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A B S T R A C T  
 

 

In this article, a fast and reliable map-merging algorithm is proposed to produce a global two dimensional 

map of an indoor environment in a multi-robot simultaneous localization and mapping (SLAM) process. 
In SLAM process, to find its way in this environment, a robot should be able to determine its position 
relative to a map formed from its observations. To solve this complex problem, simultaneous localization 
and mapping methods are required. In large and complex environments, using a single robot is not 

reasonable because of the error accumulation and the time required. This can explain the tendency to 
employ multiple robots in parallel for this task. One of the challenges in the multi-robot SLAM is the 
map-merging problem. A centralized algorithm for map-merging is introduced in this research based on 
the features of local maps and without any knowledge about robots initial or relative positions. In order 

to validate the proposed merging algorithm, a medium scale experiment has been set up consisting of 
two heterogeneous mobile robots in an indoor environment equipped with laser sensors. The results 
indicate that the introduced algorithm shows good performance both in accuracy and fast map-merging. 

doi: 10.5829/ije.2019.32.04a.20 
 

 
1. INTRODUCTION1 
 
Rescue missions, security tasks, environmental 

exploration and many other similar tasks have motivated 

many researchers to study mobile robots autonomy. The 

most important issue in mobile robot studies is the 

navigation question. Localization which is about 

estimating the position of the robot in an unknown 

environment, mapping which means creating  an accurate 

map of the environment and path planning, which 

corresponds to calculate a collision-free path between 

initial and goal point, are three basic subjects studied in 

the field of mobile robot navigation. Creating a map of 

the environment by a robot requires the position of the 

robot to be known and calculating the position of a robot 

in an environment requires the map of that environment. 

This is a complex problem named simultaneous 

localization and mapping (SLAM). Many researchers 

focused on SLAM problem and several solutions have 

been presented.  

For decades, single-robot SLAM has been studied, 

but due to considerable advantages such as increasing 
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chances of saving lives due to coordination in a rescue 

mission, reduced time of exploration in large unknown 

environments, efficiency and flexibility, multi-robots 

SLAM (MRSLAM) have received more attention in 

recent years. To reproduce a realistic model of the 

environment in a MRSLAM process, it is necessary for 

the information collected by different robots to be 

merged into a single map. This process is referred to as 

map-merging. Generally, map-merging process can be 

performed in two steps. The first step is  finding a 

rotational and translational transformation between the 

maps and the second one is merging the aligned maps 

into a global or world map. Usually, the transformation 

between maps can be found based on the poses of the 

robots or the features of the maps generated by the robots 

[1]. If the relative positions of the robots are known, the 

map-merging process will be done directly and easily [2-

5]. The relative positions can be calculated if the initial 

positions of the robots are known, or if the robots meet 

each other at a point, called rendezvous, or one robot is 

able to localize the others  in its map. 

On the other hand, when the robots do not know their 
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relative positions, the map-merging process must be 

performed based on the overlaps between the maps. This 

case is more complex and challenging. There exist  

several solutions for this problem in the literature. Thrun 

and Liu [6] presented an algorithm to solve this problem 

in the case of lack of knowledge about the relative 

positions of the robots and the landmarks. They used a 

sparse extended information filter (SEIF) and a tree based 

algorithm to build a global map in a MRSLAM process. 

Carpin et al. [7] introduced a similarity measure and a 

motion planning algorithm to merge the local maps in a 

fast manner. They showed that their approach for map 

merging can even merge maps with low quality. Birk and 

Carpin [8] utilized a similarity measurement function to 

find the best transformation between local maps. They 

used the adaptive random walking algorithm to find a 

maximum overlap between the maps. 

Saeedi et al. [9] presented a new method for map 

fusion using self-organizing map (SOM). In this method 

based on using a neural network, the complexity of the 

occupancy grid maps are reduced. The resulting 

reduction in maps complexities causes a fast and efficient 

map-merging. Saeedi et al. [10] also found the relative 

transformation between local grid maps using the 

Probabilistic Generalized Voronoi Diagram (PGVD). 

Dinnissen et al. [11] studied the decision making  

process to find the right time of map merging to avoid 

uncorrect matches between local maps, using 

reinforcement learning. They assumed that the robots 

meet each other during the MRSLAM process. Li et al. 

[12] introduced an occupancy-likelihood based objective 

function and through using genetic algorithm, found the 

best transformation to merge the local grid maps in a 

MRSLAM process. The proposed method was 

implemented on two CyCab robots equipped with a two-

dimensional laser sensor, GPS, and rotary shaft encoders 

mounted on the wheels in an outdoor environment. Park 

et al. [13] introduced a multi section algorithm to merge 

the occupancy grid maps generated by individual robots 

in a MRSLAM process. Their algorithm is based on 

maximal empty rectangles (MER). The maximal empty 

rectangles concept collects the free spaces of a map into 

larger rectangles rather than many pixels and produced a 

R-map. This reduces the complexity of the map [14].  

In this study, first, the algorithm introduced by Park 

is presented and run for some examples. Then to 

overcome its inconveniences, a new map-merging  

algorithm is proposed. This algorithm is a centralized  

map-merging algorithm and is based on the map features. 

To show the performance of the proposed approach some 

experimental tests are performed using two 

heterogeneous robots in an indoor environment. 
 
 

2. MAP-MERGING  
 
A basic issue in multi-robot mapping is the merging of 

local maps prepared by robots. Obviously, to merge maps 

and produce a global map requires specific map-merging  

algorithms. Depending on whether the relative positions 

of the robots are known or not, the map-merging  

algorithm will be different. If the relation between the 

coordinate system of the robots is known from the 

beginning of the motion or in the process where the 

robots meet, the local maps are built in a common 

coordinate frame. In this case, map-merging can be easily 

performed. But if the relative position between the robots 

is not clear, the main emphasis will be on the features 

extracted from the raw data provided by the sensors or 

the maps. In this case, the maps will move and rotate 

relative to each other to achieve the best compatibility 

between them.  

One of the latest map-merging algorithm has been 

introduced by Prak [14] named map-merging using R-

maps. This algorithm is based on maximal empty 

rectangles. In this paper, as a first step, merging  

algorithm introduced by Park is briefly presented and its 

difficulties were revealed. Then a new map-merging  

algorithm is introduced and the results were compared. 

 

2. 1. Map-Merging Using R-Maps              Park [14] 

applied the reduced element map concept, concisely 

named R-map, to merge local maps as a new method in 

map merging. Integrating the free space of a map into 

larger simple elements (with the largest area) to reduce 

the number of the map elements is the main concept of 

the R-map. Ahn and Jeon [15] introduced this concept for 

the first time. The map merging method introduced by 

Park is presented in algorithm 1. 

 
𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟏 𝑀𝑎𝑝 𝑀𝑒𝑟𝑔𝑖𝑛𝑔 𝑢𝑠𝑖𝑛𝑔 𝑅 − 𝑚𝑎𝑝 

1: 𝐩𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 𝑀𝐸𝑅𝐺𝐸(𝑚𝑎𝑝(1), 𝑚𝑎𝑝(2)) 
2: [𝒓(1); 𝒄(1)] = 𝑅𝑀𝐴𝑃(𝑚𝑎𝑝(1)) 

3: [𝒓(2); 𝒄(2)] = 𝑅𝑀𝐴𝑃(𝑚𝑎𝑝(2)) 
4: Λ(1) = 𝐴𝑁𝐺𝐿𝐸(𝒓(1), 𝒄(1)) 
5: Λ(2) = 𝐴𝑁𝐺𝐿𝐸(𝒓(2), 𝒄(2)) 
6: 𝑚𝑎𝑝𝑟

(1) = 𝑟𝑜𝑡𝑎𝑡𝑒 𝑚𝑎𝑝(1) 𝑏𝑦 Λ(1) 

7: 𝑚𝑎𝑝𝑟
(2) = 𝑟𝑜𝑡𝑎𝑡𝑒 𝑚𝑎𝑝(2) 𝑏𝑦 Λ(2) 

8: 𝑑𝑒𝑓𝑖𝑛𝑒 𝑟𝑎𝑡𝑖𝑜 = 0 
9: 𝐰𝐡𝐢𝐥𝐞 𝑟𝑎𝑡𝑖𝑜 ≠ 1 𝐝𝐨 

10: 𝒓𝑟
(1) = 𝑅𝑀𝐴𝑃(𝑚𝑎𝑝𝑟

(1)) 

11: 𝒓𝑟
(2) = 𝑅𝑀𝐴𝑃(𝑚𝑎𝑝𝑟

(2)) 

12: (∆(1), ∆(2)) = 𝑇𝑅𝐼𝐴𝑁𝐺𝐿𝐸(𝒓𝑟
(1) , 𝒓𝑟

(2)) 

13: 
Λ𝑓 = 𝑐𝑜𝑚𝑝𝑎𝑟𝑒 𝑏𝑖𝑠𝑒𝑐𝑡𝑜𝑟 −

𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 ∆(1), ∆(2) 

14: 𝑚𝑎𝑝𝑟
(1) = 𝑟𝑜𝑡𝑎𝑡𝑒 𝑚𝑎𝑝𝑟

(1) 𝑏𝑦 Λ𝑓 

15: 𝑑𝑒𝑓𝑖𝑛𝑒 𝑟𝑎𝑡𝑖𝑜 = 𝑤Δ1

(1)
𝑤Δ1

(2)
⁄  

16: 𝑟𝑒𝑠𝑐𝑎𝑙𝑒 𝑚𝑎𝑝𝑟
(2) 𝑏𝑦 𝑟𝑎𝑡𝑖𝑜 

17: 𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞 
18: 𝑀𝐴𝑃 = 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 𝑐𝑒𝑛𝑡𝑒𝑟𝑠 𝑜𝑓 ∆(1) 𝑎𝑛𝑑 ∆(2) 

19: 𝐞𝐧𝐝 𝐩𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 
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In this method, first the local grid maps (G-map) 

provided by different robots are converted to matrices  

with 0 and 1 entries for occupied and the free area, 

respectively. Then, using the mentioned matrix, maxima l 

empty rectangles (MERs) of each local map are 

computed and G-map is converted to R-map. Information  

on the MERs is recorded in r(i) for the ith map (lines 2 

and 3 of the algorithm 1). These information include the 

width and height of each MER and the position of its 

upper-left corner. Figure 1 shows the G-map and the R-

map form of a sample map. 

Also, the MER neighbors which are the MERs 

connected to it on each of the four directions (left, right, 

up and down) are found and recorded in c(i). These 

neighbors are called connections. For example the 

connection list of the first MER (Figure 1) is c(1) =[3 4]. 

As most human-made structures have corners with 

orthogonal angles, maps are represented and investigated 

in orthogonal frameworks. Maps including R-maps and 

G-maps are defined along orthogonal axes, too. It is 

reasonable to align the orthogonal axes occurring within 

the map parallel to the main orthogonal axes of the map. 

This leads to a selective orientation transformation 

between two maps consisting of only four 90 degrees 

rotations i.e. 0, 90, 180 and 270 degrees. The lines 4 and 

5 compute the necessary angle of rotation for each map 

to align with the orthogonal axes. To perform this 

alignment process, first, some points on the edges of free 

spaces are found using the connections of MERs and then 

by using RANSAC algorithm, the rotation angles are 

found [14].  

The next step in the map merging algorithm is finding 

common triangles. Common triangles consist of two sets 

of three rectangles located in two separate R-maps which 

have the best matches. To find common triangles, two 

sets of three MERs are selected from each map, namely  

i, j and k from the first map called ∆(1)and e, h and g from 

the second called ∆(2)  and the following cost function is 

defined  

𝑒 = [ 𝐴𝑖

𝑑𝑗𝑘
  

𝐴𝑗

𝑑𝑗𝑘
 

𝐴𝑘

𝑑𝑗𝑘
 𝛼𝑗  𝛽𝑘]

𝑇

− [ 𝐴𝑒

𝑑𝑓𝑔
  

𝐴𝑓

𝑑𝑓𝑔
 

𝐴𝑔

𝑑𝑓𝑔
 𝛼𝑓 𝛽𝑔]

𝑇

  (1) 

where 𝐴 is the area of selected MER and the angles 𝛼’s 

and 𝛽’s and distances 𝑑’s are defined in Figure 2 which 

depicts two sets of MERs. 

 

 

  
Figure 1. Grid map (left) and corresponding R-map (right) 

[14] 

The most common triangles among others will have a 

minimum cost function between all sets [14]. This step is 

done via line 12 of the algorithm. Comparing the 

bisector-vectors between common triangles, the 

translational and rotational transformation between two 

maps can be obtained. Scaling factor, also, can be 

computed using the common MERs [14]. 

The algorithm 1 is performed to merge two sample 

local maps. The maps and the results of different steps of 

the algorithm are shown in Figure 3. 

The time consumed in preparing the final map was 

about 155 seconds using a conventional PC which seems 

too long for a map merging process.  

In order to evaluate the performance of algorithm 1, a 

real experiment was performd using two ground robots, 

Experia and Prawn. The robots are shown in Figures 4 

and 5. 
 
 

  
Figure 2. Two sets of three MERs selected from local maps 
[14] 

 

 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 3. The results of performing the algorithm 1 for two 

sample maps: (a) and (b) first and second maps, (c) and (d) 

the maps in orthogonal orientation and common triangles of 

them, (e) the final merged map 
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Each robot has a laser sensor scanner, Hokuyo laser 

sensor for Experia and RpLidar laser sensor for Prawn.  

Laser scanners specifications are presented in Table 1. In 

addition, some other sensors like rotary encoders are 

available for odometry purposes. The whole process is 

implemented using robot operating system (ROS).  

Each robot moves in the environment and provides its 

own local map. Then the two local maps are merged 

together and a global map of the environment is 

reconstructed. The Fast SLAM algorithm was employed 

for fusing the sensors data on each robot. The 

environment, which is a corridor with approximate 

dimensions of 5𝑚 × 50𝑚, is shown in Figure 6. 

Figure 7 shows a 2D map of the environment 

considered in this test. This map has been sketched using 

AutoCAD to compare with the final map built during the 

MRSLAM process. 

 

 

 

 
TABLE 1. Laser scanners specifications 

Scanning 
time 

(ms/scan) 
measurement 

range (m) 
field of 

view 
(deg) 

Angular 
resolution 

(deg) 
Laser 
scanner 

100 0.06 to 4 240 0.36 Hokuyo 
200 0.2 to 6 360 1 RpLidar 

 

 

  

 
Figure 6. Images from real test environment 

 

 

 
Figure 7. 2D Map of the environment considered for the first 

practical test 

 

 

A specific local region is defined for each robot, (a) for 

Experia and (b) for Prawn. Each robot starts from a point 

which is not revealed to MRSLAM algorithm and ends 

its mission at the point marked with (*). When both 

robots reach this point, the maps produced separately by 

each robot are transferred to Experia and then merged 

using the mentioned map-merging algorithm.  

Figures 8 and 9 show the maps provided by Experia 

and Prawn, respectively. The black lines in these figures 

indicate the walls and some environmental landmarks  

(here, a table and a water cooler). In the adjacent areas, 

protrusions were observed because of the fence and 

staircase. In white areas of the map, the robot has 

successfully measured and records the odometric and 

laser sensor data necessary to the mapping algorithm. But 

concerning gray areas, part of the data are missing due to 

such factors as topography, slipping wheel occurrence, 

computational error of the computer processors, etc. Red 

lines indicate the path of each robot. The robots were 

conducted manually until they reached a common situ. 

As one can see, the two local maps have apparently 

not many common areas. The merging algorithm is 

executed for the above maps. The time consumed up to 

finding common triangles is about 100 seconds. The 

common triangles found by the algorithm are shown in  

Figure 10. The final merged map is also shown in Figure 

11. As it is seen, the algorithm failed to find the correct 

common triangles. Consequently, the two maps could not 

merge correctly. It is obvious from a comparison of 

Figure 11 and Figure 7. 

 

 

  

Figure 8. Local map 

provided by Experia (first 

practical test) 

Figure 9. Local map 

provided by Prawn (first 

practical test) 

 

  

Figure 4. Experia Figure 5. Prawn 
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Figure 10. Common triangles of the local maps in the first 

practical test 
 

 

 

Figure 11. Final merged map using algorithm 1 for local 

maps obtained from the first practical test 

 

 
2. 1. Proposed Map-Merging Algorithm          In this 

paper, a famous computer vision algorithm called scale-

invariant feature transform (SIFT) is used for merging the 

local maps. the sift algorithm is first introduced by Lowe 

[16] and is a popular algorithm in the detection and 

description of image features. SIFT is presented in 

algorithm 2. 
 

 𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟐 𝑆𝐼𝐹𝑇 𝑓𝑜𝑟 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑛𝑔 𝑖𝑚𝑎𝑔𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 

1: 𝐩𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 𝑆𝐼𝐹𝑇(𝑖𝑚𝑎𝑔𝑒)  

2: 
𝒃𝒍𝒖𝒓𝒓𝒆𝒅 𝒐𝒖𝒕 𝒊𝒎𝒂𝒈𝒆𝒔 =
𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑐𝑡_𝑠𝑐𝑎𝑙_𝑠𝑝𝑎𝑐𝑒 (𝑖𝑚𝑎𝑔𝑒)  

3: 𝑫𝒐𝑮𝒔 = 𝐷𝑜𝐺 (𝒃𝒍𝒖𝒓𝒓𝒆𝒅 𝒐𝒖𝒕 𝒊𝒎𝒂𝒈𝒆𝒔)  

4: 
𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆 _𝒆𝒙𝒕𝒓𝒆𝒎𝒂 =
𝐷𝑜𝐺 _𝐸𝑥𝑡𝑟𝑒𝑚𝑎(𝑫𝒐𝑮𝒔)  

5: 
𝒌𝒆𝒚𝒑𝒐𝒊𝒏𝒕𝒔 =
𝑚𝑎𝑡ℎ_𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆_𝒆𝒙𝒕𝒓𝒆𝒎𝒂)  

6: 
𝒇𝒊𝒏𝒂𝒍_𝒌𝒆𝒚𝒑𝒐𝒊𝒏𝒕𝒔 =

𝑔𝑒𝑡_𝑟𝑖𝑑_𝑜𝑓 _𝑏𝑎𝑑_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝒌𝒆𝒚𝒑𝒐𝒊𝒏𝒕𝒔)  

7: 
𝒌𝒆𝒚𝒑𝒐𝒊𝒏𝒕_𝒅𝒆𝒔𝒄𝒓𝒊𝒑𝒕𝒐𝒓 =
𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟(𝒇𝒊𝒏𝒂𝒍_𝒌𝒆𝒚𝒑𝒐𝒊𝒏𝒕𝒔)  

8: 𝐞𝐧𝐝 𝐩𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 

 
The main idea in SIFT consists of finding key points or 

interesting points which are invariant to scaling, rotation 

and illumination. For this aim, in the first step, a scale 

space for the processed image is constructed; It means 

that the original image is  taken then progressively blurred 

out images are generated from it. Then, the original 

image is resized to half size, blurred out images are 

generated again and this process kept repeating itself. 

Mathematically, a blurred out image is generated by 

convolving the Gaussian operator to the image pixels:  

𝐿(𝑥, 𝑦; 𝜎) = 𝐺(𝑥, 𝑦, 𝜎) ∗ 𝐼(𝑥, 𝑦)  (2) 

where 𝐼(𝑥, 𝑦)  and 𝐿 are the image and blurred image, 

respectively. 𝐺(𝑥, 𝑦, 𝜎) is the Gaussian operator. 𝑥 , 𝑦 are 

local coordinates and 𝜎 is the scale parameter. The * 

denotes the convolution operation. The Gaussian 

operator is defined as follows: 

𝐺(𝑥, 𝑦, 𝜎) =
1

2𝜋𝜎2 𝑒−(𝑥2+𝑦2) 2𝜎2⁄   (3) 

Figure 12 shows the scale space of a ball. The next step 

in SIFT algorithm is to calculate the Difference of 

Gaussians (DoGs). This is necessary to find out key 

points. The DoG is calculated from the difference of two 

consecutive scales as follows [16]: 

𝐷(𝑥, 𝑦; 𝜎) = (𝐺(𝑥, 𝑦, 𝑘𝜎) − 𝐺(𝑥, 𝑦, 𝜎)) ∗ 𝐼(𝑥, 𝑦) =

 𝐿(𝑥, 𝑦, 𝑘𝜎) − 𝐿(𝑥, 𝑦, 𝜎)  
(4) 

Figure 13 shows a graphical representation for 

calculating DoGs. 

The third step is to find the key points of the image. 

To find key points, in first instance, the approximate local 

maxima/minima must be located in DoG images. To find 

these approximate local extrema, each pixel must be 

compared with its 26 neighbors (Figure 14).  

A pixel is marked as a "key point" if it is the greatest 

or least of all its 26 neighbors. Usually, the extrema is 

laid between pixels and don’t match exactly on a pixel. 

In this case, the extremas are only "approximate" and a 

subpixel extrema search has to be performed  

mathematically. 
 

 

 
Figure 12. Scale space of a ball with first and second octaves 
 

 

 

Figure 13. Calculating the difference of Gaussians using 

scale space; Right-scale space, Left-Difference of Gaussians 
[16] 
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Using Taylor expansion of 𝐷(𝑥, 𝑦; 𝜎), the subpixel 

extrema is calculated as follows [16]: 

�̂� = − (
𝜕2𝐷

𝜕𝒙𝟐)
−1𝜕𝐷

𝜕𝒙
  (5) 

where 𝒙 = [𝑥, 𝑦;  𝜎]𝑇and the derivatives of D are 

calculated at the last approximate extrema. Using the 

subpixel extrema as key points instead of approximate 

extrema will increase the odds of matching and the 

stability of the SIFT algorithm. 

A numerous quantity of key points may be obtained, 

some without enough contrast and some others lying 

along an edge. These key points are not useful in feature 

detections and must be omitted. To remove edge key 

points, Harris corner detector [17] can be used and for 

low contrast features, checking the key point intensity is 

a simple and useful way.  

At this step, a set of key points is exploited with their 

scales. The scale of each key point is identical to the scale 

of its corresponding blurred image, making them s cale 

invariant. The fourth step of SIFT algorithm is to assign 

an orientation measure to each key point to provide 

orientation invariance.  

To assign an orientation to a key point, the gradient 

magnitude and orientation of all pixels around the key 

point are calculated as follows: 

𝑚(𝑥, 𝑦)

= √(𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦))
2

+ (𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1))
2
 

𝜃(𝑥, 𝑦) =

tan −1((𝐿 (𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1)) (𝐿 (𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1 , 𝑦))⁄ )  

(6) 

Then a histogram with 36 bins (each 10 degrees) is 

created using these magnitudes and orientations. The 

amount of histogram is proportional to the magnitude. 

The created histogram will have a peak at some points. 

The corresponding bin indicates the orientation 

assignable to the key point. Now, the objective of 

orientation invariance is also reached.  

The final step in SIFT algorithm is to create a 

descriptor for each detected feature or key point. For this 

purpose, a 16*16 grid, partitioned into 4*4 windows , is 

considered around each key point (Figure 15). The 

gradient magnitudes and orientations are calculated 

within each 4*4 window. 

 

 

Figure 14. The neighbors of a pixel in DoGs [16] 

Based on the orientation-measure results, an 8-bin 

histogram is created. For the sake of accuracy, the 

magnitude in each bin can also be considered depending 

on the distance from the key point. So a more remote 

pixel from the key point will have a lesser contribution to 

the histogram. Applying this for the sixteen 4*4 

windows, an array of 4*4*8 number is created for each 

key point. Normalizing this array, the feature vector or 

the feature descriptor is created. For more details such as 

practical details, corrections and theoretical details, 

please refer to literature [16]. 

Now, everything is ready to merge the two maps. 

Algorithm 3 shows the map merging steps using SIFT. 

 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟑 𝑀𝑎𝑝 𝑀𝑒𝑟𝑔𝑖𝑛𝑔 𝑢𝑠𝑖𝑛𝑔 𝑆𝐼𝐹𝑇  
1: 𝐩𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 𝑀𝑒𝑟𝑔𝑒(𝑚𝑎𝑝(1), 𝑚𝑎𝑝(2)) 
2: 𝑰𝒎𝒂𝒈𝒆 (𝟏) = 𝑐𝑜𝑛𝑣𝑒𝑟𝑡_𝑡𝑜_𝑖𝑚𝑎𝑔𝑒 (𝑚𝑎𝑝(1)) 
3: 𝑰𝒎𝒂𝒈𝒆 (𝟐) = 𝑐𝑜𝑛𝑣𝑒𝑟𝑡_𝑡𝑜_𝑖𝑚𝑎𝑔𝑒 (𝑚𝑎𝑝(2)) 

4: 
[𝒌𝒆𝒚𝒑𝒐𝒊𝒏𝒕𝒔(𝟏), 𝒅𝒆𝒔𝒄𝒓𝒊𝒑𝒕𝒐𝒓𝒔(𝟏)]

= 𝑆𝐼𝐹𝑇(𝑰𝒎𝒂𝒈𝒆 (𝟏)) 

5: 
[𝒌𝒆𝒚𝒑𝒐𝒊𝒏𝒕𝒔(𝟐), 𝒅𝒆𝒔𝒄𝒓𝒊𝒑𝒕𝒐𝒓𝒔(𝟐)]

= 𝑆𝐼𝐹𝑇(𝑰𝒎𝒂𝒈𝒆 (𝟐)) 

6: 
𝒎𝒂𝒕𝒄𝒉𝒆𝒅_𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔

= 𝑚𝑎𝑡𝑐ℎ(𝒅𝒆𝒔𝒄𝒓𝒊𝒑𝒕𝒐𝒓𝒔(𝟏), 𝒅𝒆𝒔𝒄𝒓𝒊𝒑𝒕𝒐𝒓𝒔(𝟐)) 

7: 
𝑯𝒐𝒎𝒐𝒈𝒓𝒂𝒑𝒉𝒚 𝒎𝒂𝒕𝒓𝒊𝒙
= 𝑅𝐴𝑁𝑆𝐴𝐶(𝒎𝒂𝒕𝒄𝒉𝒆𝒅_𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔) 

8: 
𝑭𝒊𝒏𝒂𝒍 𝑴𝒂𝒑
= 𝑡𝑟𝑎𝑛𝑓𝑜𝑟𝑚(𝑚𝑎𝑝(1), 𝑚𝑎𝑝(2) , 𝑯𝒐𝒎𝒐𝒈𝒓𝒂𝒑𝒉𝒚 𝒎𝒂𝒕𝒓𝒊𝒙) 

9: 𝐞𝐧𝐝 𝐩𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 

 

Merging algorithm, described here, consists of five steps. 

First, the robot-produced local maps are stored as images. 

In the next step, the features of the images are detected 

and their descriptors are computed. In the third step, the 

descriptors are matched with each other between two 

images. Feature matching is actually a straightforward 

process. The first feature from the first image is selected 

and the distances of its descriptor to all feature 

descriptors of the second image are computed. A 

matched feature in the second image has the smallest 

“distance” to the selected feature. This process is 

repeated for all features of the first image. David Lowe's 

ratio test can optionally be used for features matching 

[16]. Generally, only three pairs of matched features are 

needed to compute a transformation or homography 

matrix between two images. 

 

 
Figure 15. Selection of pixels around a key point for 

creating its descriptor   



614                                               S. Hadian Jazi et al. / IJE TRANSACTIONS A: Basics  Vol. 32, No. 4, (April 2019)   608-616 

 

With more than three pairs, RANSAC algorithm [18] can 

be used for computing the homography matrix. 

Homography matrix computation is the fourth step of the 

merging algorithm. In the fifth step, the transformation 

calculated from the homography matrix is applied to 

images or maps and the two maps are then merged 

accordingly.  

The proposed algorithm is executed for merging the 

maps obtained in the experiment phase (Figure 8 and 

Figure 9). The common key points of these two maps are 

shown in Figure 16. As one can see, the proposed 

algorithm could find the correct common features 

between two maps. After forming the homography 

matrix, the two maps are merged together. The result is 

shown in Figure 17. Comparing Figure 17 and Figure 7 

shows that the local maps have been merged correctly. 

The time expended to merge the maps is about 20 

seconds which is about 20% of the time consumed using 

R-map merging algorithm. 

A second experiment is performed to map a more 

complex environment. This experiment is performed  

within a 50 𝑚2 location consisting of two compartments. 

The complete environment is shown in Figure 18. The 

local maps provided by Experia and Prawn are shown in 

Figures 19 and 20, respectively. Similar to the first 

practical test, the robots were conducted to explore their 

respective neighborhood manually and terminated their 

mission by checking a common landmark which was 

introduced earlier to them.  

The matched points and the final merged map are also 

shown in Figures 21 and 22. As can be seen, the matched 

points have been found correctly and the merging process 

is well done. 

 

 

 
Figure 16. Key points matching using the proposed merging 

algorithm (first test) 

 

 

 
Figure 17. The final merged map obtained by using the 

proposed merging algorithm (first test) 

 
Figure 18. 2D Map of the environment considered for the 

second practical test 

 

  
Figure 19. Local map 

provided by Experia (second 

practical test)  

 

Figure 20. Local map 

provided by Prawn (second 

practical test) 

 

 
Figure 21. Key points matching using the proposed merging 

algorithm (second test) 

 

 

 
Figure 22. The final merged map using the proposed 

merging algorithm (second test) 
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3. CONCLUSION 
 

In this paper, the map-merging algorithm using the 

maximal empty rectangles (MER) concept is presented 

and implemented. It is shown here that this strategy is not 

only time-consuming, but also failed in the case of low 

overlap area.  

To overcome these two inconveniences, an image 

feature extraction algorithm named SIFT is employed 

and a fast and reliable map-merging algorithm is 

proposed. Using SIFT, the local maps provided by 

ground robots are converted into images, and the features 

of each image together with their descriptors get 

extracted. These features are made invariant to 

orientation and scaling. Then, the matching features 

between the two images are identified and a homography 

matrix is finally computed using RANSAC.  

Experimental results show the proposed map-

merging algorithm can merge maps with the least 

common areas. Also, the proposed algorithm is 

meaningfully faster than the map-merging algorithm 

applying R-maps. 
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 چکیده

 

در این مقاله یک آلگوریتم ترکیب نقشه سریع و قابل اعتماد برای تولید نقشه کلی از یک محیط داخلی و در یک پروسه 

است. یک ربات برای حرکت در یک محیط و پیدا کردن مسیر برداری و تعیین موقعیت همزمان چند رباتی ارائه شدهنقشه

ای از محیط نیاز دارد و همچنین برای تهیه نقشه از محیط به موقعیت خود در آن محیط وابسته است. خود به نقشهحرکت 

ه های بزرگ و پیچیده، به دلایل متفاوتی از جملگویند. در محیطبرداری و تعیین موقعیت همزمان میاین مساله یچیده را نقشه

چند  پذیر نیست. در این موارد معمولا ازبرداری توجیهه از یک ربات برای نقشهشدن پروسه، استفادانباشتگی خطا و طولانی

های قشهکردن نبرداری، ترکیبهای چندرباتی نقشهشود. یکی از مهمترین چالشها در پروسهربات برای این کار استفاده می

ریتم آن محیط است. در این مقاله یک آلگو شده توسط هر ربات از محیط و یا بخشی از آن و سپس تولید نقشه کلیمحلی تهیه

شود که در آن به اطلاعاتی از قبیل های محلی ارائه میهای نقشهها و مشخصهمرکزی برای ترکیب نقشه بر پایه ویژگی

 صورت تجربی از دو ربات متفاوتمنظور ارزشیابی این آلگوریتم بهها نیازی نیست. بهموقعیت اولیه یا موقعیت نسبی ربات

شده معرفی دهد که آلگوریتم. نتایج آزمایش نشان میشودمیکه به سنسورهای لیزری متفاوتی برای پویش محیط مجهز هستند 

 . های محلی و تولید نقشه کلی از محیط داردکردن نقشهدقت و سرعت مناسبی برای ترکیب

doi: 10.5829/ije.2019.32.04a.20  
 
 


