
IJE TRANSACTIONS B: Applications Vol. 32, No. 2, (February 2019)   328-337 
 

 

Please cite this article as: A. Rezaei, M. H. Sadeghi, Analysis of Aeolian Vibrations of Transmission Line Conductors and Extraction of Damper 
Optimal Placement with a Comprehensive Methodology, International Journal of Engineering (IJE), IJE TRANSACTIONS B: Applications Vol. 
32, No. 2, (February 2019)   328-337 

 
International Journal of Engineering 

 

J o u r n a l  H o m e p a g e :  w w w . i j e . i r  
 

 

Analysis of Aeolian Vibrations of Transmission Line Conductors and Extraction of 

Damper Optimal Placement with a Comprehensive Methodology 
 

A. Rezaei*, M. H. Sadeghi 
 

Department of Mechanical Engineering, University of Tabriz, Tabriz, Iran 
 

 

P A P E R  I N F O  

 
 

Paper history: 
Received 26 February 2018 
Received in revised form 20 April 2018 
Accepted 26 April 2018 

 
 

Keywords: 
Aeolian Vibration 
Transmission Line 
Energy Balance Method 
Stock-bridge Damper 
Optimum Location 

 
 

A B S T R A C T  
 

 

Energy balance method is an effective and simple method which is used in the amplitude calculation of 

Aeolian vibration in transmission lines with Stockbridge damper. However, the accuracy of the results 

obtained by this method, heavily depends on the assumed mode shapes of the conductor vibration. In 
this study, by considering an appropriate model for the conductor vibration, a comprehensive 

methodology is presented to calculate the steady-state vibration amplitude of a conductor with arbitrary 

number of dampers. In this proposed method, the effects of traveling waves, variations of amplitude 
and phase, boundary conditions (finite length of the conductor), as well as the effect of number, 

location and impedance of the dampers are taken into account. Natural frequencies, damping rates and 

complex mode shapes are also obtained from forming and solving the nonlinear eigenvalue problem. 
Using this method, the effects of the damper placement on the vibration amplitude and bending strain 

are examined to achieve an optimum damper location. The comparison of the obtained values shows 

that considering the above parameters has a significant effect on the accuracy of the results. 

doi: 10.5829/ije.2019.32.02b.19 
 

1. INTRODUCTION1 
 
In response to weather conditions, overhead conductors 

are moving with different characteristics. Aeolian 

vibration of power lines in windy climates lead to line 

failure as a result of material fatigue. Roots and 

consequences of this phenomenon are explained in 

many researches [1-5]. Wind-induced vibrations occur 

as a result of the very low internal damping of the 

conductors. So, to dissipate the wind energy and to 

reduce the conductor vibration amplitudes, different 

types of external dampers are used in the power line 

networks. One can find more information about various 

dampers like Stockbridge, Dog-bone, Spiral and etc. in 

literature [6]. Stockbridge damper is the most common 

damper that used to protect conductors of overhead 

transmission lines from aeolian vibrations [1, 7, 8]. This 

type of damper not only leads to energy dissipation 

because of the strand slippage of the damper cable, but 

also acts as a dynamic vibration absorber [8]. 

                                                           
*Corresponding Author Email: a.rezaei@tabrizu.ac.ir (A. Rezaei) 

 The empirical study of the factors related to the 

conductor Aeolian vibration and its fatigue failure, 

started about a century ago [9]. However, the theoretical 

modeling of this phenomenon began in nearly half a 

century ago [10]. A number of researchers employed 

numerical methods for solving conductor vibration 

problems [11-13]. On the other hand, some other 

researchers adapted experimental results in conjunction 

with theoretical methods to evaluate the vibration state 

[14-16] and to predict the transmission lines fatigue life 

[17, 18]. From the practical view point, the Energy 

Balance Method (EBM/EBP) is a good and simple way 

to determine the maximum amplitude of the conductor 

vibration and it is widely used to reach this goal [19-

23]. Steady-state vibration amplitude obtained by this 

method depends heavily upon the estimated energy 

dissipation amount which itself is calculated based on 

assumptions made about vibration mode shapes. In the 

classical procedure of EBM, the dissipated energy 

estimation is carried out by the assumption of standing 

harmonic wave in the entire span [14, 15]. The 

assumption of a standing wave is not correct in a non-
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conservative system and it does not correctly reflect the 

effects of damper impedance and the energy travelling. 

To overcome these shortcomings, the response of the 

conductor vibration is considered as the superposition of 

two harmonic traveling waves which propagate in 

opposite directions on a semi-infinite conductor 

(Hagedorn Method) [19]. For a conductor with a single 

damper, this method leads to suitable results which is 

accepted as a well-known method and used up until now 

[22]. Although this approach is extended to the 

conductors with more than one damper [23], however, 

as shown in the present study, it does not yield to 

correct results. Using the conventional method, the 

damper dissipated power does not considerably change 

with the increase in the number of dampers [24]. The 

shortcomings of the given approach originate from the 

semi-infinite conductor length assumptions in which the 

boundary conditions cannot take into account. As a 

result, the eigenvalue problem of the conductor 

vibration is not solved and the natural frequencies are 

not obtained. A simple sinusoidal wave is considered as 

the mode shape, i.e. the phase-amplitude variation of the 

travelling waves is ignored, and the propagation of 

waves in the two sides of the span is considered 

independently. 

 To overcome the above mentioned problems, the 

authors of this paper presented a different approach 

based on energy balance [24]. That is not only considers 

the effects of the number, location and impedance of the 

dampers on the vibration mode shape and energy 

dissipation, but also takes into account the effects of 

boundary conditions (finite length of the conductor) as 

well as the travelling wave phase-amplitude variations. 

The rest of the paper is organized as following: First, 

mathematical relationships of conductor vibration are 

presented, and then in section three, the proposed 

methodology is introduced in more detail. The results of 

the effect of the damper installation location on 

vibration amplitude and bending strain, as well as the 

optimum damper location installation are given in 

section four, along with the discussion. Finally, the 

conclusion is given in section five. 

 

 

2. THE CONDUCTOR VIBRATION 
 
A suitable model for a steady-state vibration of a single 

conductor with Stock-bridge damper is described in this 

section.To reach this aim, the governing equations are 

presented and then EBM is described for solving 

vibration equation. 

 

2. 1. Equation of Vibration      Transmission lines 

have high tension-to-weight ratio. So the planar 

vibration equation of the conductor approximated as 

Equation (1) [14, 15, 19-24]. 

( , ) ( , , )IV

w cEI u Tu u F x t F u u t     (1) 

In which EI  is the bending stiffness (or flexural 

rigidity), T is the tensile force,   is the mass per unit 

length, ( , )u x t is the vertical displacement,
wF  is the 

wind force (resulting from Karman vortex) and
cF is the 

conductor internal damping force. The dot sign 

represents the derivative with respect to time ( t ) and 

the prime symbol indicates the derivative with respect to 

the spatial coordinate ( x ). 

 Due to dense frequency spectrum and the occurrence 

of the lock-in phenomenon in the electric power 

transmission lines, it is assumed that the steady wind at 

any speed will induce steady vibration of the conductor 

at the resonance frequency [14], i.e., the frequency of 

the steady forced vibration of the conductor will always 

correspond to one of its natural frequencies and the 

corresponding mode shape. On the other hand, the 

bending stiffness and internal damping of the conductor 

has little influence in determining the natural 

frequencies and mode shapes of the conductor [19-22, 

25-29]. Therefore, the natural frequencies and the 

corresponding mode shapes of the conductor at any sub-

span could be obtained from Equation (2) [19-23].This 

relation is the taut string free vibration equation and
cV  

refers to the wave propagation velocity along the string. 

2 2,c c

T
u V u V


   (2) 

 

2. 2. EBM            In practical applications, the maximum 

possible amplitude of conductor vibration is determined 

by EBM [28]. The amplitude of the steady vibration, in 

any natural frequency, is to the extent that the input 

power of aerodynamic forces is equal to the sum of the 

dissipated powers of the damper and conductor. 

Therefore, in EBM, the amplitude of the equivalent 

standing wave ( A ) at each frequency is obtained from 

solving the following nonlinear algebraic equation 

(Equation (3)) [19-23]. 

( , ) ( , ) ( , )w d cP A f P A f P A f   (3) 

where nf f  is cable natural frequency; wP  is wind 

power input, dP  and cP  are dissipated power of damper 

and conductor respectively. 

 The power of the wind exerted to a flexible 

conductor has a complex nature and is subject to various 

factors such as vibration amplitude and frequency. In 

order to calculate the maximum amplitude of the 

vibration, the greatest force of the wind at different 

frequencies, is experimentally measured. The graphs of 

the reduced wind power vs. vibration amplitude have 

been presented in a variety of resources [19-22, 30]. 
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Dissipated energy in the conductor has a number of 

different sources, and the combination of all types of 

conductor dissipation is cast into the conductor self-

damping effect [14, 15]. The dissipated power of the 

conductor is measured through the "power", "standing 

wave" and "decay” methods [31] and its mathematical 

relations are presented in different references [14, 19-

22, 31-33]. 

 The average dissipated power of the Stock-bridge 

damper (
dP ) is calculated through Equation (4). 

21
( ) cos( )

2

2 , z

d d d z

i

d d

P Z A

f Z Z e 

 

 



 

 

(4a) 

(4b) 

where 
dZ  is the complex function of damper 

impedance that is calculated according to IEC 61897 

[34] following the experimental measurement of the 

exerted force on damper clamp and clamp vibration 

velocity, and the subscript d  is used in the quantities 

associated with the damper. 

 It should be noted that the damper amplitude (
dA ) is 

calculated in terms of vibration amplitude ( A ) by the 

conductor vibration mode shape which is replaced in 

Equation (4). 

 

2. 3. The Bending Strain Amplitude       After 

calculating the conductor vibration amplitude, its 

bending strain amplitude is obtained by Equation (5) [1, 

19]. 

( , ) ( , )
2

id
x t u x t   (5) 

The conductor curvature (rate of change in conductor 

slope) is very high at points such as a crest or clamps, so 

the fatigue failure occurrence is very high at these 

locations. Using the perturbation method, the conductor 

curvature is obtained at discontinuities (crest or clamps) 

as Equations. (6) and (7) [1, 19]: 

2

1

2
,

2

i

c

d
k A k

V

 



    (6) 

2

( , )
,

2

i

char

char

d u x t EI
l

l T



   

(7) 

where Equation (6) is used for the points located in the 

“free field” (far from clamp) and Equation (7) is used in 

the vicinity of the clamp. In the above equations id  is 

the conductor characteristic diameter, A  is the vibration 

amplitude,   is the wavelength, u  is the change of 

conductor slope at clamps and charl  is the conductor 

characteristic length. 

Equations (6) and (7) show that, the strain amplitude 

is directly proportional to the characteristic diameter 

and is inversely proportional to bending stiffness. The 

actual values of these two parameters are functions of 

the conductor curvature at some point, and therefore, 

they depend on time and space [14], which were 

investigated by some authors [25, 26]. However, since 

the design is based upon the worst case scenario, the 

value of the bending stiffness ‘EI’ is considered to be 

equal
minEI , and the characteristic diameter to be the 

outer layer conductor strand diameter, [1, 14, 27]. 

According to the standard reference, the accepted 

extreme bending strain value of ACSR conductors is 

150 microns [4, 27]. 
 

 

3. THE COMPREHANSIVE METHODOLOGY 
 
In this section, an appropriate model is presented for 

conductorvibration with several dampers. In the 

proposed approach the eigenvalue problem of the 

conductor vibration is formed, by taking into account 

the complex form of the general response of the 

conductor vibration equation; the solution of which 

leads to the natural frequencies, damping rates and the 

complex mode shapes. 
 

3. 1. Eigen Value Problem          The general solution 

for the steady state response of the conductor vibration 

equation in each sub-spans (Equation (2)), is considered 

as Equation (8) [24]: 

0 0

0 0 0 0

( , ) ( ( , )) , ( , ) ( )

( ) , ,

,A B

i t

x x

c

i i

u x t real u x t u x t e U x

s
U x A e B e s i

V

A A e B B e



 

 

  

 

     
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(8a) 

(8b) 

(8c) 

The eigenvalue s  is a complex number whose 

imaginary part is the vibration frequency and the real 

part is the damping rate. Consequently Equation (8) is 

transformed to Equation (9): 

0

0

( , ) sin( ( ) )

sin( ( ) )

c
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x
V

A

c

x
V
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V
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B e t

V




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 


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(9) 

Also, for the Aeolian vibration with small amplitude 

and slope, the vertical component of conductor tension  

( q ) is written as Equation (10), then Equation (11): 

sin( ) tan( )u u

du
q T T T

dx
     (10) 

0 0

( , ) ( ( , ))

( , ) ( )

( ) ( )

i t

x x

q x t real q x t

d u
q x t T e Q x

dx

Q x T A e B e



  



 

 

 

(11a) 

(11b) 

(11c) 
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Generally, a span which has 
dn  dampers, will have         

( 1dn  ) sub-spans (Figure 1). Based on this figure, first 

subspan and last subspan are limited to a support in one 

end and a damper in other end. However, in the central 

parts of the conductor, the (p+1)st subspan is located 

between the pth and (p+1)st dampers and 
1 10 p px l  

(subspan coordinate 
1px 
 is measured from the 

beginning of the (p+1)st subspan). 

 In this case, in addition to the s  value, there are 

2 ( 1)dn   complex unknowns ( 0 0,A B ) which are the 

complex amplitudes of the sub-spans travelling waves. 

These unknowns can be found by applying the boundary 

condition at both ends of the span as well as the 

geometric and force conditions at each damper location. 

 In each damper location, the force and geometric 

boundary conditions (Equation (12)) must be satisfied at 

any time. Where 
dF  is the complex function of damper 

force. 

   

   
1

1

0

0

0

( , ) ( , )

, 1,2,3,...,

p p p

p p p

p

x l x

dx x l

d d d

x

u x t u x t

q q F

d u
F Z p n

dt





 

 



 



 

 
   

 

 

(12a) 

(12b) 

(12c) 

By applying the values of displacement and force at the 

beginning of each sub-span (
0 0,U Q ), the unknown 

coefficients of the amplitude are obtained in terms of 

them (Equation (13)): 

0 0 0 0 0 0

1 1 1 1
( ) , ( )

2 2
A U Q B U Q

T T 
     (13) 

So, Equations (8) and (11) are written in the form of 

Equation (14): 

0

0

0

0

1

( ) 2 2

( )
( )

2 2

1
cosh( ) sinh( )

( ) sinh( ) cosh( )

x x x x

x x x x

e e e e

UU x T

Q x Qe e e e
T

x x U
T

Q
T x x

   

   





 

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 

 

  
           
         
 
 

 
           

 
(14) 

 

 

 
Figure 1. Numbering of dampers and sub-spans 

With the aid of the coefficient matrix of the above 

equation (field matrix), the displacement and vertical 

force at any point of each sub-span, can be obtained in 

terms of the values at the beginning of the same sub-

span. Equation (12) is also written as Equation (15): 

1 0

1 0

( ) 1
p p px x l

U U

i ZQ Q
  

       
    

       
 (15) 

By the coefficient matrix of the above equation (Point 

matrix), the displacement and vertical force at the 

beginning of the sub-span can be obtained in terms of 

the corresponding values at the end of the previous sub-

span. 

 Thus, using the transfer matrix method  and chain 

multiplication of the field matrix (for any sub span) and 

the point matrix (for any damper) [34, 35], we come to 

the following linear equation system (Equation (16)), 

which relates the displacement and the vertical force at 

the beginning and the end of the entire span. 

11 12

21 22 0x L x

D DU U

Q D D Q
 

    
    

    

  (16) 

The matrix D  is obtained from the chain multiplication 

of field and point matrices, and its entries are nonlinear 

functions of variable s  and include parameters of 

damper impedance, the lengths of sub-spans, tension 

and mass per unit length of the conductor. The boundary 

conditions at both conductor ends are written as 

Equation (17): 

1 1 1( 0 , ) ( , ) 0
d dn nu x t u x l t      (17) 

Appling Equation (17) to Equation (16) results in 

Equation (18): 

12 0( ) 0xD s Q    (18) 

Given that, the vertical force component at the 

beginning of the span (
0xQ 
), in general, is nonzero, 

finally the characteristic equation is achieved as 

Equation (19): 

12 ( ) 0D s   (19) 

By solving this nonlinear equation, eigenvalues 

(including natural frequencies and relevant damping 

rates) are extracted. Then, for each eigenvalue, the 

amplitude coefficients of the sub-spans (
0 0,A B ) are 

calculated using Equation (13), in terms of the force at 

the beginning of the span ( 0xQ  ), and the complex mode 

shape of each sub-span ( ( )U x ) is obtained. 

For a conductor without damper, the new approach 

is adapted to the classic approach. In this case, the 

characteristic equation (Equation (19)) leads to the 

standing wave and completely imaginary eigenvalues: 



A. Rezaei and M. H. Sadeghi / IJE TRANSACTIONS B: Applications Vol. 32, No. 2, (February 2019)   328-337                           332 
 

sinh( ) 0L   (20) 

, , 0,1,2, ...cV
s i n n

L


      (21) 

( , ) sin( )sin( ) ,
c

u x t A kx t k
V


     

(22) 

 

3. 2. Equivalent Standing Wave Amplitude       In 

the literatures the input power of the wind (
wP ) and 

dissipated power of the conductor (
dP ), are presented in 

terms of a single value ( A ) which is the harmonic 

standing wave amplitude, while in the conductor with 

damper(s), waves travel along the span and exchange 

energy between the sub-spans getting different 

amplitude at each sub-span. So extracting equivalent 

standing wave amplitude is necessary for obtaining 

damper dissipated power and applying the EBM. Since, 

the local wind power input along a conductor depends 

on the local displacement amplitude [14, 15], the 

equivalent standing wave amplitude can be defined as 

the mean amplitude of the vibration along the span, over 

a period (Equation 23). 

10 0

0 0
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1
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1
( sin( )sin( ) )

2 1
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d
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p

u x t dx dt
L

A

kx t dx dt

u x t dx dt
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


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 

















 

 

 

 
(23) 

By extracting the equivalent amplitude and normalizing 

the complex mode shape, dissipated energy of each 

damper (Equation (4)), is obtained in terms of the of 

equivalent standing wave amplitude. Then, by 

establishing the energy balance, the actual amplitude of 

the  conductor   vibration  is  calculated  at  each   natural 

 

 

 
Figure 2. Conformity of the experimental results and 

theoretical model of Damper Impedance 

frequency. Next, by calculating the maximum change in 

the slope of the conductor, the maximum amplitude of 

bending strain is calculated at critical points through 

Equations (6) and (7). 

 It is worth mentioning that, in extracting the roots of 

the nonlinear characteristic equation the iterative 

method is employed. The initial guesses for the roots are 

the damper-free conductor natural frequencies, and the 

iteration is terminated when the value of the 

characteristic equation is less than 
1510

. In the iteration 

process the damper impedance should be available as a 

function of frequency. For this purpose, the results of 

the experimental data are used to estimate the 

mathematical model. Figure 2 shows the conformity of 

the experimental results, to the estimated model. 

Experimental results are obtained from Stock-bridge 

damper impedance test which is performed in the 

Vibration Research Laboratory, University of Tabriz. 

 

 

4. RESULTS AND DISCUTION 
 
Given the importance of the optimal range of damper 

installation point, the effect of the installation location 

of the damper is investigated for a transmission line 

with one damper and with the geometric and physical 

properties listed in Table 1. 

A line with one damper has two sub-spans (side sub-

span and main sub-span). Defining some quantities as 

following, will facilitate presenting the obtained results: 

 The "node frequency", "dimensionless distance" of 

the damper installation pointand "dimensionless 

frequency" are defined as Equation (24) to Equation 

(26), respectively. 

, 1,2, 3, ...
2

node

d

T

f n n
x


   (24) 

min0.5

dx



  (25) 

max

f

f
   (26) 

Where min and maxf  are the minimum wavelength and 

the max. Frequency at the intended frequency interval. 

For power line with the above mentioned properties 

(Table 1), the minimum wavelength is equal to 3.6 m. 

 

 
TABLE 1. Conductor properties 

Cable Type      

ACSR 31 1.63 37 25 300 

( )

D

mm ( / )kg m



( )

T

kN 2( )

EI

Nm ( )

L

m
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The damper relative amplitude ( d

relA ), the ratio of the 

damper amplitude to the maximum amplitude of the 

side sub-span ( d

sA ) and the ratio of the maximum 

amplitude of the side sub-span to the maximum 

amplitude of the main sub-span ( s

sA ) are defined as 

Equation (27). 

max

max max

( )
, ,

( ) ( )

d d sd d sub

rel s s

sub span

A A A
A A A

A A A
    (27) 

 

4. 1. The Effect of Damper Location on 
Eigenvalues       Changes in the real part of eigenvalues 

(damping rate) with respect to the location of a damper 

in the range of 0 1   are shown in Figure 3. 

According to this figure, as the distance of the 

installation point increases, the peaks of the graphs 

become wider, and are displaced to the left direction. 

This diagram shows that by increasing the   the mean 

damping rate increases at the lower half frequency band 

( 0 0.5  ) and decrease at higher half ( 0.5 1  ). 

Based on this figure, the critical frequency area with 

low damping rate, can be distinguished. 
 

4. 2. Effect of Damper Location on Damper 
Amplitude        Changes in the damper relative 

amplitude with respect to the increase in the distance of 

the installation location are shown in Figure 4. 

 As long as 1  , the relative amplitude d

relA is not 

equal zero at any frequency, but when 1   the 

displacement of the damper at the end of the frequency 

range (about 42 Hz), is very close to zero, that is to say 

the damper is placed on the node. When   is an integer, 

the length of the side sub-span is equal to an integer 

multiple of the wavelength-half (loop length). At this 

time, the location of the damper at some frequencies 

which defined as node frequencies coincides with the 

node, the damper efficiency becomes zero and the 

vibration shape of the conductor in the entire sub-span, 

turns into a standing wave. According to this figure, 

installing the damper at distances greater than the 

shortest loop length( 1  ), causes the displacement of 

the damper severely decrease at "node frequencies". 

 The locus of “node frequencies” (Equation 24) on 

"frequency-installation point" plane, is a set of curves, 

in whose vicinity, the displacement amplitude of the 

damper is very small. Figure 5 shows the contours of 

the d

sA  where the dark areas are node frequency zones 

for the 1, 2n  . According to Figure 5, before reaching 

the first node frequency curve, d

sA  is equal to one, i.e. 

the damper point has the greatest amplitude in the side 

sub-span. But when it reaches this range, the location of 

the damper is converted into a node, and this ratio 

sharply decreases. Also, after this range, this ratio 

rapidly changes between zero and one. 

 

 

 
Figure 3. Changes in the dampeing rate of eigenvalues with 

respect to damper location 

 

 

 
 

 
Figure 4. Changes in the damper relative amplitude with 

respect to installation location 
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Figure 5. Changes in the ratio of the damper amplitude to the 

maximum amplitude of the side sub-span (
d

sA ) 

 

 

Figure 6 shows the contours of the s

sA  with respect to 

the frequency and installation point for 0 1s

sA  . In 

the dark area s

sA  is higher than one, while outside this 

zone, this ratio is always less than one. Based on Figure 

5 the dark area is the first node frequency range. 

According to Figure 6, when the damper coincides with 

the node, the amplitude of the side sub-span peak 

becomes greater than the amplitude of the main sub-

span peak, and the side sub-span vibrates more severely. 

Comparison between Figures 5, 6 and 3 showed that 

before reaching the first node frequency, the ratio of the 

damper amplitude to the maximum amplitude of the 

span is always less than one and decreases sharply in 

critical frequencies (frequencies with low damping rate). 

 

4. 3. Effect of Damper Point on Conductor 
Vibration Amplitude            The  effect  of the damper  

 

 

Figure 6. Changes in the ratio of the side sub-span maximum 

amplitude to the main sub-span maximum amplitude ( s

sA ). In 

the dark area s

sA  is higher than one. 

location on the conductor vibration amplitude is shown 

in Figure 7. Figures 7a and 7b devoted to 0 1   and 

Figure 7c is covering the 1   range.  

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 7. The effect of the damper location on the 

conductor vibration amplitude for (a) 1  , (b) 1   (at 

higher frequencies) and (c) 1   
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In general, for each installation point, as frequency 

increases, the vibration amplitude decreases. According 

to the Figure 7a, at lower half frequency range, as the 

damper moves away from the support, the vibration 

amplitude of the conductor sharply decreases, i.e. as the 

distance between the installation location and support    

(
dx ) increases, the efficiency of the damper increases. 

Because for a given frequency, as the 
dx  increases from 

zero, the damper location displaces from the node 

towards the peak, and the relative displacement of the 

damper and thus its dissipated power increases. 
 The further investigations show that when 0.3   

at a wide range of frequencies, the steady vibration 

amplitude is almost zero. Figure 7b is the frequency 

zoomed of Figure 7a. Comparing this figure with Figure 

7a, shows that increasing the 
dx  reduces the conductor 

vibration amplitude of lower half frequency; but the 

continuation of this process, strongly increases the 

vibration amplitude at higher half frequencies. 

According to Figure7c, which the damper has been 

installed at distances greater than the shortest loop 

length, although the vibration amplitude of the 

conductor is zero at lower half frequencies, but the 

vibration amplitude of the conductor increases at higher 

half frequency, and becomes tangent to the graph of 

vibration amplitude of damper-free conductor, in the 

vicinity of relevant node frequencies. Therefore, the 

optimal location for installing the first damper on a span 

is calculated through minimizing the mean vibration 

amplitude along the span. For the presented physical 

and geometric characteristics, the optimal installation 

point is 0.4 0.7   ( 0.75 1dx   meters). 

 
4. 4. Bending Strain        Drawing the graph of 

bending strains at critical points shows that, in the case 

that only one damper is installed along the span in 1   

the bending strain has the maximum amplitude, in the 

vicinity of the supports, the damper location and free 

field, respectively, and the strain in the clamp of a 

support close to the damper, is a little greater than the 

strain in the clamp of a support which is farther away 

from the damper. According to the results obtained, the 

bending strain near the support is almost a hundred 

times greater than the bending strain in the free field 

(Figure 8). Of course, in practical situations, by taking 

into account the effect of bending stiffness on the mode 

shapes, and taking the length of the damper clamp into 

consideration, this difference will decrease. However, 

this result indicates that calculating the strain is more 

important in the location of clamps, than in the free 

field. Calculating the optimal installation location, based 

on the minimum mean strain in clamps, confirms the 

optimal value obtained in the previous section. 
 

 
(a) 

 

 
(b) 

Figure 8. The bending strain a) at support close to the damper 

b) at free field 

 

 

5. CONCLUSION 
 

In the present study, a model is presented for 

transmission lines with more than one damper, which 

can consider the effects of traveling of the wave, 

damper location, damper impedance and the phase- 

amplitude fluctuations along the span, on the vibration 

mode shape and damper dissipated power. Thus, a more 

accurate result will be obtained for the vibration 

amplitude of the conductor, with the EBM. In the 

methods presented earlier, above factors were being 

ignored, and the conductor vibration amplitude was 

being calculated based on simplifying assumptions 

whose incorrectness revealed by new method results. 

 The outcomes obtained from this research, while 

confirming the standing waveform in the damper-less 

state, show that in the presence of dampers, waves in 

inner sub-spans are traveling and wave propagation is 

towards dampers. Also, the vibration amplitude is 

variable along the conductor, and the movement of 
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points on a conductor is associated with phase 

difference. 

 Solving the eigenvalue problem for each installation 

location shows that the real part of the eigenvalues, 

which was ignored in other methods, is a very important 

parameter, and with its help, critical frequency ranges 

(with high vibration potential) can be identified. So, 

with this new method there is no need to calculate the 

vibration amplitude. According to the obtained results, 

the real part of the eigenvalues depend on the damper 

installation location, and it increases at low frequencies, 

as the damper installation distance increases from zero. 

This study shows that the dissipated energy, 

vibration amplitude and bending strain, greatly depend 

on the damper installation location, and it is necessary 

to calculate the optimal installation location for each 

certain condition. The present research showed that, as 

the distance between the damper installation location 

and the support increases, the damper efficiency 

increases (especially at low frequencies), but the 

continuation of this process, results in the reduction of 

the damper efficiency at higher frequencies, and the 

optimal range for damper location is obtained through 

this procedure. Installing a damper in the optimal range 

increases the damping rates. Installing the damper, at a 

distance greater than the shortest loop length, while 

reducing the efficiency of the damper, causes the 

amplitude of the side sub-span to become much larger 

than that of the main sub-span. 

 Calculation of the bending strain along the span 

shows that the bending strain has greater values in the 

clamps. In the case that only one damper is installed 

along the span at a distance less than the shortest 

wavelength, the bending strain has the maximum value 

in the "support close to the damper", "support farther 

away from the damper", "damper clamp" and "free 

field", respectively, and the bending strain in the near 

damper support clamp is almost a hundred times greater 

than the bending strain in the free field and therefore the 

calculation of the strain in the location of the clamps, is 

more important than in the free field. 
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 چکیده

 

 تار رساناییچیدگی رف، به دلیل پ«بریجاستاک»رساناهای خطوط انتقال برق دارای میراگر « آولین»تعیین دامنه ارتعاشات 

ده ششود. دقت نتایج بدست آمده از این روش، به شدت به شکل مود فرض انجام می« تعادل انرژی»ای، از روش رشته

جامعی  ، روشعاش رسانا وابسته است. در تحقیق حاضر با در نظر گرفتن یک مدل مناسب برای ارتعاش رسانابرای ارت

ج، روندگی مو ، اثراتشود. در این روشی دامنه ارتعاش پایای رسانای دارای تعداد دلخواه میراگر ارایه میبرای محاسبه

نس صب و امپدان، محل )طول محدود رسانا( و همچنین تاثیر تعدادتغییر دامنه و فاز نسبت به زمان، شرایط مرزی دو انتها 

حل  وتشکیل  های طبیعی، نرخ میرایی و شکل مودهای مختلط ازشود و فرکانسمیراگر در شکل مود ارتعاشی لحاظ می

ر بر روی میراگ شود. همچنین با استفاده از این روش اثر محل نصبمساله مقدار ویژه غیرخطی مربوطه بدست آورده می

دهند شان مینشود. مقادیر بدست آمده دامنه ارتعاش و کرنش خمشی رسانا بررسی شده و محل نصب بهینه استخراج می

 ای بر دقت نتایج دارد.در نظر گرفتن پارامترهای فوق اثر قابل ملاحظه

doi: 10.5829/ije.2019.32.02b.19 
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