly obtained.

1. If data owner requests the data (or an authorized

user requests the data by searching keywords),

then ���s of an authorized group 4 provide their

quasi-shares to edge server.

2. After sending � quasi-shares 5� by ���� (� =
1, 2, … , �), the edge server obtains and checks

5�
<< = �(5�) (14)

5�
<< ≟ 5�

< . (15)

The edge server accepts quasi-share 5�, if Equality

(15) holds, and rejects it otherwise.

Figure 3. Data retrieval phase of proposed scheme

3. After accepting � quasi-shares, the edge server

computes

�, =⊕efgh∈#i
5� ⨁ 563 (16)

-2�3 = 7�3 ⨁ �, (17)

�3 = �(5�||5�|| … ||59||4) (18)

-� = :�3⨁-2�3 ⨁ �3. (19)

Then, the edge server appends the obtained blocks

together for retrieval.

Figure 3 shows the Data retrieval phase of the

proposed scheme.

• Inserting new data

Suppose that there is new data to be added to the

original data. So, there are four cases:

1. Inserting new data before Block 1

The new discrete block(s) is/are generated. There are

three cases:

- If

|new data| \ |Block 1|,

then the edge server randomly appends a new padding

to the new data block such that

|new data || padding|= �.

- If

|new data|= |Block 1|,

then the edge server considers the new data as the new

block of size �.

- If

|new data| m |Block 1|,

then the edge server splits the new data into blocks of

size �. If

|last generated new block| \ |Block 1|,

then the edge server randomly appends a new padding

in the same way as the first instance.

In general, in this case, there are more than � blocks.

Therefore, at least � o 1 ���s can retrieve data.

2. Inserting new data between Block [data

The edge server splits the Block � with inserted data into

new blocks of size �. If

|last generated new block| \ |Block �|,

then the edge server randomly appends a new padding

in the same way as the first instance of the previous

case.

3. Inserting new data between Block [and Block [o
p

The new discrete block(s) is/are generated similar to

case 1.

1122 H. Bypour et al. / IJE TRANSACTIONS B: Applications Vol. 32, No. 8, (August 2019) 1117-1125

4. Inserting new data after the last Block

The new discrete block(s) is/are generated

similar to case 1.

• Deleting part of the data

Suppose that part of data is deleted. So, there will be

three cases.

1. Deleted data is just part of Block [; |deleted

data| \ |Block [|
In this case, the edge server performs the padding

again only for the block that part of its data has

been deleted.

2. Deleted data is part of Block [and Block [o p;

|deleted data| \ |Block [, Block [o p|

In this case, the edge server performs the padding

again only for Block � and Block � o 1.

3. |deleted data| m |Block [|
In this case, less than � blocks remain. So, the deleted

block(s) should be generated. If the number of

deleted Blocks \ |Block �|, then the edge server

selects an adjacent block of deleted data and splits

it into blocks of size 1. Note that

 1 ≤ |last generated new Block \ �.

Then, edge server appends padding to the newly generated

blocks. Now, if

the number of deleted Blocks m |Block �|,

then the edge server selects several adjacent blocks of

deleted data for splitting and generates new blocks

instead of deleted blocks similar before.

4. ANALYSIS OF OUR PROPOSAL

4. 1. Security Analysis In this section, we will

analyze the features of our proposal.

Theorem 4.1. Any collusion of less than � ���s cannot

obtain any information about the data.

Proof. Without loss of generality, suppose ����, ����, …,

���9r� (malicious insiders) with quasi-shares 5�, 5�, …,

59r�, respectively, intend to retrieve the data without

���9. To do this, malicious insiders should obtain blocks

-�, -�, …, -9. However, to obtain these blocks, they need

values -2�3, �3, which values -2�3, �3 are derived from

Equations (5) and (6), respectively. That is, they must

first obtain the quasi-share 59. Malicious insiders can try

to derive quasi-share of ���9 by published value 5�
< in the

construction phase. Since the hash function � is one-way,

they cannot obtain the quasi-share 59 from public

information 5�
<.

Theorem 4.2. The edge server cannot cheat by

publishing invalid values in the Construction phase.

Indeed, its cheating is detectable.

Proof According to the verification phase, if the edge

server publishes invalid 5�
<, then Equality (13) does not

hold. Indeed, since the hash function � is second

preimage resistant, the edge server cannot find the second

preimage 5̅� such that 5�
< = �t5̅�u = �(5�). Moreover,

since values 7�3 , :�3 are required for data retrieval, so the

edge server must publish valid values of 7�3 , :�3 in the

construction phase. Otherwise, in the data retrieval phase,

the original data will not be restored, and this will be the

edge server error. ∎

Theorem 4.3. If some malicious ���s provide fake

shares to prevent retrieval of the main data, then their

cheating is detectable.

Proof According to the data retrieval phase, if ����

provides invalid quasi-share 5�, similar to proof of

Theorem 4.2, Equality (15) does not hold. ∎

Theorem 4.4. Under the secure hash function, outside

intruders cannot get any information about the data.

Proof Suppose outside intruders want to achieve blocks

of data by public information �, 563 , 5�
′ , 7�4, :�4. But,

according to proof of Theorem 4.1, outside intruders

need to get a quasi-shares of � ���s to get blocks and

retrieve the original data. But since � is a one-way

function, they can not get � quasi-shares and retrieve data

using public values 5�
<. ∎

Remark Our proposal is scalable because we can add

new data or delete part of the original data without

changing all the shares. When inserting new data,

previous shares don’t change and only some new shares

are generated. Also, when part of the original data is

deleted, only some of the blocks are affected by the

deletion of the data that are subject to change.

4. 2. Performance Analysis In this section, in

Tables 2 and 3, we consider two schemes for comparison

with our scheme. One of the reported schemes [13] is

based on the cryptographic mechanisms and the other

[14] is based on the secret sharing scheme.

The scheme introduced by Mollah [13] used RSA and

AES cryptosystems. Since the computational complexity

of the RSA encryption is 0(�w), the computational

complexity of the scheme becomes 0(�w) (It is notable

that the symmetric cryptosystem AES has a much lower

computational complexity, so we ignore it).

The scheme introduced by Jiang et al. [14] splits the

data into several blocks such that for each block, a

polynomial of degree � − 1 is formed. If we assume that

H. Bypour et al. / IJE TRANSACTIONS B: Applications Vol. 32, No. 8, (August 2019) 1117-1125 1123

there are T blocks, then we have T polynomials. To

retrieve data, each � shares together retrieves these T
blocks and the scheme requires 0(T��) computations.

The proposed scheme is established based on the x01

operator, concatenation, and hash functions. The

construction phase requires 0(�) computations since it

consists of (5. o 9)� o 3 x01 operators, concatenations

and hash function calls. The verification phase comprises

of (�) x01 operators, (2�) concatenations and calls the

hash function (�) times. Therefore, it is accomplished in

0(�). Similarly, the data retrieval phase comprises of (2�)

x01 operators, (�) concatenations and calls the hash

function (�) times. Therefore it is accomplished in 0(�).

4. 3. Experimental Evaluations We implemented

and compared the runtime of the proposed method and

the technique introduced by Jiang et al. [14]. In both

experiments, the same 10000 secret messages each of

length 70 bytes are sent to participants (���s) and

reconstructed using � shares. Each experiment is repeated

10 times and the average required time per message is

measured. Figure 4 shows the results of the methods for

� = 3, 4, 5, 6, 7, 8, 9. The methods are implemented in

C#.Net on a regular PC with an Intel G3220 3.0 GHz

CPU and Windows 10 operating system. The results

TABLE 2. Comparisons between the proposed scheme with

other related schemes

Feature Ref. [13] Ref. [14] Our scheme

Data privacy Yes Yes Yes

Data availability Yes Yes Yes

Verifiability No No Yes

Data scalability No Yes Yes

Resist cheating

by dishonest

���s

Yes No Yes

Type of cloud Single cloud Multi-cloud Multi-cloud

Method used
AES and

RSA
Polynomial

Hash-based

Secret

sharing

Need secure

channel
No Yes No

Have public

value
No No Yes

TABLE 3. Comparison of computational complexity

Feature Ref. [13] Ref. [14] Our scheme

Construction 0(�w) 0(T�) 0(�)

Verification ___ ___ 0(�)

Retrieval 0(�w) 0(T��) 0(�)

confirm the effectiveness of the proposed method in all

cases. This performance gain is the result of using hash

functions and simple operators such as XOR and

concatenation instead of heavy matrix or polynomial

computations in finite fields. It is notable that the

proposed method also includes the verification step that

is not part of the technique defined by Jiang et al. [14].

5. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new verifiable and scalable

cloud storage for aggregate data in IoTs. In this scheme,

the edge server divided the data into � blocks and each

block was considered as a share. But these blocks were

hidden for each ���. Indeed, the edge server obtained a

quasi-share for each ��� and published the hash value of

it. Then in the data retrieval phase, the edge server

retrieved the blocks of data by quasi-share of ���s of an

authorized group. In the verification phase, each ���

obtained the hash value of its quasi-share and compared

it with published hash value by the edge server to observe

whether the valid hash value has been published to it by

the edge server. Moreover, before data retrieval, the edge

server checked the correctness of provided quasi-shares

by � ���s. Therefore, the fault of ���s in providing

invalid quasi-shares was detectable. Since blocks of data

are hidden using the quasi-shares, the confidentiality of

data is maintained. Thus, this scheme is safe against

attacks of malicious insiders and outsiders. Also, in our

scheme, new data can be inserted or part of the original

data can be deleted, without changing all shares.

Furthermore, we showed that our scheme is more

efficient than some other schemes because, in this

scheme, we had only simple and easy calculations of the

hash function, and we only used “⨁” (bitwise exclusive

OR) and “||” (concatenation) operators in the

calculations.

Figure 4. The execution time of our scheme compared to the

scheme introduced by Jiang et al. [14]

1124 H. Bypour et al. / IJE TRANSACTIONS B: Applications Vol. 32, No. 8, (August 2019) 1117-1125

In this paper, we proposed a scheme in which the edge

server is trusted. But in the real world, the server may not

be absolutely reliable. In this way, it can exploit user

information and documents. So, we are looking to

propose a scheme in which the edge server and ���s are

not reliable, and the user's file and information in cloud

environments are stored in such a way that the servers

and ���s do not access its content in any way.

6. REFERENCES

1. Ashton, K., "That ‘internet of things’ thing", RFID Journal, Vol.

22, No. 7, (2009), 97-114.

2. Belkeziz, R. and Jarir, Z., "A survey on internet of things
coordination", in International Conference on Systems of

Collaboration., (2016), 1-6.

3. Darshan, K. and Anandakumar, K., "A comprehensive review on
usage of internet of things (iot) in healthcare system", in 2015

International Conference on Emerging Research in Electronics,

Computer Science and Technology (ICERECT), IEEE., (2015),

132-136.

4. Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H. and Zhao, W., "A

survey on internet of things: Architecture, enabling technologies,
security and privacy, and applications", IEEE Internet of Things

Journal, Vol. 4, No. 5, (2017), 1125-1142.

5. Miraz, M.H., Ali, M., Excell, P.S. and Picking, R., "A review on
internet of things (iot), internet of everything (ioe) and internet of

nano things (iont)", in 2015 Internet Technologies and

Applications (ITA), IEEE., (2015), 219-224.

6. Samuel, S.S.I., "A review of connectivity challenges in iot-smart

home", in 2016 3rd MEC International conference on big data and

smart city (ICBDSC), IEEE. Vol., No. Issue, (2016), 1-4.

7. Suresh, P., Daniel, J.V., Parthasarathy, V. and Aswathy, R., "A

state of the art review on the internet of things (iot) history,

technology and fields of deployment", in 2014 International
conference on science engineering and management research

(ICSEMR), IEEE., (2014), 1-8.

8. Tayeb, S., Latifi, S. and Kim, Y., "A survey on iot communication

and computation frameworks: An industrial perspective", in 2017

IEEE 7th Annual Computing and Communication Workshop

and Conference (CCWC), IEEE., (2017), 1-6.

9. Andrea, I., Chrysostomou, C. and Hadjichristofi, G., "Internet of

things: Security vulnerabilities and challenges", in 2015 IEEE
Symposium on Computers and Communication (ISCC), IEEE.,

(2015), 180-187.

10. Botta, A., De Donato, W., Persico, V. and Pescapé, A., "On the
integration of cloud computing and internet of things", in 2014

International Conference on Future Internet of Things and Cloud,

IEEE., (2014), 23-30.

11. Wei, W., Yang, A.T. and Shi, W., "Security in internet of things:

Opportunities and challenges", in 2016 International Conference
on Identification, Information and Knowledge in the Internet of

Things (IIKI), IEEE., (2016), 512-518.

12. Roman, R., Zhou, J. and Lopez, J., "On the features and
challenges of security and privacy in distributed internet of

things", Computer Networks, Vol. 57, No. 10, (2013), 2266-

2279.

13. Mollah, M.B., Azad, M.A.K. and Vasilakos, A., "Secure data

sharing and searching at the edge of cloud-assisted internet of

things", IEEE Cloud Computing, Vol. 4, No. 1, (2017), 34-42.

14. Jiang, H., Shen, F., Chen, S., Li, K.-C. and Jeong, Y.-S., "A secure

and scalable storage system for aggregate data in iot", Future

Generation Computer Systems, Vol. 49, (2015), 133-141.

15. Blakley, G.R., "Safeguarding cryptographic keys", in

Proceedings of the national computer conference. Vol. 48, (1979),

313-317.

16. Shamir, A., "How to share a secret", Communications of the

ACM, Vol. 22, No. 11, (1979), 612-613.

17. Asadi, F. and Hamidi, H., "An architecture for security and
protection of big data", International Journal of Engineering,

Vol. 30, No. 10, (2017), 1479-1486.

18. Chen, S., Chen, Y., Jiang, H., Yang, L.T. and Li, K.-C., "A secure
distributed file system based on revised blakley's secret sharing

scheme", in 2012 IEEE 11th International Conference on Trust,

Security and Privacy in Computing and Communications, IEEE.,

(2012), 310-317.

19. Shen, F., Jiang, H. and Xu, Z., "On post-generation data

operations in secure distributed storage systems with internal
padding", in 2010 10th IEEE International Conference on

Computer and Information Technology, IEEE., (2010), 2698-

2705.

H. Bypour et al. / IJE TRANSACTIONS B: Applications Vol. 32, No. 8, (August 2019) 1117-1125 1125

An Efficient Secret Sharing-based Storage System for Cloud-based Internet of Things

H. Bypoura, M. Farhadia, R. Mortazavib

a School of Mathematics and Computer Science, Damghan University, Damghan, Iran
b School of Engineering, Damghan University, Damghan, Iran

P A P E R I N F O

Paper history:
Received 23December 2018

Received in revised form 15 May 2019

Accepted 05 July 2019

Keywords:
Internet of Things

Cloud Storage
Secret Sharing Scheme

Aggregate Data

 �����

����� � ��	
� �	
 ������ �� ��� ������� �
 ����� ������ ���� � !��"�� #��	
� ������� $� �% �� (���'() �*

�� ����� +��	" � ,
�- � ��� .	/� 0�1��% %��2 �����% +�3 .'*%5�6	� #��� 7��89� �
�� '�"
�* !�* !�*

0�	(: ;�	<� � ��� 0���� !2��0%�% !��
 ��=>"? !�*�����
 �% 0'
 @ !�*IoTs .��� 2�	� %��� A�� $� #�B�<� ��� �%

0�	(: !��
 '�'?0%�% !2��@"? !�* �% 0'
 IoTs�����C 2�� 5	�6� 2� 0%�D��� �
 !�(�, �) 0�	(: �%!2�� �
� %���E	>

�� �
 �FG� 0%�% #A�� ��� �% .5	��� �� 5	6<� H�F
!�� %�
�
 H�F
 �* �� �� ��9�I �J� �% 5�� $� +���� .%�

5�� ��� ��B ���� H�F
) �* �
 �� (�* (�G�K(L���� M�� 2�) 5	<�6� �� ����� !��
 �N��� !�*) ���'(0'�*%��� (�*

 �"� L����'��5�� ��� ��B ���� �OF
 .H�F
) �* �
 �� (�*x01 �
 +%���� +���> #�DP� ��'<� �%��'
 ��'<� � '�� 0'�C

 �� �E��� �� 2� $� Q	* #A�� ��� �
 @-�� �% .'�����H�F
 0��
�% ����� � �* .��� ��=>'	�R� �	�S"* T� ��� .%��'� �*

 �* #!��=>'	�R� �FU�� �% #������� �� ��
 ����% '���� 2� ,�- #0���
 .'�� '	�R� �� %�(5�� ��B ���� #0%�% �
��2�

��
 ����%5�� .��� 0'
 �N��� !�*��� �� ����
 �� �* ;�	<� !%���E	> T� �	�S"* .'��+�3 #��� ��=> �		V� +�'
 #

�� #W��� +%�%%�� X=U �� �FG� 0%�% 2� �EP
 �� � �9�Y� '�'? 0%�% +���. �6��<� �% !%���E	> T� �� ��� �?�� ,
�-

T� �
% !�* .�6	� 2�	� %��� 0'	S	> � �	1�� �����/� ���2 #��� ��'�C��� �1�

doi: 10.5829/ije.2019.32.08b.07

