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A B S T R A C T  
 

 

In this paper, a quaternion-based finite-time sliding mode attitude controller is designed for a spacecraft 
performing high-thrust orbital maneuvers, with cold gas thrusters as its actuators. The proposed 

controller results are compared with those of a quaternion feedback controller developed for the 
linearized spacecraft dynamics, in terms of settling time, steady-state error, number of thruster firings 
and their fuel usage. It  is then proved that the sliding mode control has enough robustness against 
disturbances as well as a high accuracy in attitude tracking and also a low number of thruster firings. A 

6 degree of freedom (DOF) total simulation, including spacecraft dynamics, guidance, navigation and 
control systems is also designed and the sliding mode controller performance in a sample transfer from 
an ecliptic orbit to a circular one is investigated. In order to solve the chattering problem caused mainly 
because of the discontinuity of sliding mode control algorithm and multiple switching on sliding 

surfaces, the sign function in the control input is replaced with a hyperbolic tangent function. Being 
aware of the advantages of sliding mode control method, using this algorithm in orbital transfers seems 
to be innovative and efficient. 

doi: 10.5829/ije.2019.32.03c.11 
 

 
1. INTRODUCTION1 
 

A major part of any space mission is the orbital 

maneuvering process. The usage of orbital maneuvers is 

not only limited to the interplanetary missions , i.e., 

almost all space missions are accomplished by putting the 

spacecraft in an initial orbit and then transferring it to the 

final one, which results in reducing the costs of launch. 

With the increasing computing capabilities of space 

flight over the past years, extensive research has been 

done on spacecraft attitude control systems. Several 

algorithms have been designed to enhance the control 

systems robustness against external disturbances, 

uncertainties of modeling, and also to optimize the 

required time for the mission or the fuel consumption of 

the spacecraft. Typically, the main task of the attitude 

control system in orbital maneuvers, is to track the 

angular commands of the guidance system in order to 

make sure that the spacecraft velocity change vector ( V
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) at the time of applying the guidance impulse, is aligned 

with that calculated by the guidance algorithm. 

Calculations of the spacecraft orbital parameters and its 

velocity and position in orbit, are done by the guidance 

system in order to determine the optimal and appropriate 

transfer trajectory and also the required impulse 

magnitudes. Considering the uncertainties in modeling of 

the dynamical system and also the external disturbances, 

it is possible that in some orbital maneuvers, the angular 

commands of the guidance system are such that rotations 

with large angles are required. Therefore, the attitude 

controller needs to be capable of performing large angle 

maneuvers. In 2011, Ming Xin and Hejia Pan [1] used a 

nonlinear optimal control in order to increase the 

performance of attitude and position maneuvers and also 

reduce the flexible movements caused by large angle 

rotations. Lu and Xia [2] considered attitude tracking of 

a rigid spacecraft in a finite time, under external 

disturbances and inertial uncertainties back in 2013.  
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First, a unique fast nonsingular terminal sliding mode 

surface was desigend without any constraints, which has 

not only avoided singularity, but also contained the 

benefits of both nonsingular terminal sliding mode and 

the ordinary sliding mode together. The fast nonsingular 

terminal sliding mode control laws were then introduced, 

providing finite-time convergence, robustness, faster and 

higher control precision. In 2007, Pini Gurfil [3] 

investigated the problem of orbital transfers by 

continuous-thrust using orbital parameters feedback from 

a nonlinear control method. The Gauss's variational 

equations were used for modelling the spacecraft 

dynamics of motion in a central gravitational field. A 

nonlinear feedback controller was then derived, 

illustrating its performance through simulating orbital 

transfers between two geosynchronous orbits. Finally, it 

was proved that the proposed controller resulted in lower 

fuel consumption in impulsive maneuvers, compared to 

those performed utilizing other control methods. 

The attitude dynamics equations for a rigid spacecraft 

are described as follows [4]: 

I B BT h h h     (1) 

where T denotes the total applied moments vector, h the 

angular momentum vector, and ω the angular velocity 

vector. The subscripts I and B show the inertial frame and 

body frame, respectively. External moments are also 

considered as the sum of disturbance (
dT ) and control (

cT ) 

torques: 
d cT T T   

In this paper, 
cT  referes to the control torques 

provided by cold gas thrusters. 
 
 

2. ATTITUDE KINEMATICS AND DYNAMICS 
 
The attitude of a three-dimensional body is defined with 

a set of axes fixed to the body. This set of axes is a triad 

of orthogonal coordinates, and is called a body 

coordinate frame. The attitude of a body is thought of as 

a coordinate transformation that transforms a defined set 

of reference coordinates into the body coordinates of the 

spacecraft [4]. The basic three-axis attitude 

transformation is based on the direction cosine matrix. 

Any attitude transformation in space is actually 

converted to this essential form discussed in literature 

[4]. Two widely used spacecraft attitude determination 

methods are known to be the Euler angles and quaternion 

methods. The Euler angle rotation is defined as 

successive angular rotations about the three orthogonal 

frame axes [4]. Supposing that the three orthogonal axes 

of the body frame are defined by i, j, and k , and those of 

the reference frame by I, J, and K, there is a multitude of 

order combinations by which the rotation can be 

performed. For instance, one might first perform a 

rotation about the i, then about the j, and finally about the 

k  axis. The order of rotation could also be about j, i, k , 

and so on. The quaternion’s basic definition on the other 

hand, is a consequence of the properties of the direction 

cosine matrix [4]. It is shown by linear algebra that a 

proper real orthogonal 3×3 matrix has at least one 

eigenvector with eigenvalue of unity [4]. Quaternions 

inherently come along with some advantages such as no 

singularity - because of not including trigonometric 

components - and being computationally less intense 

compared to other attitude parameters such as Euler 

angles or direction cosine matrices. Although Euler 

angles are easy to develop and visualize, they are 

computationally intense. Also, a singularity problem may 

occur when describing spacecraft attitude kinematics in 

terms of Euler angles, therefore, it cannot be considered 

as an effective method for expressing the spacecraft 

attitude. The widely used quaternion representation 

which is based on Euler’s rotational theorem, states that 

the relative orientation of two coordinate systems can be 

described by only one rotation about a fixed axis. 

Therefore, considering their advantages, using 

quaternions seems to be the best and the most effective 

way for describing spacecraft attitude. The equations of 

motion of a spacecraft can generally be divided into 

kinematic and dynamic equations. The kinematic 

equation of the spacecraft in terms of quaternions is given 

by Vadali [5]: 

 
1

( )
2

G    (2) 

where 

 

1 2 3
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2 3 1

3 2 1

0

0
( )

0

0

G

  

  


  

  

   
 


 
 
 

 

 
(3) 

It is known that the quaternions are constrained by Vadali 

[5]: 

1T    (4) 

The dynamic equations of motion of a rigid spacecraft 

has been discussed in literature [4]: 

 

 

 

1 1 2 3 2 3 1 1

2 2 3 1 3 1 2 2

3 3 1 2 1 2 3 3

I I I u d

I I I u d

I I I u d

  

  

 

   

   

   

 (5) 

1 , 
2  and 

3  are the spacecraft angular velocities and 

1I , 
2I  and 

3I  the spacecraft principal moments of inertia 

and 
1u , 

2u , 
3u  and 

1d , 
2d , 

3d  the applied control and 

external torques, respectively. These equations can also 

be written in the following form [6]: 

   ;   1,2,3i i i iI I u d i        (6) 

where the notation 
 shows a skew-symmetric matrix 
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having the following structure: 

3 2

3 1

2 1

0

0

0

 

  

 



 
 

 
 
  

 (7) 

It is assumed that 1

i if I I      
 and 1

i ib I  . Therefore, 

Equation (6) takes the following form: 

; 1,2,3i i i i if bu d i      (8) 

 

 

3. SELECTION OF SWITCHING SURFACES 
 

During the sliding mode, the system states move on the 

sliding surface towards equilibrium. Such constrained 

motion can be described by a smaller number of variables 

than necessary to describe the actual system dynamics. 

The reduction in the number of variables is equal to the 

number of constraints or the number of switching 

surfaces. For example, if the spacecraft angular velocities 

are constrained to be explicit functions of the spacecraft 

attitude, the four variables of the vector q are sufficient 

to describe the motion. With this in mind, the following  

reduced-order optimal control problem is posed. To 

obtain switching surfaces, a control law in which the 

angular velocity is a function of the attitude  q   is 

considered. The purpose of optimization is to minimize 

the following cost function: 

1

2
s

T T

t

J Q R dt   


     (9) 

ts is the time of arrival at the sliding manifold. Q and R 

are symmetric weighting matrices. The Hamiltonian can 

be written as follows: 

1

2

T T TH Q R         
 (10) 

where   is the vector of co-states. The necessary 

conditions for optimality are discussed [5]: 

1

2

TQ G      (11) 

11
( )

2

TR K     (12) 
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 


 
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 
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(13) 

Equation (2) can also be written as follows: 

 
1

2
K    (14) 

when   is eliminated from Equation (2) by using 

Equation (12), the following state equation is obtained: 

11
( ) ( )

4

TK R K      (15) 

The solution for the unknown co-state vector   must 

satisfy Equations (11) and (15) simultaneously. It is also 

necessary that at the final time, the angular velocity 

vector approaches zero for attitude maneuver. Because 

after reaching the desired attitude, it must remain in that 

attitude so that the guidance impulse can be applied. It is 

assumed, without any loss of generality, that the final 

orientation is given by  1,0,0,0
T

  . Inspection of 

Equation (12) suggests the following choice for the co-

state vector [5]: 

 e   (16) 

In this case, the vector (e) (the difference in angular 

attitude of the spacecraft with the optimal attitude) is 

equal to the following value at each time: 

 0 1 2 3( 1), , ,
T

e       (17) 

Using Equations (11), (15), and (16), a functional 

equation for   is obtained: 

  11 1
( )

4 2

T TK R K Q G
e


     

   
 (18) 

Under the simplifying assumption of  0, , ,Q diag q q q , 

where q is a positive scalar and R the identity matrix, the 

following analytical result is obtained for   [5]: 

2 re   (19) 

To show that Equation (19) satisfies Equation (18), the 

left- and right-hand sides of Equation (18) are evaluated 

separately: 

TLHS qKK e  (20) 

0
qTRHS Q qKK e


 
 
 

    (21) 

Hence, it needs to be shown that: 

0
qQ


 
 
 

   (22) 

Substituting Equation (19) into Equation (12),   is 

obtained as follows: 

1

2

3

q q









 
 
 
 
 

     (23) 

where   is the reduced Euler parameter vector. From 

Equation (23) and the structure of Q, it can be easily 
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verified that Equation (22) is satisfied. Hence, the 

optimal switching surfaces are given by following  

expression: 

0 ; 1,2,3i i iS k i      (24) 

For this special case, it can also be shown that the optimal 

cost function is given by Vadali [5]: 

 
0

* 2 1 tsJ k      (25) 

Although   and   represent the same attitude, the 

optimal cost function given by Equation (25) for each 

case is different; specifically, if  0 st  is negative, the cost 

function is more. In order to remove this ambiguity, the 

attitude error vector can be redefined as follows: 

 0 0 1 2 3sgn[ ( )], , ,
T

se t       (26) 

As a result, the switching surfaces will be as follows: 

 0sgn 0 ; 1,2,3i i i sS k t i          (27) 

And the optimized cost function by the above definition 

is follows: 

0( )* 2 1 stJ k      (28) 

So the sliding motion is described by the following  

differential equations obtained by eliminating   from 

Equation (2) by using Equation (27). 

 

 

2

0 0 0

0 0

1
1 sgn

2

1
sgn ; 1,2,3

2

s

i i s

k t

k t i

  

   

      

     

 (29) 

It can clearly be seen that these equations do not depend 

on any of the spacecraft parameters (namely, moments of 

inertia). Although a large value of k is desirable for a fast 

transient response, this means that the control magnitude 

increases with k . It is also seen that the derivative 
0  is 

either positive or negative, depending on the sign of 

 0 st . Hence, without any loss of generality, the term 

 0sgn st    in Equations (27) and (29) can be replaced by 

 0sgn  . Therefore, the sliding surface takes the following  

final form: 

 0sgn 0 ; 1,2,3i i iS k i       (30) 

 

 

3. DESIGNING THE CONTROL LAW 
 

The sliding mode control law contains two main parts, 

equivalent and switching controls. Controls that induce 

ideal sliding are obtained by the "equivalent control 

method". The equivalent control is a control that keeps 

the state trajectory in the vicinity of the sliding manifold . 

It is obtained by assuming that the switching frequency 

is infinite. 

During ideal sliding on 0S  , S  can be set to zero, so: 

 00 sgn 0S k       (31) 

By using Equation (8), the equivalent control is obtained 

as: 

  0

1
sgneq i i

i

u f k
b

     (32) 

The switching control, however, is considered as an extra 

control effort which forces the quaternion and angular 

velocity components to reach the sliding surface in a 

finite time despite of disturbances, and it is computed 

according to constant reaching law stated as follows: 

 
1

sgnsw

i

u c S
b

   (33) 

where: 

 
1 0

sgn
1 0

S
S

S


 

 
 (34) 

Therefore, the control input can be obtained as follows: 

    0

1
sgn sgn    ;    1,2,3i i i i

i

u f k c S i
b

       (35) 

And in order to reduce chattering, the sign function in the 

above control input can be simply replaced with a 

hyperbolic tangent one. Theoretically, the chattering 

effect is due to the presence of unmolded dynamics in the 

systems. Since the model used to design the controller 

can never capture all the system dynamics, it is not 

possible to obtain an absolutely "chattering free" ordinary 

sliding mode control. However, it can be omitted by a 

proper design of the control function. The initial 

proposed sliding mode controller was implemented with 

a term representing a sign function. A widely used 

method to avoid chattering is the use of approximations 

to the sign function. Saturation, sigmoid, hysteresis and 

hyperbolic tangent functions are often used, offering a 

continuous or smooth control signal. For the problem in 

hand in this paper, since replacing the sign function with 

a hyperbolic tangent function has resulted in the 

smoothest control signal compared to the ones obtained 

by using other alternatives, it is  decided to use this 

approximation to avoid chattering as much as possible. 

So the final control input will have the following form: 

    0

1
sgn tanhi i i i

i

u f k c S
b

      (36) 

The proposed control law has two design parameters (c, 

k) which should be selected to provide stability and better 

performance. It should be noted that the sliding surface 
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slope, c is selected such that the system is stable during 

the sliding mode. Finally, the quaternion feedback 

controller for the linearized spacecraft dynamics is 

proposed as follows [4]: 

1 1 1 4 1 1

2 2 2 4 2 2

3 3 2 4 3 3

2

2

2

E E d

E E d

E E d

u K K

u K K

u K K

  

  

  

 

 

 

 (37) 

where 
E is the quaternions error vector and K  and 

dK  

the controller design parameters. 

 

 

4. SMC STABILITY PROOF 
 

If any Lyapunov based control method can satisfy the 

Lyapunov conditions, it will be definitely stable during 

the control process. For this purpose, by selecting the 

Lyapunov function as 21

2
V S ; substituting the proposed 

control and the sliding surface in this function. Finally , 

simplifying it, the necessary conclusion of 0V   must be 

obtained in order to ensure the stability. By reaching this 

conclusion, it can be guaranteed that the control law will 

always be stable during the control process. 

As mentioned above, a suitable Liapunov function for 

the closed loop system is selected [7]: 

21

2
V S  (38) 

The time derivative of V will be: 

 sgn 0S d c S Sd cV S SS         (39) 

which means that for the controller to be always stable, 

the coefficient c must be selected as maxc d , where 
maxd  

is the upper boundary of the disturbance torques. 

 

 

5. COMPARING THE CONTROLLERS 
 

An example, a three-axis attitude maneuver is presented 

in this section. The initial and final conditions are shown 

in Table 1. The nominal values of 
1I , 

2I , and 
3I  are 500, 

700, and 700 kg.m2, respectively. The coefficient k  is 

chosen as 1.5, and c is also chosen as 0.7 based on the 

disturbance torque magnitudes. K  and dK  are also 

selected as 8 and 40 for each three body axes. 

 
TABLE 1. Attitude Maneuver Boundary Conditions 

Parameters Initial Conditions Final Conditions 

Roll angle -90º 0 

Pitch angle 0º 0 

Yaw angle +90º 0 

Figures 1 and 2 show the Euler angles and quaternions 

error respectively for each spacecraft axis. It can be seen 

from Figure 1 that the SMC makes the Euler angles reach 

the steady-state in about 20 seconds with a steady-state 

error of about 0.8 degree. Using this method, thrusters are 

fired 442 times consuming 2.1 kg of fuel, while the 

quaternion feedback controller takes about 50 seconds to 

reach the steady-state with an error of about 1 degree, 

with thruster activity of 750 times consuming about 2.54 

kg of fuel. Figure 2 represents the quaternion errors for 

each controller. It can easily be seen that quaternion 

errors have reached the desired condition of 

 1,0,0,0
T

   within the settling time. 

 

 

 
Figure 1. Euler Angles Errors 

 
Figure 2. Quaternion Errors 
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Figure 3 represents the control moments during the 

maneuver. During the initial stages of the maneuver, due 

to the large deviation of the initial states from the 

switching surfaces, saturation occurs in the first few 

seconds. Once the system states reach the switching 

surfaces and the sliding mode is started, the control 

magnitudes quickly decrease. 
 
 

6. ORBITAL MANEUVER SIMULATION 
 

In order to verify the performance of the proposed sliding 

mode attitude controller during orbital maneuvers, a 

sample orbital transfer from an ecliptic parking orbit to a 

circular target one with parameters described in Table 2 

has been performed. This maneuver is done by a simple 

open loop guidance alghorithm in 4 phases. In phases 1 

and 2, the spacecraft increases its orbital height to about 

200 km via a double-impulsed Hohmann transfer orbit. 

In phase 3, at a true anomaly of 180 degrees, the orbit 

inclination is increased by 2 degrees, and finally in phase 

4, there is another increase in orbital height by about 100 

km with a single impulse at true anomaly of 0 which also 

makes the orbit close to circular. It should be noted that  

 

 

 
Figure 3. Control Torques 

 
 

TABLE 2. Orbital Transfer Conditions 

Parameters Initial Conditions Final Conditions 

Semi-major Axis 6681 km 6981 km 

Inclination 63º 65º 

True Anomaly -45º Variable 

Eccentricity 0.01 0  

 

 

 

an ON/OFF switch is provided in the simulation process 

which is used to enable the control system only when the 

spacecraft is close to Ascending/Descending nodes, 

where the guidance impulse is applied. 

This has been done in order to optimize the fuel usage 

by control thrusters. However, if continuos attitude 

control is demanded, this switch can be easily removed. 

It can be understood from Figure 4 that the first and 

second impulses are applied at true anomalies of 0 and 

180 degrees to increase the semi-major axis to about 6861 

km. The third impulse applied at a true anomaly of 180 

degrees, increases the orbit inclination to 65 degrees 

while other orbital elements stay unchanged. Tthe final 

impulse which is again applied at a true anomaly of 180 

degrees, simultaneously increases the semi-major axis to 

6961 km and makes the final orbit circular. The control 

thrusters have fired about 4700 times with a fuel usage of 

almost 18 kg, while the fuel used by applying guidance 

impluses via the main engine was about 175 kg, as shown 

in Figure 5. It can also easily be understood from Figure 

6 that the proposed control law could effectively 

eliminate the Euler angle errors whenever the spacecraft 

was close to Ascending/Descending nodes with an 

applicable control moment range shown in Figure 7. 

 

 

 

 
Figure 4. Changes in Angular Momentum, Eccentricity, 

Right Ascension of Ascending Node, Inclination, Argument 

of Perigee, True Anomaly and Semi-major Axis 
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Figure 5. Number of Thrusters Firings and Their Fuel Usage 

During Orbital Transfer 

 

 
Figure 6. Euler Angles Errors During Orbital Transfer 

 

 
Figure 7. Control Torques During Orbital Transfer 

7. CONCLUSION 
 

It was concluded that  the sliding mode control method 

by using the above discused algorithm in the orbital 

transfers seemed to be very effective, innovative and 

efficient as well. 
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 چکیده

 

لب در های وضعیت برای فضاپیمای صدر این مقاله، سیستم کنترل ردیابی وضعیت زمان محدود بر پایه فیدبک کواترنیون

عملگرهای کنترلی طراحی شده است. مدل دینامیکی طول مانور مداری تراست بالا با استفاده از تراسترهای گاز سرد به عنوان 

غیرخطی فضاپیما معرفی شده و سطح لغزش و نهایتا کنترل مد لغزشی بر پایه این مدل دینامیکی توسعه داده شده است. 

، رهمچنین نتایج کنترلر طراحی شده با نتایج حاصل از یک کنترلر فیدبک کواترنیون از نظر زمان نشست، خطای حالت ماندگا

ها مقایسه شده و برتری متد کنترلی مد لغزشی اثبات شده است. تعداد روشن شدن عملگرها و همچنین مصرف سوخت آن

در پایان یک مانور مداری از مدار بیضوی به دایروی با کنترل وضعیت توسط سیستم کنترل معرفی شده انجام شده و نتایج 

 حاصل از آن ارائه و بررسی شده است.

doi: 10.5829/ije.2019.32.03c.11

 

 

 

 

 
 


