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A B S T R A C T  
 

 

This paper presents a multi-objective model for location-transportation problem under uncertainty that 

has been developed to respond to crisis. In the proposed model, humanitarian aid distribution centers 

(HADC), the number and location of them, the amount of relief goods stored in distribution centers, 
the amount of relief goods sent to the disaster zone, the number of injured people transferred to 

medical centers and the delivery of relief regarding the limits of capacity for transport, distribution 

centers and also available time and budget limits are all considered. This work aims at minimizing 
unfulfilled needs; that is meaning the number of people have not been transferred to medical centers. In 

order to take the inevitable uncertainty in some parameters into account, the primal deterministic 

model has been reformulated by applying the robust optimization approach. Also the performance of 
the both deterministic and robust models are investigated by solving a numerical example. The results 

of the study show that the robust counterpart of deterministic model will remain feasible with a high 

probability in reality.   
doi: 10.5829/ije.2018.31.11b.20 

 

 
1. INTRODUCTION1 
 
One consequence of population growth in recent years 

is intensification of life and financial damages due to 

natural disasters such as earthquake, flood, storm, and 

terrorism. One of the main concerns about crisis have 

been the lack of certainty and neglecting that leads to 

failure to have effective Humanitarian Aid Logistic 

(HAL) and increase of financial and life damages. To 

minimize or remove this problem, the robust 

optimization has been used. Recently, there have been 

significantly rise in the number of published paper on 

disaster area. Disaster management is generally 

discussed by Altay and Green III [1].  

Many researchers have focused on the disaster, for 

example; Abounacer et al. [2] proposed a multi-

objective transportation-location problem to minimize 

the three objectives of transportation time, number of 

distribution centers, and unmet demands. The problem 
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was solved in a definite space following accurate 

solution approach. Begona et al. [3] proposed several 

measures to solve the problem of distribution. The 

authors developed a multi-variable optimization model 

based on the aspects under consideration. The proposed 

model is a core of a decision-making back up system to 

help humanitarian aids. Najafi et al. [4] proposed a 

multi-objective, multi-style, multi-product, and multi-

period model for goods logistics and victims 

management in earthquake. The model was developed 

as a robust model and to ensure proper implementation 

of the model; it was used under different earthquake 

scenarios. Moreno et al. [5] survey two-stochastic 

mixed-integer programming models to integrate and 

coordinate facility location, transportation, and fleet 

sizing decisions in a multi period, multi commodity, and 

multi modal context under uncertainty.  

Rodríguez-Espíndola et al. [6] had proposed a 

disaster readiness system based on a coupling of multi-

objective optimization as well as geographical 

information systems to goal multi-organizational 
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decision-making, as well as, they had applied the model 

to the real condition of the flood of Mexico in 2013. 

Relief logistic network was designed by Bashiri and 

hassanzadeh [7], their model includes a covering 

location problem. In addition, they had employed 

Lagrangian relaxation method to discover a proper 

lower limit of the disaster for large cases. Some 

published articles have concentrated on location-

allocation problems Duhamel et al. [8], Ruan et al. [9] 

Fard and Hajaghaei-Keshteli [10]. 

Singhtaun [11] proposed a mathematical model and 

surveying performance of the algorithm for solving 

transportation-location problem of humanitarian aid 

reliefs and solved with the help of branch-limit 

algorithm. Huang et al. [12] developed the principles of 

humanitarian distribution with three objectives 

including saving tools, delay costs, and fairness. Wang 

et al. [13] focused on post-earthquake phase and 

proposed a non-linear integer model for positioning and 

routing relief aids distribution problems by taking into 

account trip time, total cost, and reliability of delivery 

mission and genetic algorithm have been used. 

Ben-Tal et al. [14] introduced a general method for 

robust supplying programming that can reduce uncertain 

demand in humanitarian aid supply chain. Mete and 

Zelda [15] developed an optimization approach to stock 

and distribute medicines in different crises types. They 

also introduced a probable programming model to select 

the best point of distribution and inventory level. 

Berkoune et al. [16] proposed a model for practical 

transportation problem, which is very common. They 

had represented that optimum solution of the model is 

possible only at small scale and improved its solution by 

proposing an effective genetic algorithm. Bozorgi et al. 

[17] introduced a multi-objective model of probable 

programming to optimize humanitarian operation before 

and after crisis. Their aim was to minimize total costs 

and maximum satisfaction of aid takers. The model was 

implemented for different scenarios. 

As well as, the reconfiguring model in disaster 

preparedness phase is suggested by Khademi Zare et al. 

[18] in which they have decided on facilities location, 

distribution of emergency goods, distribution centers, 

and demand areas. Also, multi-stage stochastic 

programming has been employed [19, 20].  

In this paper, a new multi-objective mathematical 

model is developed for response phase of disaster 

management. A multi-objective emergency location-

transportation problem was demonstrated by Abounacer 

et al. [2], proposed model have tried to minimize 

transportation duration of required goods, the number of 

distribution centers, and unmet demand. According to 

the survey, advance notice of wounded people, 

uncertainty, budget limitation have been vital in disaster 

management, so, in this paper, we concentrate on 

transferring injured people, uncertainty, and budget 

addition to the cases discussed by Abounacer et al. [2]. 

As a solution approach, robust optimization has been 

used. Finally, in order to look into the efficiency of 

result of robust optimization model is compared with 

deterministic one, we apply Monte-Carlo simulation.  
The remainder of the paper is organized as follows. 

Section 2 describes the multi-objective location-

transportation problem and proposes a mathematical 

model for it.  Our proposed solution and the results of 

the model are defined in section 3 conclusion and future 

research are provided in section 4. 
 

 

2. DISASTER TRANSPORTATION LOCATION 
MULTI OBJECTIVE PROBLEM 
 
In this section, we provide description of the 

mathematical model and problem to formulate it. 

 

2. 1. Problem Description      The set of demand 

points and demanded products are illustrated by i and j 

indices. The request for each demand point for each 

product is represented by 
ijd . Also, to construct 

distribution centers are considered budget constraints. 

To determine the HADCs location, it is assumed that a 

set of candidate sites exist in advance. This set is 

represented by L in continue. Required time to send 

goods from distribution center l to demand point i by 

vehicle of type h is represented by where

  .    .     i I j J l L   . Each possible site has a total and per 

product limitation that fixes the maximum quantity that 

can be stored inside the site. The global capacity of a 

site l is indicated Sland capacity of product j is 

showed . Several types of vehicles have been 

considered in here. The time needed by vehicles of type 

h to arrive the distribution point i is equal to . Loading 

and unloading time one unit of product jth into a vehicle 

hth is described as  where the product jth cannot be 

loaded into a vehicle of type h, loading time will be

jh  . So product jth cannot be assigned to vehicle of 

types h. Also, there are some limitations on the total 

volume and weight assigned to vehicles. A type h 

vehicle must not be loaded more than weight units 

nor over volume units. In addition, each product j has 

specific volume and weight that is shown by and 

respectively. A maximum daily work time, (in 

time units) for each vehicle type h is considered. A 

vehicle could only go to a specific number of trips per 

day (just forward and backward trip).  According to 

available time for each vehicle, the number of trips 

during a day was considered 2. Also we also divide the 
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injured into several categories which is shown by r. The 

number of hospital and the number of injured in point 

ith is indicated by s and . Collection time for the 

injured and transport them to the hospital are 

respectively represented by   , r ihst . Other assumptions 

of the model are:  
 The number of injured people distribution centres 

and hospitals are certain; 

 capacity of each vehicle, distribution center and 

hospital is limited; 

 There are three types of commodities; 

 There is no flow of goods between distribution 

centers and also affected area; 

 Limited budget. 

 
2. 2. Mathematical Model        The parameters and 

decision variables used in the proposed mathematical 

model are defined as follows: 
 

Sets 

 set of demand points;  

 set of products;  

 set of injured types;  

 set of distribution points;  

k  set of vehicle types;  

 set of vehicles for each type;  

 set of trips;  

 set of hospitals;  

Parameters 

ijd  demand of point i for product j 

 the number of injured type r in the disaster ith 

 capacity of site l for all products 

 capacity of site l for product j 

 cost of acquisition and maintenance products, j in 

place of l 

 
needed time to travel from demand point i to site l 

by car type hth 

 fixed cost of distribution center lth 

 
time of traveling vehicle type of h from demand 

point ith to hospital sth 

 available budget 

 docking time for a vehicle of type h at site l 

 weight capacity of a vehicle of type h 

 volume capacity of a vehicle of type h 

 loading and unloading time one unit of product j 

into a vehicle of type h 

 maximum daily work time for a vehicle of type h 

 weight of one unit of product j 

 volume of one unit of product j 

 collection time the injured type of r 

 the capacity of kth transportation type h vehicle for 

covering the injured 

 the capacity of the hospital type s 

Decision variables 

 
Equal to 1 If the location l is selected, otherwise 

0. 

 
Equal to 1 if demand point i is visited from 

HADC l with the kth vehicle of type h on its vth 

trip to i, otherwise 0. 

 
Quantity of product j delivered to point i from 

HADC l with the kth vehicle of type h on its vth 

trip to i. 

 
number of injured type r transferred from effected 

area with the kth vehicle of type h on its vth trip to 

the hospital s. 

 Quantity of product j provided at site l. 

 

The mathematical model for location-transportation 

problem can be formulated as follows: 

 

1

1 1 1 1 1

1

2 .

 z
.  

il lh ilhkv
q gn m

p

jh ijlhkvi l h k v

j

t X

Min
Q





    



  
 
 
 
 
 




                                                                
(1) 

2

1 1 1 1 1 1

    (   )

p q gn m

ij ijlhkv

i j l h k v

Min z d Q



     

     (2) 

3

1 1 1 1 1 1

    ( )

gn s m v

ri rihkvs

i r h k v s

Min z d n



     

     (3) 

S.t:  

g

l 1 1 1 1

                                   .

q m

ijlhkv ij

h k v

Q d i j



   

    (4) 

m

1 1 1 1

  0                      .

gn

ijlhkv jl

i h k v

Q p l j



   

     (5) 

 

1 1

1

2 ) .

.      .  .

ilh lh ilhkv
n

p
hk lp

jh ijlhkvi v

j

t X

D y l h k
Q





 



  
 
   
 
 
 




  
(6) 

 
1 1 1 1

( ) .     .

n v s

ihs r rihkvs hk

i s r v

t n D h k





   

     (7) 

  

1

    .                     .  .  .  . 

p

j ijlhkv h ilhkv

j

w Q Q X i l h k v



    
(8) 

  

1

  .                       .  .  .  . 

p

j ijlhkv h ilhkv

j

v Q V X i l h k v



    (9) 

rid

I    1 . .I n 

J    1. .J p 

r    1. .r s 

L  1. .L q 

 1. .k g 

h  1. .h m 

v  1. .v  

s  1. .s r 

rid

l
S

lj
s

ljc

ilht

lf

ihs
t



lh


h
Q

hV

jh

h
D

j
w

jv

r

hkCa

sCa

ly

ilhkvx

ijlhkvQ

rihkvsn

jlp



M. Kaviyani-Charati et al. / IJE TRANSACTIONS B: Applications  Vol. 31, No. 11, (November 2018)   1953-1961                    1956 
 

1 1 1 1

  0                  .

n s v

rihkvs hk

i r s v

n ca h k



   

     (10) 

1 1 1 1

  0                      .

n s v

rihkvs ri

i r s v

n d r i



   

     (11) 

m

1 1 1 1 1

  0                    

gn s

rihkvs s

i r h v k

n ca s



    

      (12) 

( . . )
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l l lj lj

l j
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  .                                                 

p
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j
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                                                          .jl ljp S j l   (15) 
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,  . 0                    .  .  .  .  . .ijlhkv jl rihkvsQ p n i j l h k v s   (17) 

The three main objectives are illustrated by Equations 

(1)-(3). First objective function minimizes 

transportation time, the second objective function 

minimizes unsatisfied demands and the third objective 

function minimizes the number of unserved injured 

people. Constraint (4) ensures that quantity of delivered 

goods sent to demand point ith is not more than the 

demand. Constraint (5) ensures that quantity of jth 

goods from distribution point lth is not more than 

available goods at this point. Constraint (6) shows that 

maximum daily work time does not exceeds the 

maximum allowable time for vehicle type h. Constraint 

(7) represents the maximum time available for 

collecting and transferring the injured to the hospital by 

vehicle type h. Constraints (8) and (9) apply the vehicle 

capacity limits for each trip, as weight ( ) and volume 

( ). Constraints (10) and (12) indicate the capacity of 

vehicles and hospitals for transferring and treatment of 

the injured. Constraint (11) ensures that the number of 

the injured people transferring to hospitals are not more 

than the injured people. Constraint (13) indicates the 

maximum budget for the construction of distribution 

centers and the preparation and storage of commodities. 

Constraints (14) and (15) demonstrate the total capacity 

of all relief goods for distribution center and the 

capacity for each product at these points. Constraints 

(16) and (17) defines the decision variables. 

We can say that the model will be efficiency when 

the input data is deterministic. If the input data is non-

deterministic, the model will miss its effectiveness and 

credibility. According to the importance of disaster 

models, incorrect planning will follow irreparable 

financial damages and loss of human life.  We haven’t 

got exact information about the demand for 

commodities, road status, and the number of injured 
during the disaster. Applying stochastic optimization methods, 

fuzzy and robust optimization under these conditions has 

become crucial to prevent mathematical model from 

getting infeasibility in real situation. This article has 

used the robust optimization approach to handle 

uncertainty. 

Description of the robust optimization based on 

polyhedral uncertainty set that was extended by 

Bertsimas and Sim [19] is provided as follows: 

 

2. 3. The Robust Counterpart of Deterministic 
Model         Robust optimization with taking the worst 

condition is trying to offer the solutions that the 

probability of constraint violation has been significantly 

reducing in real world. Moreover, the robust 

optimization is based on polyhedral uncertainty sets that 

was presented by Bertsimas and Sim [19] has two major 

characteristics: The complexity of the solution will not 

increase and the method makes a robust solution that 

level of conservatism can be flexibility modified in 

terms of probabilistic limits for constraint violation. 

According to Bertsimas and Sim [19], the robust 

counterpart of the deterministic model is: 
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3. SOLUTION APPROACH 
 
To resolve this model, we used the method that was 

applied by Najafi et al. [4], so that, the solution method 

is completely represented in the paper. Then, using 

software GAMS tried to evaluate this model in our 

small community and the results will be presented in the 

next section. Finally, we use the Monte-Carlo 

Simulation to analyze and compare the result of 

deterministic and non-deterministic models. 

 
3. 1. Numerical Example           In this numerical 

example, it is assumed that there are six affected areas 

which need emergency commodities and are covered by 

six distribution centers. Also, in each affected area, 

injured people could be transferred to six hospitals with 

limited capacity by three kind of vehicles with certain 

capacity. The capital costs for establishment of each 

distribution center in the affected area are listed in Table 

1. 
Each distribution center owns a certain capacity for 

each product. The capacity of each distribution center 

for the whole medical products as well as the capacity 

of each product in the accosted distribution center are 

shown in Table 2. 
 

 

TABLE 1. Fixed cost for construction of distribution centers 
Distribution Center (DC) Fixed Cost ($) 

1 60000 

2 90000 

3 120000 

4 70000 

5 80000 

6 75000 

 

 

TABLE 2. Total capacity and capacity for each commodity in 

distribution center l 

DC 
Total Capacity 

(1000kg) 
Type of Commodity 

Each Goods 

Capacity 

1 33 

1 11 

2 11 

3 11 

2 36 

1 12 

2 12 

3 12 

3 30 

1 10 

2 10 

3 10 

4 48 

1 12 

2 12 

3 12 

5 33 

1 11 

2 11 

3 11 

6 27 

1 9 

2 9 

3 9 
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Three types of transports are considered for 

transferring injured people to the hospital and sending 

products. The capacity of each transport for relief goods 

and injured people in Table 3, as well as the volume and 

weight of each relief cargo are presented in Table 4. 

In this problem, the costs of supply and holding are also 

considered and are listed in Table 5. The capacity of 

each hospital are also demonstrated in Table 6. It is 

assumed that the random parameters in this problem 

vary in a certain range, which listed in Table 7. Finally, 

regarding the discussion above, the output of the model 

could be reported as follow. 

We have taken a decision to give the priority to 

servicing injured people, minimizing unmet demands, 

and transportation duration respectively. 
 

TABLE 3. Capacity of transportation 
Type of 

Vehicle 
Volume 

Capacity (m3) 
Weight Capacity 

(1000kg) 
Injured Capacity 

(Person) 

1 38 28 70 

2 12 18 20 

3 6 3.8 10 

 

 

TABLE 4. Volume and weight of each commodity 
Type of Commodity Volume (m3) Weight (1000kg) 

1 4.5 5 

2 2.5 3 

3 6 2 

 

 
TABLE 5. Cost of supply and holding for every type of 

emergency commodity in every distribution center 

Distribution Center 
Emergency 

Commodity 
Supply and Holding 

Cost  ($) 

1 

1 100 

2 120 

3 130 

2 

1 100 

2 110 

3 120 

3 

1 90 

2 105 

3 125 

4 

1 110 

2 125 

3 135 

5 

1 100 

2 110 

3 120 

6 

1 90 

2 110 

3 115 

TABLE 6. Hospitals’ capacity 
Hospital Capacity (Person) 

1 1200 

2 615 

3 300 

4 300 

5 156 

6 310 

 
 

TABLE 7. Value of stochastic parameters 
Stochastic Parameters Value 

ihst (min) Uniform(30,50) 

ilht (min) Uniform(20,40) 

ijd (ton) Uniform(2000,3600) 

rid (person) Uniform(150,240) 

 

 

So, the result of the proposed model is shown in Table 

8. 

Most of the information about injured people, 

demand, and etc. have been non-specific. So, if we have 

ignored the importance of uncertainty, the model will 

miss its efficiency in real world. 

We have used the robust approach in order to 

prevent the model from being infeasible in reality. Then, 

three different levels of conservatism degree (Γ) in the 

range of [0, 1] and three levels of a perturbation 5, 10 

and 15% to perform sensitivity analysis are considered 

by authorities. The value of the objective function when 

the transportation time is non-deterministic indicates in 

Table 9. 
 

 

TABLE 8. The value of the objective function of 

deterministic model 

1Z  (People) 2Z  (Tons) 3Z  (Time) Z (The unit) 

2021.295 11141.715 37130.128 6.928043E+8 

 

 

TABLE 9. The value of the objective function under 

uncertainty of transportation time 

Perturbation Conservatism degree (Γ) Objective Function 

0.05 

0 6.928043E+8 

0.4 6.928053E+8 

1 6.928067E+8 

0.1 

0 6.928043E+8 

0.4 6.928063E+8 

1 6.928092E+8 

0.15 

0 6.928043E+8 

0.4 6.928072E+8 

1 6.928116E+8 
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According to the result of the robust counterpart of 

deterministic, the objective function value has become 

worse with rising conservatism degree (Γ) and 

perturbation when time was considered under uncertain 

data. As a result in Table 9 shows, The value of 

objective function becomes worse with increasing levels 

of conservatism degree, real condition with non-

deterministic data is applied by the robust model, so the 

solution robustness have remained feasible for all data 

with high probability. The results imply that the robust 

model has had better efficiency on the higher 

uncertainty levels versus the deterministic one. 

The rest of solutions, considering another uncertain 

parameter, are shown as follow. The three objective 

functions under uncertainty with the level of 

conservatism (Γ) 0.2 to 1 and three levels of 

perturbation 5, 10 and 15% are shown in Figures 1, 2, 

and 3. As the results in Figures 1, 2, and 3 show, the 

value of objective function have increased with 

increasing conservatism degree (Γ) and keeping levels 

of perturbation, indeed it have become worse than the 

result of deterministic model, and also it’s the contrary 

it has established that the levels of perturbation have 

risen and the conservation degree keeps, the result of 

robust model have become worse. 

Figures 1-3 have shown the effect of uncertainty on 

first, second, and third objectives. However, if 

conservatism degree (Γ) or the perturbation values will 

equal zero, the result of robust model has been as same 

as the result of deterministic model. The deterministic 

model has gained the solution better than the uncertain 

one, because deterministic model has been completely 

ignoring real situation. 

The part of deterministic and non-deterministic 

variables is reported as follow. 

The quantity of commodities carrying and the 

number of transfer of wounded people in 0.8 of a 

conservatism degree (Γ) and 0.1 of the perturbation are 

shown in Table 10. According to the result, the number 

of wounded people transferring and goods carrying in 

deterministic model has been more than robust one.  

 

 

 
Figure 1. The amount of unmet demand in different levels of 

conservatism degree (Γ) in 0.2 to 1 and three levels of a 

perturbation 5%, 10%, and 15% 

 
Figure 2. The number of remain injured in different levels of 

conservatism degree (Γ) in 0.2 to 1and three levels of a 

perturbation 5%, 10%, and 15% 

 

 
Figure 3. Transportation duration in different levels of 

conservatism (Γ) in 0.2 to 1 and three levels of perturbation 

5%, 10%, and 15% 
 

 

TABLE 10. Variables’ value 
Non-deterministic Deterministic Variable 

39838.571 40558.286 ijlhkvQ  

1475.718 1553.705 rihkvsn  

 

 

The number of injured people and commodities are 

carried under uncertain condition that have significantly 

decreased nearly 78 people and 720 tons versus the 

deterministic one. 

Moreover, regarding what we have gained, five 

distribution centers (1, 2, 4, 5, and 6) have opened and 

156 binary variables ilhkvx  have taken value. 

In addition to above, we have sought to provide 

another solution for our proposed model in different 

sizes. The result of solutions to the problem with the 

several dimensions, fixed perturbation (0.1) and specific 

conservation levels (0, 0.2, 0.5, and 1) are shown in 

Table 11.  

According to the output of proposed model in Table 

11, the deterministic model has had the same result in 

different sizes of model, on the contrary, the robust 

model finds solutions that they have seemed perfectly 

rational in the case of worse condition (under uncertain 

conditions). As regarding the explanation, in the next 

part, the solution’s reliability will be tested. 
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3. 2. Simulation Results        The quality of the robust 

solution is examined by running 7000 simulation of 

random yields. In robust model, the protection level has 

determined probability bounds of constraint violation, 

moreover the probability of constraint violation are 

analyzed with changes in data in order to assess the 

robustness of the solutions obtained as follow. 

We have used Monte-Carlo Simulation. The 

simulation output of the deterministic model under 

uncertain condition has shown that 33.9% of the 

deterministic model constraints have been violated 

(Table 12). The simulation output of the robust model is 

shown in 5 levels of a conservatism degree (Γ) as 

follow. 
As a result in Table 13 shows, the probability of 

constraint violation has reduced with increasing level of 

conservatism degree (Γ), therefore, when conservatism 

degree equals 1, there have not been any constraint 

violation (Table 13). 
 

 

TABLE 11. Summary of result in several dimensions under 

uncertainty 

Problem size2 

|I|*|L|*|S| 
CD1 

Objective function 

Deterministic Robust 

|6|*|6|*|6| 

0 

6.928043E+8 

6.928043E+8 

0.2 6.928053E+8 

0.5 6.928068E+8 

1 6.928092E+8 

|10|*|10|*|10| 

0 

8.239374E+8 

8.239374E+8 

0.2 8.239396E+8 

0.5 8.239436E+8 

1 8.239485E+8 

|15|*|15|*|15| 

0 

10.006431E+8 

10.006431E+8 

0.2 10.006492E+8 

0.5 10.006589E+8 

1 10.006701E+8 

1. Conservation degree 

2. Some sets are not included because of fixed size 

 

 

TABLE 12. The probability of constraint violation 
Constraint 

Violation 

Unjustified 

Constraints 
Total number1 Type of Model 

33.9% 2371 7000 deterministic 

1. The Total Number of Constraints with Uncertainty Parameters 
 

 

TABLE 13. The probability of constraint violation (Robust 

Model) 
Perturbation Conservatism Degree(Γ) 

26.3% 0.2 

18.1% 0.4 

9.4% 0.6 

4.2% 0.8 

0 1 

Indeed, to solve model, we have considered the worst 

condition. Although, the objective function has become 

worse, the solution has remained feasible and near 

optimal when the data alters. 

 

 

4. CONCLUSION AND FUTURE RESEARCH  

 

The proposed three objective optimizations to make the 

best decision in order to minimize transportation 

duration, unsatisfied commodities demand and unserved 

wounded people has been developed. Regarding the 

importance of the uncertainty sets in natural disaster, the 

Robust Optimization approach based on polyhedral 

uncertainty sets was used to solve that was proposed by 

Bertsimas and Sim [19]. 

The results have shown that if we have not paid 

attention to the importance of data uncertainty, the 

model will miss its efficiency in real world. According 

to the results, the robust model has had higher efficiency 

on data uncertainty against the deterministic one. The 

deterministic model hasn’t got perfect performances and 

the result had provided incorrect information to decision 

makers, but the proposed model has remained feasible 

in real conditions.  

As for future research, the proposed model will be 

developed by taking elliptical uncertainty sets that was 

offered by Ben-Tal et al. [14]. Also shelter and carrying 

the homeless people to shelter has been considered. 

Moreover, the routing problem can be added to model. 

Therefore, meta-heuristic solution of the proposed 

model recommend an interesting alternative approach 

for handling such cases [19-22]. Furthermore, in this 

case, when some parameters are considered as uncertain 

data, solution of the problem will be difficult, so, 

solving the model in large scale problems can be 

attractive.  
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 چکیده
 

 
 

حمل و نقل تحت شرایط عدم قطعیت برای پاسخ به بحران توسعه  -در این مقاله یک مدل سه هدفه برای مسئله مکانیابی

دوستانه، مقدار کالای امدادی ذخیره شده در هر مرکز -داده شده است. در مدل مربوطه تعداد و مکان مراکز توزیع بشر

دار کالای امدادی ارسال شده به نقاط حادثه دیده، تعداد افراد حادثه دیده منتقل شده به مراکز درمانی و زمان توزیع، مق

ه و های ظرفیت برای وسایل حمل، مراکز توزیع و همچنین محدودیت بودجارسال کالا امدادی با درنظر گرفتن محدودیت

دن تقاضای برآورده نشده، زمان ارسال کالا و تعداد افراد منتقل که اهداف آن حداقل کرزمان در دسترس تعیین شده است، 

مدل قطعی توسعه  از پارامترهای مدل، همتای استوارقطعیت در برخی با در نظر گرفتن عدم باشد.نشده به مراکز درمانی می

 داده شده است. همچنین کارایی مدل استوار همتای مدل قطعی نسبت به مدل قطعی در یک مثال عددی بررسی شده است.

دهد که مدل استوار همتای مدل قطعی با احتمال بالایی در شرایط واقعی شدنی های مطالعه شده نشان مینتایج حل مدل

 باقی خواهد ماند.
doi: 10.5829/ije.2018.31.11b.20 

 
 

 


