
IJE TRANSACTIONS A: Basics Vol. 32, No. 4, (April 2019) 608-616

Please cite this article as: S. Hadian Jazi, S. Farahani, H. Karimpour, Map-merging in Multi-robot Simultaneous Localization and Mapping Process
Using Two Heterogeneous Ground Robots, International Journal of Engineering (IJE), IJE TRANSACTIONS A: Basics Vol. 32, No. 4, (April 2019)
608-616

International Journal of Engineering

J o u r n a l H o m e p a g e : w w w . i j e . i r

Map-merging in Multi-robot Simultaneous Localization and Mapping Process Using

Two Heterogeneous Ground Robots

S. Hadian Jazi*, S. Farahani, H. Karimpour

Department of Mechanical Engineering, University of Isfahan, Iran

P A P E R I N F O

Paper history:
Received 16 October 2018
Received in revised form 05 March 2019
Accepted 07 March 2019

Keywords:
Map-merging
Multi-agents Simultaneous Localization and
Mapping
Ground Robot
Image Processing

A B S T R A C T

In this article, a fast and reliable map-merging algorithm is proposed to produce a global two dimensional

map of an indoor environment in a multi-robot simultaneous localization and mapping (SLAM) process.
In SLAM process, to find its way in this environment, a robot should be able to determine its position
relative to a map formed from its observations. To solve this complex problem, simultaneous localization
and mapping methods are required. In large and complex environments, using a single robot is not

reasonable because of the error accumulation and the time required. This can explain the tendency to
employ multiple robots in parallel for this task. One of the challenges in the multi-robot SLAM is the
map-merging problem. A centralized algorithm for map-merging is introduced in this research based on
the features of local maps and without any knowledge about robots initial or relative positions. In order

to validate the proposed merging algorithm, a medium scale experiment has been set up consisting of
two heterogeneous mobile robots in an indoor environment equipped with laser sensors. The results
indicate that the introduced algorithm shows good performance both in accuracy and fast map-merging.

doi: 10.5829/ije.2019.32.04a.20

1. INTRODUCTION1

Rescue missions, security tasks, environmental

exploration and many other similar tasks have motivated

many researchers to study mobile robots autonomy. The

most important issue in mobile robot studies is the

navigation question. Localization which is about

estimating the position of the robot in an unknown

environment, mapping which means creating an accurate

map of the environment and path planning, which

corresponds to calculate a collision-free path between

initial and goal point, are three basic subjects studied in

the field of mobile robot navigation. Creating a map of

the environment by a robot requires the position of the

robot to be known and calculating the position of a robot

in an environment requires the map of that environment.

This is a complex problem named simultaneous

localization and mapping (SLAM). Many researchers

focused on SLAM problem and several solutions have

been presented.

For decades, single-robot SLAM has been studied,

but due to considerable advantages such as increasing

*Corresponding Author Email: s.hadian@eng.ui.ac.ir (S. Hadian Jazi)

chances of saving lives due to coordination in a rescue

mission, reduced time of exploration in large unknown

environments, efficiency and flexibility, multi-robots

SLAM (MRSLAM) have received more attention in

recent years. To reproduce a realistic model of the

environment in a MRSLAM process, it is necessary for

the information collected by different robots to be

merged into a single map. This process is referred to as

map-merging. Generally, map-merging process can be

performed in two steps. The first step is finding a

rotational and translational transformation between the

maps and the second one is merging the aligned maps

into a global or world map. Usually, the transformation

between maps can be found based on the poses of the

robots or the features of the maps generated by the robots

[1]. If the relative positions of the robots are known, the

map-merging process will be done directly and easily [2-

5]. The relative positions can be calculated if the initial

positions of the robots are known, or if the robots meet

each other at a point, called rendezvous, or one robot is

able to localize the others in its map.

On the other hand, when the robots do not know their

S. Hadian Jazi et al. / IJE TRANSACTIONS A: Basics Vol. 32, No. 4, (April 2019) 608-616 609

relative positions, the map-merging process must be

performed based on the overlaps between the maps. This

case is more complex and challenging. There exist

several solutions for this problem in the literature. Thrun

and Liu [6] presented an algorithm to solve this problem

in the case of lack of knowledge about the relative

positions of the robots and the landmarks. They used a

sparse extended information filter (SEIF) and a tree based

algorithm to build a global map in a MRSLAM process.

Carpin et al. [7] introduced a similarity measure and a

motion planning algorithm to merge the local maps in a

fast manner. They showed that their approach for map

merging can even merge maps with low quality. Birk and

Carpin [8] utilized a similarity measurement function to

find the best transformation between local maps. They

used the adaptive random walking algorithm to find a

maximum overlap between the maps.

Saeedi et al. [9] presented a new method for map

fusion using self-organizing map (SOM). In this method

based on using a neural network, the complexity of the

occupancy grid maps are reduced. The resulting

reduction in maps complexities causes a fast and efficient

map-merging. Saeedi et al. [10] also found the relative

transformation between local grid maps using the

Probabilistic Generalized Voronoi Diagram (PGVD).

Dinnissen et al. [11] studied the decision making

process to find the right time of map merging to avoid

uncorrect matches between local maps, using

reinforcement learning. They assumed that the robots

meet each other during the MRSLAM process. Li et al.

[12] introduced an occupancy-likelihood based objective

function and through using genetic algorithm, found the

best transformation to merge the local grid maps in a

MRSLAM process. The proposed method was

implemented on two CyCab robots equipped with a two-

dimensional laser sensor, GPS, and rotary shaft encoders

mounted on the wheels in an outdoor environment. Park

et al. [13] introduced a multi section algorithm to merge

the occupancy grid maps generated by individual robots

in a MRSLAM process. Their algorithm is based on

maximal empty rectangles (MER). The maximal empty

rectangles concept collects the free spaces of a map into

larger rectangles rather than many pixels and produced a

R-map. This reduces the complexity of the map [14].

In this study, first, the algorithm introduced by Park

is presented and run for some examples. Then to

overcome its inconveniences, a new map-merging

algorithm is proposed. This algorithm is a centralized

map-merging algorithm and is based on the map features.

To show the performance of the proposed approach some

experimental tests are performed using two

heterogeneous robots in an indoor environment.

2. MAP-MERGING

A basic issue in multi-robot mapping is the merging of

local maps prepared by robots. Obviously, to merge maps

and produce a global map requires specific map-merging

algorithms. Depending on whether the relative positions

of the robots are known or not, the map-merging

algorithm will be different. If the relation between the

coordinate system of the robots is known from the

beginning of the motion or in the process where the

robots meet, the local maps are built in a common

coordinate frame. In this case, map-merging can be easily

performed. But if the relative position between the robots

is not clear, the main emphasis will be on the features

extracted from the raw data provided by the sensors or

the maps. In this case, the maps will move and rotate

relative to each other to achieve the best compatibility

between them.

One of the latest map-merging algorithm has been

introduced by Prak [14] named map-merging using R-

maps. This algorithm is based on maximal empty

rectangles. In this paper, as a first step, merging

algorithm introduced by Park is briefly presented and its

difficulties were revealed. Then a new map-merging

algorithm is introduced and the results were compared.

2. 1. Map-Merging Using R-Maps Park [14]

applied the reduced element map concept, concisely

named R-map, to merge local maps as a new method in

map merging. Integrating the free space of a map into

larger simple elements (with the largest area) to reduce

the number of the map elements is the main concept of

the R-map. Ahn and Jeon [15] introduced this concept for

the first time. The map merging method introduced by

Park is presented in algorithm 1.

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟏 𝑀𝑎𝑝 𝑀𝑒𝑟𝑔𝑖𝑛𝑔 𝑢𝑠𝑖𝑛𝑔 𝑅 − 𝑚𝑎𝑝

1: 𝐩𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 𝑀𝐸𝑅𝐺𝐸(𝑚𝑎𝑝(1), 𝑚𝑎𝑝(2))
2: [𝒓(1); 𝒄(1)] = 𝑅𝑀𝐴𝑃(𝑚𝑎𝑝(1))

3: [𝒓(2); 𝒄(2)] = 𝑅𝑀𝐴𝑃(𝑚𝑎𝑝(2))
4: Λ(1) = 𝐴𝑁𝐺𝐿𝐸(𝒓(1), 𝒄(1))
5: Λ(2) = 𝐴𝑁𝐺𝐿𝐸(𝒓(2), 𝒄(2))
6: 𝑚𝑎𝑝𝑟

(1) = 𝑟𝑜𝑡𝑎𝑡𝑒 𝑚𝑎𝑝(1) 𝑏𝑦 Λ(1)

7: 𝑚𝑎𝑝𝑟
(2) = 𝑟𝑜𝑡𝑎𝑡𝑒 𝑚𝑎𝑝(2) 𝑏𝑦 Λ(2)

8: 𝑑𝑒𝑓𝑖𝑛𝑒 𝑟𝑎𝑡𝑖𝑜 = 0
9: 𝐰𝐡𝐢𝐥𝐞 𝑟𝑎𝑡𝑖𝑜 ≠ 1 𝐝𝐨

10: 𝒓𝑟
(1) = 𝑅𝑀𝐴𝑃(𝑚𝑎𝑝𝑟

(1))

11: 𝒓𝑟
(2) = 𝑅𝑀𝐴𝑃(𝑚𝑎𝑝𝑟

(2))

12: (∆(1), ∆(2)) = 𝑇𝑅𝐼𝐴𝑁𝐺𝐿𝐸(𝒓𝑟
(1) , 𝒓𝑟

(2))

13:
Λ𝑓 = 𝑐𝑜𝑚𝑝𝑎𝑟𝑒 𝑏𝑖𝑠𝑒𝑐𝑡𝑜𝑟 −

𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 ∆(1), ∆(2)

14: 𝑚𝑎𝑝𝑟
(1) = 𝑟𝑜𝑡𝑎𝑡𝑒 𝑚𝑎𝑝𝑟

(1) 𝑏𝑦 Λ𝑓

15: 𝑑𝑒𝑓𝑖𝑛𝑒 𝑟𝑎𝑡𝑖𝑜 = 𝑤Δ1

(1)
𝑤Δ1

(2)
⁄

16: 𝑟𝑒𝑠𝑐𝑎𝑙𝑒 𝑚𝑎𝑝𝑟
(2) 𝑏𝑦 𝑟𝑎𝑡𝑖𝑜

17: 𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞
18: 𝑀𝐴𝑃 = 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 𝑐𝑒𝑛𝑡𝑒𝑟𝑠 𝑜𝑓 ∆(1) 𝑎𝑛𝑑 ∆(2)

19: 𝐞𝐧𝐝 𝐩𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞

610 S. Hadian Jazi et al. / IJE TRANSACTIONS A: Basics Vol. 32, No. 4, (April 2019) 608-616

In this method, first the local grid maps (G-map)

provided by different robots are converted to matrices

with 0 and 1 entries for occupied and the free area,

respectively. Then, using the mentioned matrix, maxima l

empty rectangles (MERs) of each local map are

computed and G-map is converted to R-map. Information

on the MERs is recorded in r(i) for the ith map (lines 2

and 3 of the algorithm 1). These information include the

width and height of each MER and the position of its

upper-left corner. Figure 1 shows the G-map and the R-

map form of a sample map.

Also, the MER neighbors which are the MERs

connected to it on each of the four directions (left, right,

up and down) are found and recorded in c(i). These

neighbors are called connections. For example the

connection list of the first MER (Figure 1) is c(1) =[3 4].

As most human-made structures have corners with

orthogonal angles, maps are represented and investigated

in orthogonal frameworks. Maps including R-maps and

G-maps are defined along orthogonal axes, too. It is

reasonable to align the orthogonal axes occurring within

the map parallel to the main orthogonal axes of the map.

This leads to a selective orientation transformation

between two maps consisting of only four 90 degrees

rotations i.e. 0, 90, 180 and 270 degrees. The lines 4 and

5 compute the necessary angle of rotation for each map

to align with the orthogonal axes. To perform this

alignment process, first, some points on the edges of free

spaces are found using the connections of MERs and then

by using RANSAC algorithm, the rotation angles are

found [14].

The next step in the map merging algorithm is finding

common triangles. Common triangles consist of two sets

of three rectangles located in two separate R-maps which

have the best matches. To find common triangles, two

sets of three MERs are selected from each map, namely

i, j and k from the first map called ∆(1)and e, h and g from

the second called ∆(2) and the following cost function is

defined

𝑒 = [𝐴𝑖

𝑑𝑗𝑘

𝐴𝑗

𝑑𝑗𝑘

𝐴𝑘

𝑑𝑗𝑘
 𝛼𝑗 𝛽𝑘]

𝑇

− [𝐴𝑒

𝑑𝑓𝑔

𝐴𝑓

𝑑𝑓𝑔

𝐴𝑔

𝑑𝑓𝑔
 𝛼𝑓 𝛽𝑔]

𝑇

 (1)

where 𝐴 is the area of selected MER and the angles 𝛼’s

and 𝛽’s and distances 𝑑’s are defined in Figure 2 which

depicts two sets of MERs.

Figure 1. Grid map (left) and corresponding R-map (right)

[14]

The most common triangles among others will have a

minimum cost function between all sets [14]. This step is

done via line 12 of the algorithm. Comparing the

bisector-vectors between common triangles, the

translational and rotational transformation between two

maps can be obtained. Scaling factor, also, can be

computed using the common MERs [14].

The algorithm 1 is performed to merge two sample

local maps. The maps and the results of different steps of

the algorithm are shown in Figure 3.

The time consumed in preparing the final map was

about 155 seconds using a conventional PC which seems

too long for a map merging process.

In order to evaluate the performance of algorithm 1, a

real experiment was performd using two ground robots,

Experia and Prawn. The robots are shown in Figures 4

and 5.

Figure 2. Two sets of three MERs selected from local maps
[14]

(a) (b)

(c) (d)

(e)

Figure 3. The results of performing the algorithm 1 for two

sample maps: (a) and (b) first and second maps, (c) and (d)

the maps in orthogonal orientation and common triangles of

them, (e) the final merged map

S. Hadian Jazi et al. / IJE TRANSACTIONS A: Basics Vol. 32, No. 4, (April 2019) 608-616 611

Each robot has a laser sensor scanner, Hokuyo laser

sensor for Experia and RpLidar laser sensor for Prawn.

Laser scanners specifications are presented in Table 1. In

addition, some other sensors like rotary encoders are

available for odometry purposes. The whole process is

implemented using robot operating system (ROS).

Each robot moves in the environment and provides its

own local map. Then the two local maps are merged

together and a global map of the environment is

reconstructed. The Fast SLAM algorithm was employed

for fusing the sensors data on each robot. The

environment, which is a corridor with approximate

dimensions of 5𝑚 × 50𝑚, is shown in Figure 6.

Figure 7 shows a 2D map of the environment

considered in this test. This map has been sketched using

AutoCAD to compare with the final map built during the

MRSLAM process.

TABLE 1. Laser scanners specifications

Scanning
time

(ms/scan)
measurement

range (m)
field of

view
(deg)

Angular
resolution

(deg)
Laser
scanner

100 0.06 to 4 240 0.36 Hokuyo
200 0.2 to 6 360 1 RpLidar

Figure 6. Images from real test environment

Figure 7. 2D Map of the environment considered for the first

practical test

A specific local region is defined for each robot, (a) for

Experia and (b) for Prawn. Each robot starts from a point

which is not revealed to MRSLAM algorithm and ends

its mission at the point marked with (*). When both

robots reach this point, the maps produced separately by

each robot are transferred to Experia and then merged

using the mentioned map-merging algorithm.

Figures 8 and 9 show the maps provided by Experia

and Prawn, respectively. The black lines in these figures

indicate the walls and some environmental landmarks

(here, a table and a water cooler). In the adjacent areas,

protrusions were observed because of the fence and

staircase. In white areas of the map, the robot has

successfully measured and records the odometric and

laser sensor data necessary to the mapping algorithm. But

concerning gray areas, part of the data are missing due to

such factors as topography, slipping wheel occurrence,

computational error of the computer processors, etc. Red

lines indicate the path of each robot. The robots were

conducted manually until they reached a common situ.

As one can see, the two local maps have apparently

not many common areas. The merging algorithm is

executed for the above maps. The time consumed up to

finding common triangles is about 100 seconds. The

common triangles found by the algorithm are shown in

Figure 10. The final merged map is also shown in Figure

11. As it is seen, the algorithm failed to find the correct

common triangles. Consequently, the two maps could not

merge correctly. It is obvious from a comparison of

Figure 11 and Figure 7.

Figure 8. Local map

provided by Experia (first

practical test)

Figure 9. Local map

provided by Prawn (first

practical test)

Figure 4. Experia Figure 5. Prawn

612 S. Hadian Jazi et al. / IJE TRANSACTIONS A: Basics Vol. 32, No. 4, (April 2019) 608-616

Figure 10. Common triangles of the local maps in the first

practical test

Figure 11. Final merged map using algorithm 1 for local

maps obtained from the first practical test

2. 1. Proposed Map-Merging Algorithm In this

paper, a famous computer vision algorithm called scale-

invariant feature transform (SIFT) is used for merging the

local maps. the sift algorithm is first introduced by Lowe

[16] and is a popular algorithm in the detection and

description of image features. SIFT is presented in

algorithm 2.

 𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟐 𝑆𝐼𝐹𝑇 𝑓𝑜𝑟 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑛𝑔 𝑖𝑚𝑎𝑔𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

1: 𝐩𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 𝑆𝐼𝐹𝑇(𝑖𝑚𝑎𝑔𝑒)

2:
𝒃𝒍𝒖𝒓𝒓𝒆𝒅 𝒐𝒖𝒕 𝒊𝒎𝒂𝒈𝒆𝒔 =
𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑐𝑡_𝑠𝑐𝑎𝑙_𝑠𝑝𝑎𝑐𝑒 (𝑖𝑚𝑎𝑔𝑒)

3: 𝑫𝒐𝑮𝒔 = 𝐷𝑜𝐺 (𝒃𝒍𝒖𝒓𝒓𝒆𝒅 𝒐𝒖𝒕 𝒊𝒎𝒂𝒈𝒆𝒔)

4:
𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆 _𝒆𝒙𝒕𝒓𝒆𝒎𝒂 =
𝐷𝑜𝐺 _𝐸𝑥𝑡𝑟𝑒𝑚𝑎(𝑫𝒐𝑮𝒔)

5:
𝒌𝒆𝒚𝒑𝒐𝒊𝒏𝒕𝒔 =
𝑚𝑎𝑡ℎ_𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆_𝒆𝒙𝒕𝒓𝒆𝒎𝒂)

6:
𝒇𝒊𝒏𝒂𝒍_𝒌𝒆𝒚𝒑𝒐𝒊𝒏𝒕𝒔 =

𝑔𝑒𝑡_𝑟𝑖𝑑_𝑜𝑓 _𝑏𝑎𝑑_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝒌𝒆𝒚𝒑𝒐𝒊𝒏𝒕𝒔)

7:
𝒌𝒆𝒚𝒑𝒐𝒊𝒏𝒕_𝒅𝒆𝒔𝒄𝒓𝒊𝒑𝒕𝒐𝒓 =
𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟(𝒇𝒊𝒏𝒂𝒍_𝒌𝒆𝒚𝒑𝒐𝒊𝒏𝒕𝒔)

8: 𝐞𝐧𝐝 𝐩𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞

The main idea in SIFT consists of finding key points or

interesting points which are invariant to scaling, rotation

and illumination. For this aim, in the first step, a scale

space for the processed image is constructed; It means

that the original image is taken then progressively blurred

out images are generated from it. Then, the original

image is resized to half size, blurred out images are

generated again and this process kept repeating itself.

Mathematically, a blurred out image is generated by

convolving the Gaussian operator to the image pixels:

𝐿(𝑥, 𝑦; 𝜎) = 𝐺(𝑥, 𝑦, 𝜎) ∗ 𝐼(𝑥, 𝑦) (2)

where 𝐼(𝑥, 𝑦) and 𝐿 are the image and blurred image,

respectively. 𝐺(𝑥, 𝑦, 𝜎) is the Gaussian operator. 𝑥 , 𝑦 are

local coordinates and 𝜎 is the scale parameter. The *

denotes the convolution operation. The Gaussian

operator is defined as follows:

𝐺(𝑥, 𝑦, 𝜎) =
1

2𝜋𝜎2 𝑒−(𝑥2+𝑦2) 2𝜎2⁄ (3)

Figure 12 shows the scale space of a ball. The next step

in SIFT algorithm is to calculate the Difference of

Gaussians (DoGs). This is necessary to find out key

points. The DoG is calculated from the difference of two

consecutive scales as follows [16]:

𝐷(𝑥, 𝑦; 𝜎) = (𝐺(𝑥, 𝑦, 𝑘𝜎) − 𝐺(𝑥, 𝑦, 𝜎)) ∗ 𝐼(𝑥, 𝑦) =

 𝐿(𝑥, 𝑦, 𝑘𝜎) − 𝐿(𝑥, 𝑦, 𝜎)
(4)

Figure 13 shows a graphical representation for

calculating DoGs.

The third step is to find the key points of the image.

To find key points, in first instance, the approximate local

maxima/minima must be located in DoG images. To find

these approximate local extrema, each pixel must be

compared with its 26 neighbors (Figure 14).

A pixel is marked as a "key point" if it is the greatest

or least of all its 26 neighbors. Usually, the extrema is

laid between pixels and don’t match exactly on a pixel.

In this case, the extremas are only "approximate" and a

subpixel extrema search has to be performed

mathematically.

Figure 12. Scale space of a ball with first and second octaves

Figure 13. Calculating the difference of Gaussians using

scale space; Right-scale space, Left-Difference of Gaussians
[16]

S. Hadian Jazi et al. / IJE TRANSACTIONS A: Basics Vol. 32, No. 4, (April 2019) 608-616 613

Using Taylor expansion of 𝐷(𝑥, 𝑦; 𝜎), the subpixel

extrema is calculated as follows [16]:

�̂� = − (
𝜕2𝐷

𝜕𝒙𝟐)
−1𝜕𝐷

𝜕𝒙
 (5)

where 𝒙 = [𝑥, 𝑦; 𝜎]𝑇and the derivatives of D are

calculated at the last approximate extrema. Using the

subpixel extrema as key points instead of approximate

extrema will increase the odds of matching and the

stability of the SIFT algorithm.

A numerous quantity of key points may be obtained,

some without enough contrast and some others lying

along an edge. These key points are not useful in feature

detections and must be omitted. To remove edge key

points, Harris corner detector [17] can be used and for

low contrast features, checking the key point intensity is

a simple and useful way.

At this step, a set of key points is exploited with their

scales. The scale of each key point is identical to the scale

of its corresponding blurred image, making them s cale

invariant. The fourth step of SIFT algorithm is to assign

an orientation measure to each key point to provide

orientation invariance.

To assign an orientation to a key point, the gradient

magnitude and orientation of all pixels around the key

point are calculated as follows:

𝑚(𝑥, 𝑦)

= √(𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦))
2

+ (𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1))
2

𝜃(𝑥, 𝑦) =

tan −1((𝐿 (𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1)) (𝐿 (𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1 , 𝑦))⁄)

(6)

Then a histogram with 36 bins (each 10 degrees) is

created using these magnitudes and orientations. The

amount of histogram is proportional to the magnitude.

The created histogram will have a peak at some points.

The corresponding bin indicates the orientation

assignable to the key point. Now, the objective of

orientation invariance is also reached.

The final step in SIFT algorithm is to create a

descriptor for each detected feature or key point. For this

purpose, a 16*16 grid, partitioned into 4*4 windows , is

considered around each key point (Figure 15). The

gradient magnitudes and orientations are calculated

within each 4*4 window.

Figure 14. The neighbors of a pixel in DoGs [16]

Based on the orientation-measure results, an 8-bin

histogram is created. For the sake of accuracy, the

magnitude in each bin can also be considered depending

on the distance from the key point. So a more remote

pixel from the key point will have a lesser contribution to

the histogram. Applying this for the sixteen 4*4

windows, an array of 4*4*8 number is created for each

key point. Normalizing this array, the feature vector or

the feature descriptor is created. For more details such as

practical details, corrections and theoretical details,

please refer to literature [16].

Now, everything is ready to merge the two maps.

Algorithm 3 shows the map merging steps using SIFT.

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟑 𝑀𝑎𝑝 𝑀𝑒𝑟𝑔𝑖𝑛𝑔 𝑢𝑠𝑖𝑛𝑔 𝑆𝐼𝐹𝑇
1: 𝐩𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 𝑀𝑒𝑟𝑔𝑒(𝑚𝑎𝑝(1), 𝑚𝑎𝑝(2))
2: 𝑰𝒎𝒂𝒈𝒆 (𝟏) = 𝑐𝑜𝑛𝑣𝑒𝑟𝑡_𝑡𝑜_𝑖𝑚𝑎𝑔𝑒 (𝑚𝑎𝑝(1))
3: 𝑰𝒎𝒂𝒈𝒆 (𝟐) = 𝑐𝑜𝑛𝑣𝑒𝑟𝑡_𝑡𝑜_𝑖𝑚𝑎𝑔𝑒 (𝑚𝑎𝑝(2))

4:
[𝒌𝒆𝒚𝒑𝒐𝒊𝒏𝒕𝒔(𝟏), 𝒅𝒆𝒔𝒄𝒓𝒊𝒑𝒕𝒐𝒓𝒔(𝟏)]

= 𝑆𝐼𝐹𝑇(𝑰𝒎𝒂𝒈𝒆 (𝟏))

5:
[𝒌𝒆𝒚𝒑𝒐𝒊𝒏𝒕𝒔(𝟐), 𝒅𝒆𝒔𝒄𝒓𝒊𝒑𝒕𝒐𝒓𝒔(𝟐)]

= 𝑆𝐼𝐹𝑇(𝑰𝒎𝒂𝒈𝒆 (𝟐))

6:
𝒎𝒂𝒕𝒄𝒉𝒆𝒅_𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔

= 𝑚𝑎𝑡𝑐ℎ(𝒅𝒆𝒔𝒄𝒓𝒊𝒑𝒕𝒐𝒓𝒔(𝟏), 𝒅𝒆𝒔𝒄𝒓𝒊𝒑𝒕𝒐𝒓𝒔(𝟐))

7:
𝑯𝒐𝒎𝒐𝒈𝒓𝒂𝒑𝒉𝒚 𝒎𝒂𝒕𝒓𝒊𝒙
= 𝑅𝐴𝑁𝑆𝐴𝐶(𝒎𝒂𝒕𝒄𝒉𝒆𝒅_𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔)

8:
𝑭𝒊𝒏𝒂𝒍 𝑴𝒂𝒑
= 𝑡𝑟𝑎𝑛𝑓𝑜𝑟𝑚(𝑚𝑎𝑝(1), 𝑚𝑎𝑝(2) , 𝑯𝒐𝒎𝒐𝒈𝒓𝒂𝒑𝒉𝒚 𝒎𝒂𝒕𝒓𝒊𝒙)

9: 𝐞𝐧𝐝 𝐩𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞

Merging algorithm, described here, consists of five steps.

First, the robot-produced local maps are stored as images.

In the next step, the features of the images are detected

and their descriptors are computed. In the third step, the

descriptors are matched with each other between two

images. Feature matching is actually a straightforward

process. The first feature from the first image is selected

and the distances of its descriptor to all feature

descriptors of the second image are computed. A

matched feature in the second image has the smallest

“distance” to the selected feature. This process is

repeated for all features of the first image. David Lowe's

ratio test can optionally be used for features matching

[16]. Generally, only three pairs of matched features are

needed to compute a transformation or homography

matrix between two images.

Figure 15. Selection of pixels around a key point for

creating its descriptor

614 S. Hadian Jazi et al. / IJE TRANSACTIONS A: Basics Vol. 32, No. 4, (April 2019) 608-616

With more than three pairs, RANSAC algorithm [18] can

be used for computing the homography matrix.

Homography matrix computation is the fourth step of the

merging algorithm. In the fifth step, the transformation

calculated from the homography matrix is applied to

images or maps and the two maps are then merged

accordingly.

The proposed algorithm is executed for merging the

maps obtained in the experiment phase (Figure 8 and

Figure 9). The common key points of these two maps are

shown in Figure 16. As one can see, the proposed

algorithm could find the correct common features

between two maps. After forming the homography

matrix, the two maps are merged together. The result is

shown in Figure 17. Comparing Figure 17 and Figure 7

shows that the local maps have been merged correctly.

The time expended to merge the maps is about 20

seconds which is about 20% of the time consumed using

R-map merging algorithm.

A second experiment is performed to map a more

complex environment. This experiment is performed

within a 50 𝑚2 location consisting of two compartments.

The complete environment is shown in Figure 18. The

local maps provided by Experia and Prawn are shown in

Figures 19 and 20, respectively. Similar to the first

practical test, the robots were conducted to explore their

respective neighborhood manually and terminated their

mission by checking a common landmark which was

introduced earlier to them.

The matched points and the final merged map are also

shown in Figures 21 and 22. As can be seen, the matched

points have been found correctly and the merging process

is well done.

Figure 16. Key points matching using the proposed merging

algorithm (first test)

Figure 17. The final merged map obtained by using the

proposed merging algorithm (first test)

Figure 18. 2D Map of the environment considered for the

second practical test

Figure 19. Local map

provided by Experia (second

practical test)

Figure 20. Local map

provided by Prawn (second

practical test)

Figure 21. Key points matching using the proposed merging

algorithm (second test)

Figure 22. The final merged map using the proposed

merging algorithm (second test)

S. Hadian Jazi et al. / IJE TRANSACTIONS A: Basics Vol. 32, No. 4, (April 2019) 608-616 615

3. CONCLUSION

In this paper, the map-merging algorithm using the

maximal empty rectangles (MER) concept is presented

and implemented. It is shown here that this strategy is not

only time-consuming, but also failed in the case of low

overlap area.

To overcome these two inconveniences, an image

feature extraction algorithm named SIFT is employed

and a fast and reliable map-merging algorithm is

proposed. Using SIFT, the local maps provided by

ground robots are converted into images, and the features

of each image together with their descriptors get

extracted. These features are made invariant to

orientation and scaling. Then, the matching features

between the two images are identified and a homography

matrix is finally computed using RANSAC.

Experimental results show the proposed map-

merging algorithm can merge maps with the least

common areas. Also, the proposed algorithm is

meaningfully faster than the map-merging algorithm

applying R-maps.

4. ACKNOWLEDGEMENT

We would also like to express our gratitude to Advanced

Mechatronics and Robotics Laboratory (ARMLAB),

Mechanical Engineering Department, Isfahan University

of Technology for their generous contribution in

preparing the facilities and the environment required.

5. REFERENCES

1. Rone, W. and Ben-Tzvi, P., “Mapping, localization and motion
planning in mobile multi-robotic systems,” Robotica, Vol. 31,

No. 1, (2013), 1–23.

2. Fenwick, J. W., Newman, P. M., and Leonard, J. J., "Cooperative
concurrent mapping and localization", in 2002 IEEE
International Conference on Robotics and Automation, (2002),

1810–1817.

3. Konolige, K., Fox, D., Ortiz, C., Agno, A., Eriksen, M.,
Limketkai, B., Ko, J., Morisset, B., Schulz, D., Stewart, B., and
Vincent, R., “Centibots: Very large scale distributed robotic

teams,” Springer Tracts in Advanced Robotics, Vol. 21, No. 1,
(2006), 131–140.

4. Thrun, S., “A Probabilistic On-Line Mapping Algorithm for

Teams of Mobile Robots,” The International Journal of
Robotics Research, Vol. 20, No. 5, (2001), 335–363.

5. Williams, S. B., Dissanayake, G., and Durrant -Whyte, H.,

"Towards multi-vehicle simultaneous localisation and mapping",
in Proceedings 2002 IEEE International Conference on Robotics
and Automation, Vol. 3, 2743–2748, (2002).

6. Thrun, S. and Liu, Y., “Multi-robot SLAM with sparse extended

information filers,” Robotics Research, Vol. 15, No. 1, (2005),
254–266.

7. Carpin, S., Birk, A., and Jucikas, V., “On Map Merging,”
International Journal of Robotics and Autonomous Systems,

Vol. 53, No. 1, (2005), 1–14.

8. Birk, A. and Carpin, S., "Merging Occupancy Grid Maps From
Multiple Robots", in Proceedings of the IEEE, Vol. 94, No. 7,
1384–1397, (2006).

9. Saeedi, S., Paull, L., Trentini, M., and Li, H., “Neural Network-
Based Multiple Robot Simultaneous Localization and Mapping,”
IEEE Transactions on Neural Networks, Vol. 22, No. 12,

(2011), 2376–2387.

10. Saeedi, S., Paull, L., Trentini, M., Seto, M., and Li, H., "Efficient
map merging using a probabilistic generalized Voronoi diagram",
in 2012 IEEE/RSJ International Conference on Intelligent Robots

and Systems, 4419–4424, (2012).

11. Dinnissen, P., Givigi, S. N., and Schwartz, H. M., "Map merging
of Multi-Robot SLAM using Reinforcement Learning", in 2012
IEEE International Conference on Systems, Man, and

Cybernetics (SMC), 53–60, (2012).

12. Li, H., Tsukada, M., Nashashibi, F., and Parent, M., “Multivehicle
cooperative local mapping: A methodology based on occupancy
grid map merging,” IEEE Transactions on Intelligent

Transportation Systems, Vol. 15, No. 5, (2014), 2089–2100.

13. Park, J., Sinclair, A. J., Sherrill, R. E., Doucette, E. A., and Curtis,
J. W., "Map merging of rotated, corrupted, and different scale
maps using rectangular features", in 2016 IEEE/ION Position,

Location and Navigation Symposium (PLANS), 535–543, (2016).

14. Park, J., "A Reduced Element Map Representation and
Applications: Map Merging, Path Planning, and Target

Interception". PhD Thesis: Aerospace Engineering, Auburn
University, (2017).

15. Ahn, J. G. and Jeon, H. S., "R-Map : A Hybrid Map Created by
Maximal Rectangles", in ICCAS 2010, 1336–1339, (2010).

16. Lowe, D. G., “Distinctive image features from scale-invariant
keypoints,” International journal of computer vision, Vol. 60,
No. 2, (2004), 91–110.

17. Harris, C. and Stephens, M., "A combined corner and edge

detector.", in Proceedings of Fourth Alvey vision conference, Vol.
15, No. 50, 147–151, (1988).

18. Fischler, M. A. and Bolles, R. C., “Random Sample Consensus:
A Paradigm for Model Fitting with Applications to Image

Analysis and Automated Cartography,” Communications of the
ACM, Vol. 24, No. 6, (1981), 381–395.

616 S. Hadian Jazi et al. / IJE TRANSACTIONS A: Basics Vol. 32, No. 4, (April 2019) 608-616

Map-merging in Multi-robot Simultaneous Localization and Mapping Process Using
Two Heterogeneous Ground Robots

S. Hadian Jazi, S. Farahani, H. Karimpour

Department of Mechanical Engineering, University of Isfahan, Iran

P A P E R I N F O

Paper history:
Received 16 October 2018
Received in revised form 05 March 2019
Accepted 07 March 2019

Keywords:
Map-merging
Multi-agents Simultaneous Localization and
Mapping
Ground Robot
Image Processing

 چکیده

در این مقاله یک آلگوریتم ترکیب نقشه سریع و قابل اعتماد برای تولید نقشه کلی از یک محیط داخلی و در یک پروسه

است. یک ربات برای حرکت در یک محیط و پیدا کردن مسیر برداری و تعیین موقعیت همزمان چند رباتی ارائه شدهنقشه

ای از محیط نیاز دارد و همچنین برای تهیه نقشه از محیط به موقعیت خود در آن محیط وابسته است. خود به نقشهحرکت

ه های بزرگ و پیچیده، به دلایل متفاوتی از جملگویند. در محیطبرداری و تعیین موقعیت همزمان میاین مساله یچیده را نقشه

چند پذیر نیست. در این موارد معمولا ازبرداری توجیهه از یک ربات برای نقشهشدن پروسه، استفادانباشتگی خطا و طولانی

های قشهکردن نبرداری، ترکیبهای چندرباتی نقشهشود. یکی از مهمترین چالشها در پروسهربات برای این کار استفاده می

ریتم آن محیط است. در این مقاله یک آلگو شده توسط هر ربات از محیط و یا بخشی از آن و سپس تولید نقشه کلیمحلی تهیه

شود که در آن به اطلاعاتی از قبیل های محلی ارائه میهای نقشهها و مشخصهمرکزی برای ترکیب نقشه بر پایه ویژگی

 صورت تجربی از دو ربات متفاوتمنظور ارزشیابی این آلگوریتم بهها نیازی نیست. بهموقعیت اولیه یا موقعیت نسبی ربات

شده معرفی دهد که آلگوریتم. نتایج آزمایش نشان میشودمیکه به سنسورهای لیزری متفاوتی برای پویش محیط مجهز هستند

 . های محلی و تولید نقشه کلی از محیط داردکردن نقشهدقت و سرعت مناسبی برای ترکیب

doi: 10.5829/ije.2019.32.04a.20

