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In thisresearch, Generalized Predictive control (GPC) is proposed for the control of astabilizing loop from
a two axis gimbal seeker. In fact, there are someviews about using GP C type controllerwhich are two
folds. First, it drivesthe stabilization loops that are made by a DC motor, Rate Gyro, inertia and cross
couplingunit in between two channels using the predictive model type controller. Second, thetheory is
to excavate the results of flight simulation on the efficiency of two-axis gimbal seeker. The simulations,
based on different scenarios, are valuated for the proficiency of the designed system considering the
dynamic mass imbalance and the cross-coupling in between two channels and the flight simulation. The
flight simulation results are explained the accuracy of the designed system with predictive control in
opposite of conventional P1 controller. For example, thesimulation results in altitude of 2km showthe

Control Effort suggested system in comparison with conventional P | controller improves miss-distance and flight time
11.98% and 1.5% respectively. Moreover, the suggested system in maximum control signal is 72.61%,
minimum control signal is 1.55% and final time is 80.43% (control effort parameter), which is better
than P1 type controller.

doi: 10.5829/ije.2019.32.04a.13
NOMENCLATURE
F.F .F, Aerodynamic forces 5,,0,,0, Angle of effective control-surface deflection
C,.C, .C, Aerodynamic forces coefficients Trere Total Extemal T orque in Elevation channel
S Reference area Teo Elevation channel Disturbances
| et Reference length ofbody Tece Elevation Cross-Coupling
o Dynamic pressure i,k Missile body frame axes
% Air speed red Pitch frameaxes
£ Density of theatmosphere n ek Yaw frame axes
. Yaw gimbal angular velocity in relationto
y L r - -
p. q Angular velocity about the body (x,y,z) axes g+ Dge s Do jartial space aboutn, e, k
. Pitch gimbal angular velocity in relationto
M, , M, M . .
x'My M, Aerodynamic moments Oprs Opes Dng - inertial space aboutr, &, d
C,.C,C, Aerodynamic moment coefficients

1. INTRODUCTION

One of the first steps in evaluating the function ofa flying
object is to investigate the flight mechanics and identify
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the forces involved. These are the forces that determine
their direction, speed and acceleration; ultimately
determine the performance of the subsystens.
Meanwhile, one of the most important subsystems in a
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missile is seeker which plays a very important role in
identifying and tracking the target. Therefore, for a
precise consideration, it is the best to evaluate first the
performance of the seeker stabilization loop system
under the software simulation in the loop.

Regarding the today’s wide application of the
predictive control systems to control industrial and
complex systems due to its robustness, optimality and
ability to face uncertainty. The use of this method in
controlling and reinstating the stabilizing loop of a two
axis seeker is proposed. Now We shall examine this
proposed seeker model a missile along with motion and
flight dynamics equations. Such a consideration, a two
axis seeker model with this control method has not been
introduced in any article or publication up to now. We
shall continue to provide some research in this field.

Fuzzy control is used to controlthe two axis stabilizer
loop, and the performance of the proposed system is
compared to the fixed and hypotheticalline of sight rate
conditions with proportional control [1]. Moreover, in
this paper, various flight and engagement scenarios were
accurately examined by the proposed model without
simulation and flight dynamics to be performed. The
predictive control method was used in the tracking loop
and the guidance system. But the torque disturbances and
cross coupling between two channels of unmodelled
seekers and system performance under flight conditions
have not been taken into consideration [2]. Gimbal
motion equations and the modelled system performance
were taken without regard to the dynamics of missile
flight and dynamic mass instability [3-5]. For more
simplicity, the equations of products of inertia were
neglected, meaning gimbals mass distribution is taken
symmetrically [5]. A cascade controlin order to control
the system of the stabilization loop of a two axis Seeker
was used [6]. However, in studying the performance of
the modelled system, the flight dynamics are not
considered, and only simulation for the fixed and
hypothetical values along with torque disturbances is
considered. Fuzzy PID controller was used to control the
stabilization loop of the dual axis-gimbal system[7]. But,
in this research, the conditions were applied offline and
simulation was performed regardless of the flight
dynamics and the consideration of the subsystems of a
missile. Also, during the online simulation of this system,
the Fuzzy PID controller was notable to control the entire
flight path due to the complexity of applying the online
conditions, and after a limited distance, the system was
diverted and is not directed to the target [7]. A dynamical
model of the gimballed system regarding the cross
coupling unit, the angular motion platform and the input
of torque disturbances for both the azimuth and elevation
channel was submitted and the designer by using
feedback Linearization has stabilized stability and
attenuate the chaos [8]. In this paper, the dynamics of
flight and simulation was not studied during various

flight and engagement scenarios. State Dependent
Riccati Equation (SDRE) was first introduced, then the
Finite-Horizon tracking technique with SDRE was
investigated [9]. In this paper, the system is modelled
nonlinearly, but torque disturbances, cross-coupling and
non-linear flight dynamics are not considered. The two
degree of freedom, Internal Model Controller (2-DOF
IMC) was used which is a kind of resisting controller
[10]. In this paper, Dynamic Tracking loop Model is the
first order and the dynamics of the flying object and
simulation were ignored during the flight path. Also,
angular rate inputs are fixed values thatare applied to the
system. In addition, as reported in literature [11-13],
resistant control methods, variable structure control
(VSC) and Heo controlmethods were used for stabilizing
and controlling the system of stabilizer loops,
respectively.

In this study, by simulating a double-axis gimbal
seeker along with mass imbalance of the gimbals and
cross-coupling between the azimuth and elevation
channels and placing it within a missile, the effects of 6
degrees of freedom equations, flight conditions on a
missile along with an introduced seeker was considered.
Therefore, by using the generalized predictive control
method, the stabilizer loop or servo-mechanism was
stable. Finally, the performance of the modeled double
axis seeker systemwith predictive control was compared
to conventional PI control.

2. METHODOLOGY

In order to appraise the efficiency of the gimbal control
system, conducting analysis at the flight path is very
necessary. Therefore, nonlinear flight dynamic model is
used in this study, including dynamics, aerodynamics and
control unit.

2. 1. Aerodynamics Models The 6DOF model
needs information about the position and magnitude of
all forces acting on a body as well as the magnitude of all
moments on the body. Aerodynamic forces and moments
are forces and moments that act on a Rocket due to their
motion among the atmosphere. Therefore, they can be
described on the body coordinate system. Aerodynamic
coefficient can be derived from the shape (using MD). In
this research, we are supposed that the missile is
symmetrical.

Fx =0oSrer Cx - (Cx =Cx,)

R =005 Cy.Cy = CY/;/8+CY,)~|, S +Cy, rM 1)

Fz =0pS5,Cz.Cz =C; Jrcz(;e S + Czqu
Note that for the assumed symmetric missile, C; = Cyp
Cz,=Cy, Cmy=Cn,. C C, , 1 1 M=

ng bmg = bnys lref, = lref,

Irefy/ZV and N = .., /2V The entire of the aerodynamic
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moment is measured on the body coordinate system as
follows:
My =CidoS et Nrery -Cy :Cba&a +C,p pM +C,/f,8

My =CpdoS e letx Cm =Cn @ +Cp & +Cp dN  (2)

refx *~m

c,=C +C, o, +C_ N
n, n, “r n

refy *~n

M z :quosref |

3. EQUATIONS OF A TWO-AXIS GIMBAL MOTION

The dual-axis gimbal system is shown in Figure 1.
Generally, the stabilizer loop in the dual-axis seeker
systemon the two channels with the least differences are
similar to each other. The control and stabilization of
each channel is dependent on the cross-coupling between
two dynamical mass instability channels, generated by
the asymmetric mass distribution, external and internal
factors which is affecting the system that subsequently
influences its operation. It should be noted that if mass
distribution is considered as symmetrically in relation to
the frame or body axs, then there is no longer
asymmetric mass distribution and the inertial matrix will
be in a diagonal way. In this research, a dynamic
imbalance and cross-coupling between the two channek
were considered.

Thus, the total external torque in the elevation
channel is given by following expression [1]:

Tiere =Teo +Tecce (3)

Furthermore, the total external torque in azimuth channel
is given by following expression [1]:

Treta = Tap +Tacce (4)

4. PROPOSED CONTROLLER DESIGN FOR GIMBAL
SEEKER

We used a predictive control in order to choose the best
control action by optimizing a cost function for the
dynamical model of the modelled system. In the other
control methods, feedback was used to calculate the
system's previous error, and then to the system's current
error.

Elevation DC
Motor

r
Optical Axis

Azimuth DC
Motor

Figure 1. Two-axis gimbal system

This led to a decrease in the system's functionality rate
and in some cases the system's instability. Since the two-
axis seeker systemhas a very complex dynamic, which is
a multi-variable, unstable, and noisy process; a
generalized predictive control model based on a state-
space is used. In this research, we used the predictive
control model based on the state-space in order to control
the two-axis seeker stabilizing loop and to evaluate its
performance in flight simulation by taking into account
the flight dynamics of a flying object stated as follows
[14-15]:
k+1 — k k-1

And the following cost function, where P is the predictive
horizon rate and H is the control horizon rate [14-15]:

3= a[vet+D-ga+1o T
= (6)
+Zﬁ(t+i—1)ri(t)

With reference to Figure 2, it can be seen that how the
proposed controller is applied to each channel of the
stabilizer loop system: The general block diagram for the
closed loop flight simulation is shown in Figure 3.

5. SIMULATION AND RESULTS
The initial values are summarized in Table 1. In orderto
accurately evaluate the performance ofthe model system,

we simulate and evaluate once for unchanged
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Figure 2. Two-axis gimbal seeker with GPC controller
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inputs and fixed angular rate commands and also for
different heights. In the next scenario, the modelled
system was simulated under flight conditions regarding
the introduced seeker into a simulated missile which all
the commands were online and during the engagement
for the target of maneuverability. The target without
maneuverability taken into account for different heights
and 15 km approached target. Finally, we compared the
performance of each mode with each other. The
following Table 2 shows the conditions for each of the
scenarios applied:

Figures 4 and 5 show the first scenario assuming the
offline mode, without cross-coupling and the input rate
command is equal to 30%s for the elevation and azimuth
channels (S.A-T.1).

Also, Figures 6 and 7 show the first scenario
assuming the offline mode, with cross-coupling and the
input rate command is equal to 30°s for two channek
(S.A-T.2).

TABLE 1. Initial Data used for Simulations

Parameter Initial Value
Missile velocity (1;,) 50 m/s
Target velocity (V) 50-100 m/s
Prievation 63
Pazimutn 45
Hpievation, azimutn 1

TABLE 2. Parameter Data Used for Analysis Scenarios
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Figure 4. S.A-T.1 for the elevation channel
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Figure 5. S.A-T.1 for the azimuth channel
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Figure 6. S.A-T.2 for the elevation channel
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Figure 7. S.A-T.2 for the azimuth channel

Figures 8 and 9 show the scenario "B" assuming the
online mode, without cross-coupling in 0.5 seconds from
simulation for azimuth and elevation channels (S.B- T.3).
Figures 10 and 11 shows the scenario "B" assuming the
online mode, with cross-coupling in 0.5 seconds from
simulation for azimuth and elevation channels (S.B-T.4).
Figures 12 and 13 also represent respectively how the
missile and target are involved when the target is
accelerated and non-accelerated.

In Table 3-5, respectively, the transient mode analysis
of the modelled system, the effective altitude and range
of the modelled seeker and its control effort is expressed.
You can figure out according to Table 3, the modelled
system can reach to the stable and desirable conditions
faster with less overshoot.
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Online Input Rate Command for the Stabilization Loop
T T

18 T
ST S R _
&

LRSS .
IR A A i
E :
2 L : : -
& — Input Rate Command
[f-3 . — Angular Velocity with GPC//wihout cross coupling [
— Angular Velocity with PLwithout cross coupling

06k Frror H

5 : :
E nath 4
kS
.5 02 b
[=I]
a2 i i i i H i i ; i
0 005 01 015 02 025 03 035 04 045 05
Time(sec)
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Figure 11. S.B-T.4 in 0.5sec for the azimuth channel
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Figure 12. Missileand target trajectories when the target is
non-accelerated
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TABLE 3. Transient response analysis results

E Elevation Channel Azimuth Channel

§ Convertional Pl controller GPC type controller Convertional Pl controller GPC type controller

E (Bv ts B ¢ (seq) %)v ts td tr ?V ts td tr ?V ts td tr
(%) (sec)  (sec) (%) (sec) (sec) (sec) (%) (sec) (sec) (sec) (%) (sec) (sec) (sec)

1 7.63 0.46  0.04 0.1 3.88 0.3 0.03 0.081 - 0.5 0.02 035 381 034 001 0.04

2 8.67 0.44 0.04 0.096 3.88 0.29 0.03 0.081 6.47 0.47 0.04 0.10 1.62 0.25 0.01 0.06
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TABLE 4. Effective range with cross coupling
. Convertional Pl Controller GPC Type Controller
Altitude (km) - : - - - - - -
FlightTime (s) Intercept point(m) Miss Distance(m) FlightTime (s) Intercept point(m) Miss Distance(m)

1 14.61 8408.6 14.62 14.53 8448.9 14.33
2 14.82 8319.2 13.29 14.6 8416.1 14.88
3 14.94 8262.7 14.53 14.92 8273.3 14.69
4 15.25 8123.7 14.81 15.21 8141.9 14.13
5 15.75 7900 14.08 15.65 7941.3 14.94
6 16.4 7608 13.36 16.19 7700 14.38

TABLE 5. Control Effort

Pl Controller GPC Type Controller
Test Case

max min TF(ms) max min TF(ms)

Without Cross-Coupling 7.5768 -1.7416 368 2.0751 1.7145 72
With Cross-Coupling 24.5452 7.5398 374 2.0751 1.7158 72
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