

International Journal of Engineering

Journal Homepage: www.ije.ir

Interpreting the CO₂ Adsorption on Functionalized Organic Group of IRMOF-1: A B3LYP Density Functional Theory based Study

M. Arjmandi^a, M. Pourafshari Chenar^a, M. Peyravi^{*b}, M. Jahanshahi^b, A. Arjmandi^c, A. Shokuhi Rad^d

^a Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

^b Membrane Research Group, Nanotechnology Institute, Babol Noshirvani University of Technology, Shariati Ave.,Babol, Iran

^c Department of Chemical Engineering, Mazandaran University of Science and Technology, Mazandaran, Iran

ABSTRACT

H₂BDC complexes.

^d Department of chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran

PAPER INFO

Paper history: Received 29 May 2017 Received in revised form 23 April 2018 Accepted 26 April 2018

Keywords: IRMOF-1 CO₂ Capture Functionalization Density Functional Theory

1. INTRODUCTION

Global warming as a result of greenhouse gases emission has gotten across the board consideration. Regarding the extraordinary emission amount of CO₂ than other the greenhouse gases, it has the high contribution of CO₂ (more than 60%) to global warming [1]. Sources from which the removal of CO₂ is desirable include natural gas power plants and other sources of H_2 production [2], post-combustion flue gases [3] and transport vehicle emissions [4]. There are various CO₂ capture technologies such as physical absorption [5], chemical absorption [6-9], adsorption [10-15] and membrane technology [16-20]. Due to the numerous endeavors in the study of CO₂ capture in the past decade, nanoporous solids have been considered as the promising candidates for capable adsorption of gaseous carbon derivatives to limit the CO_2 emission [21].

One of the novel materials to reach this goal is metal organic framework (MOF) family due to their fascinating sorption properties [22-24], extremely high porosity [25], characterized by large surface areas and pore diameters [26]. A main reason is that for most of MOF structures, the coordination sphere of the inorganic clusters is fully completed by the organic linker which hampers the activation of reactants [27].

doi: 10.5829/ije.2018.31.09c.01

Density Functional Theory (DFT) calculations techniques are used to study CO₂ adsorption in NH₂-,

OH-, COOH-, Br- and Cl-functionalized IRMOF-1. Geometry optimization, density of states (DOS),

and energy analysis were performed to investigate the adsorption phenomenon. The binding properties

have been calculated and analyzed theoretically for pristine H₂BDC and X-H₂BDC as well as their complex forms with CO₂ molecule in terms of binding energies, band structures, total density of states,

and Mulliken charges. The finding showed larger interaction energy in COOH-H2BDC and somewhat

in OH-H2BDC and NH2-H2BDC complexes compared to less interaction energies in Br-H2BDC and Cl-

One of the most important MOFs is Zn₄O₁₃C₂₄H₁₂ framework called as IRMOF-1, which was invented in 1999 [28]. This framework has potential applications for H₂ storage, CO₂ capture and catalysts [29]. The IRMOF-1 consists of Zn₄O nodes which are linked in terephthalate anions (1,4-BDC (benzene dicarboxylate)) groups to form a porous material (Figure 1(a)) [28]. The BDC ligands form angles of 45° with the cell axes, resulting in two different pores being present. The BDC can be found oriented in both directions, inward and outward, relative to the pores (Figure 1(b)). Pore size can be achieved by selecting appropriate dicarboxylic linkers of various lengths (IRMOF series). Sarmiento-Perez et al. [30] showed that the organic ligands have an important role in the CO₂ adsorption on IRMOF-1. Several strategies have been deployed in order to enhance CO₂-framework interactions in these new classes of porous frameworks. Among various approaches, organic

Please cite this article as: M. Arjmandi, M. Pourafshari Chenar, M. Peyravi, M. Jahanshahi, A. Arjmandi, A. Shokuhi Rad, Interpreting the CO₂ Adsorption on Functionalized Organic Group of IRMOF-1: A B3LYP Density Functional Theory based Study, International Journal of Engineering (IJE), IJE TRANSACTIONS C: Aspects Vol. 31, No. 9, (September 2018) 1473-1479

^{*}Corresponding Author Email: majidpeyravi@nit.ac.ir (M. Peyravi)

ligand (main site for CO_2 adsorption) functionalization [29, 31-33] of MOFs has been shown to be a powerful route in enhancing the CO_2 -framework interaction, and offers several advantages, such as chemical flexibility of possible ligands and functional groups and the high accessibility of the functional groups to the adsorbates.

In the current study, we perform a systematic strategy in the search for functionalized organic ligands (H₂BDC) with strong affinity for CO₂ using DFT calculations. In other word, we investigate in detail the role of each type of functional group on the organic ligand, i.e. -OH, -NH₂, -COOH, -Br, and -Cl, in the adsorption of CO₂ by IRMOF-1. For this purpose, in the first time, we examined the geometrical as well as the electronic structures of organic functionalized IRMOF-1 (OF-IRMOF-1) before and after interaction with CO₂, in order to compare and comprehend the relationship between their chemical structure and their related properties. Then, the best functional group for synthesis of OF-IRMOF-1, for CO₂ adsorption, will be introduced. We have accomplished first-standards calculations to determine the interaction behavior of the CO₂ with OF-IRMOF-1. It is well-known that DFT is able to accurately treat various systems because of having the exchangecorrelation property [34-36].

2. THEORITICAL METHOD

According to literature, adsorption of small molecules in IRMOF-1 occurs first in a site near the Zn cluster in the large pores (site A' in Figure 1(b)) [37-41]. Sarmiento-Perez et al. [30] introduced a similar site that is present in the smaller pore (site B' in Figure 1(b)) and presented three models containing; model A (whole structure), model B (only the inorganic unit) and model C (only the organic ligand). They showed that the site B' in Fig. 1b is main site for CO₂ adsorption and adsorption behavior in model C is better than model B. Then, they reported that the primary step in the abnormal CO₂ adsorption in IRMOF-1 (model A) is due to synergic and significant contributions from all the three models (A,B and C). Due to the inherent ability of the organic ligand to interaction with CO₂ and the ability to receive functional groups, the reinforcement of H₂BDC linker is reasonable and simple approach for increase the CO₂-framework interaction.

Figure 1. (a) 1 by 1 by 1 IRMOF-1 framework, and (b) the small and large pores of IRMOF-1 framework

As reported in the previous studies, calculation of the chemical properties of IRMOF-1 using a representative fragment is in good agreement with the experimental results [42-44]. In order to practical modelling of the IRMOF-1 structure via a DFT calculation, H₂BDC linker was separated from the large size of IRMOF-1 cell to reduce the calculation time and applied the modification by functionalizing various groups. Accordingly, in this paper, we considered the adsorption behavior of CO_2 molecule on the surface of pristine unit cell of IRMOF-1 and unit cell of the five linker (H2BDC-X (X=NH2, OH, COOH, Br, Cl). Geometry optimization, density of states (DOS), and energy analysis were performed to investigate the adsorption phenomenon using Gaussian 09 program package [45] with DFT at B3LYP/6-31G (d,p) functional/basis set. The temperature and pressure for all calculations were 298.15 K and 1.00 atm, respectively. The adsorption energy of X on H₂BDC is calculated by:

$$E_{ad} = E_{X-H_2BDC} - (E_{H_2BDC} + E_X)$$
(1)

where $E_{X-(H_2BDC)}$ is the total electronic energy of H_2BDC interacting with the X and E_{H_2BDC} is total energy of an pristine H_2BDC , and E_X is the total electronic energy of an pristine X. The interaction energy of CO₂ with pristine H_2BDC and H_2BDC-X is calculated by:

$$E_{ads(H_2BDC)} = E_{CO_2 - H_2BDC} - (E_{H_2BDC} + E_{CO_2})$$
(2)

$$E_{ads(Y)} = E_{CO_2-Y} - (E_Y + E_{CO_2}), Y = X - H_2BDC$$
(3)

where, $E_{ads(H_2BDC)}$ and $E_{ads(X-H_2BDC)}$ correspond to interaction energy of CO₂ with H₂BDC and X-H₂BDC, $E_{CO_2-H_2BDC}$ and $E_{CO_2-(X-H_2BDC)}$ are total electronic energies of H₂BDC and X-H₂BDC interacting with the CO₂, and E_{CO_2} is the total energy of an isolated CO₂.

All the mentioned energies of the equations related to equivalently relaxed minimum energy structures. Also chemical potential (μ), hardness (η), softness (S) and electrophilicity (ω) [46] are calculated by:

$$\mu = -\frac{(E_{\text{HOMO}} + E_{\text{LUMO}})}{2} \tag{4}$$

$$\mathfrak{g} = \frac{(\mathsf{E}_{\mathsf{LUMO}})}{2} - \mathsf{E}_{\mathsf{HOMO}} \tag{5}$$

$$S = \frac{\eta}{2} \tag{6}$$

$$\omega = \frac{\mu^2}{2\eta} \tag{7}$$

where, E_{HOMO} and E_{LUMO} are the energies of HOMO and LUMO, respectively. The charge transferring between CO₂ and the surface of both H₂BDC and X-H₂BDC is calculated by Mulliken charge analysis [47].

3. RESULTS AND DISCUSSION

3.1. Optimized Structure Geometries of isolated pristine H₂BDC, X-H₂BDC and their interaction with CO_2 was optimized at B3LYP functional at 6-31G(d,p) basis set to allow them to be relaxed. Figure 2 shows that the optimized unit cell of the five linker design. There are two possible configurations for CO_2 (O end and C end) to be optimized.

The interaction of CO₂ molecules with H₂BDC and X-H₂BDC through different routes has been studied using the aforementioned way and let them to be fully relaxed. In this manuscript we discuss the strongest adsorption site and use the more stable configurations to further studying (Figure 3). The values of adsorption energy as well as some important parameters for all relaxed systems are listed in Table 1. The geometric parameters of H₂BDC agree well with the already reported data [48]. According to obtained results, can conclude that the highest and lowest adsorption attribute to the COOH-H₂BDC and Br-H₂BDC respectively. According to Figure 3, polar functional groups such as COOH, NH₂ and OH introduce new specific CO₂ adsorption sites at the H₂BDC surface. Given that, after adsorption of CO₂ on pristine H₂BDC and X-H₂BDC (X: COOH, NH₂, OH), the location of CO₂ was approximately similar for each of the three adsorbent.

In other word, these functional groups preserve the accessibility of the adsorption sites existing in the pristine H_2BDC . This has a beneficial impact on CO_2 uptake. By contrast, the Br and Cl functional groups did not enhance the number of adsorption sites, and partially hindered access to pristine H_2BDC adsorption sites (Figure 3e and f). Accordingly, because CO_2 adsorption in two locations

of adsorption (pristine H_2BDC and polar functional groups), we distinguish between polar functional groups (COOH, NH_2 and OH) and non-polar functional groups (Br and Cl) for future investigation.

Zero-coverage CO₂ enthalpies of adsorptions (E_{ads}) are lower (more negative) in X-H₂BDC (X= COOH, NH₂ and OH), compared to the pristine H₂BDC indicating stronger CO₂-framework interactions in the polar functionalized materials (quite the contrary of Br-H₂BDC and Cl-H₂BDC) (Table 1).

Figure 2. (a) Pristine H₂BDC and (b-f) optimized-modified X-H₂BDC ligand (X=-NH₂, -OH, -COOH, -Br, and -Cl)

Figure 3. (a) Relaxed configuration of CO₂-H₂BDC and (bf) CO₂-X-H₂BDC

System	de ^a (Å)	Q ^O Mulliken (e)	Q ^C _{Mulliken} (e)	E _{номо} (eV)	E _{FL} (eV)	E _{LUMO} (eV)	Eg(eV)	μ _D (Debey)	Total Energy (a.u.)	E _{ads} (kJ/mol)
CO ₂	-	-0.720 ^b	0.719 ^b	-10.07	-4.63	0.81	10.88	0.0000	-188.5809	-
Pristine H ₂ BDC	-	-	-	-7.38	-4.75	-2.12	5.26	0.0012	-609.4108	-
NH ₂ -H ₂ BDC	1.36	-	-	-5.80	-3.84	-1.88	3.92	2.0489	-664.7767	-
OH-H ₂ BDC	1.35	-	-	-6.61	-4.34	-2.06	4.56	1.7253	-684.6239	-
COOH-H ₂ BDC	1.50	-	-	-7.41	-4.81	-2.21	5.20	1.1217	-797.9722	-
Br-H ₂ BDC	1.90	-	-	-7.00	-4.67	-2.35	4.65	1.1825	-3180.5034	-
Cl-H ₂ BDC	1.75	-	-	-7.19	-4.77	-2.36	4.83	1.3860	-1068.9933	-
CO ₂ -H ₂ BDC	2.57	-0.742	0.742	-7.41	-4.79	-2.18	5.23	0.2563	-797.9963	-12.0750
CO ₂ -NH ₂ -H ₂ BDC	2.54	-0.749	0.746	-5.68	-3.86	-1.92	3.89	1.8734	-853.3625	-12.8625
CO ₂ -OH-H ₂ BDC	2.17	-0.732	0.750	-6.63	-4.32	-2.01	4.62	1.8087	-873.2096	-12.6000
CO ₂ -COOH-H ₂ BDC	2.01	-0.750	0.759	-7.43	-4.82	-2.22	5.21	0.9115	-986.5616	-22.3125
CO ₂ -Br-H ₂ BDC	3.38	-0.730	0.733	-7.06	-4.71	-2.36	4.70	1.2562	-3369.0882	-10.2375
CO ₂ -Cl-H ₂ BDC	3.46	-0.725	0.734	-7.22	-4.77	-2.33	4.89	1.3746	-1257.5765	-6.0375

TABLE 1. Calculated parameters for all systems

^aThe distance of X to H₂BDC (for X adsorption) and the distance of CO₂ to X (for CO₂ adsorption).

^bMulliken charge for free optimized CO₂

The strong local interactions of CO_2 with the polar functional groups include the CO_2 quadrupole-lone pair polar interactions with the NH₂, OH and COOH groups, where a strong electrostatic potential stabilizes the CO_2 quadrupole at the adsorption site. The basic amino groups (NH₂) have a high affinity toward acidic CO_2 , mainly through the interaction with the lone electron pair on nitrogen. Also, hydrogen bond-like interactions between O (CO₂) and acidic hydrogen in the COOH and OH groups are important, are responsible for a strong polarization of the CO_2 in the main adsorption sites. Also the long distance for Br-H₂BDC and Cl-H₂BDC shows the interaction is very weak and the adsorption mostly happened because of the van der Waals interaction between CO_2 and X-H₂BDC (X: Br and Cl).

3. 2. Mulliken Charge Analysis b Since CO_2 is known as a Lewis acid which tends to gain electrons in reactions, the CO_2 adsorption change the electronic properties of H_2BDC and X- H_2BDC via charge transfering. Because of positive carbon center and negative oxygen ends of the CO_2 molecule, an electron donation from C atom and electron back-donation from O atoms, occurs (donation/back-donation mechanism). The Mulliken electron charges distribution of C and O atom before and after interaction with the H_2BDC and X- H_2BDC depicted in Table 1. The obtained results showed that the interaction of CO_2 with H_2BDC and X- H_2BDC is due to the electrons transferring from C and O atom to H_2BDC and X- H_2BDC .

3. 3. Orbital Analysis To understand the electronic properties of CO₂ during adsorption, the density of states (DOS) as the electron density of HOMO-LUMO was calculated for pristine H2BDC and also X-H2BDC as well as their complex forms with CO₂ molecule and the data are listed in Table 1. Quantum mechanically, the interaction between two reactants takes place for the reason that of interaction of frontier molecular orbitals [49]. HOMO has the aptitude to contribute electrons, while LUMO has the aptitude detract electron. However, if a molecule has high HOMO energy, then it will be more unstable and vice versa because of more reactivity [50, 51]. After functionalization of H₂BDC and adsorption of CO₂ molecule on the surface of pristine H₂BDC and X- H₂BDC, some changes occur in its HOMO and LUMO energies. According to results, among various functional groups the COOH-H2BDC has high HOMO energy and more unstable structure, because of more reactivity. The HOMO-LUMO energy gap (Eg) is one of the key parameter to recognize the stability as well as conductivity of resulted adsorptions. Higher E_g (larger distance between the HOMO and LUMO) which results more stability and less conductivity of resulted complex. The band gaps of the pristine H₂BDC and X-

H₂BDC as well as complex form of different H₂BDC(-X)-CO₂ are calculated and are listed in Table 1. According to Table 1, upon functionalization of H₂BDC with X (X: NH₂, OH, COOH, Br and Cl), the energy gap decreased which corresponds to higher conductivity of X-H₂BDC. The calculated band gaps showed not much different between the band gaps of the pristine H₂BDC and X-H₂BDC (X: NH₂, OH, COOH, Br and Cl) after and before of CO₂ adsorption. For X-H₂BDC, the calculations revealed the highest E_g value (5.21 eV) for interacted COOH-H₂BDC with CO₂, which again correlates well with the high adsorption energies of CO₂ in COOH-H₂BDC compared to X-H₂BDC.

Dipole moment (μ D) is another key factor in orbital analysis. The amounts of the size and structures of the dipole moment (μ D) for CO₂ on the H₂BDC and X-H₂BDC molecules are listed in Table 1. The dipole moment relates to a particular property of a molecule that considers data in the case electronic and geometrical properties [52]. The dipole moment for CO₂ is 0.0 Debye and related to their intrinsic symmetrical shapes. Also small quantities of μ D value for pristine H₂BDC represent a relatively asymmetric structure. From comparing the dipole moments of the H₂BDC(-X) with ones after the CO₂ is adsorbed, it is clear that, the values of dipole moments do not change significantly which is a confirmation for physical sorption.

To understand the electronic properties of functional groups (X: OH, NH₂, COOH, Br and Cl) during adsorption, the density of states (DOS) was also calculated for isolated and complex (with CO₂) form of pristine H₂BDC as well as X-H₂BDC near the Fermi level (E_{FL}). After comparing the DOS of isolated H₂BDC and X-H₂BDC to that of their interacted forms, it was found that some change evidence of hybridization (shifting HOMO-LUMO) in the case of X-H₂BDC systems as listed in Table 1.

4. CONCLUTIONS

As a conclution, the introduction of additional specific adsorption sites for CO₂, via polar functional groups such as -OH, -NH₂ and -COOH, enhances the affinity for CO₂ resulting in more negative molar enthalpies of adsorption. The principal intermolecular forces involved are hydrogen bonding and polar lone pair CO₂ quadrupole interactions. CO₂ can also become appreciably polarized in the vicinity of these groups. By contrast, the -Br and -Cl groups did not enhance the number of adsorption sites, and partially hindered access to IRMOF-1 framework adsorption sites. Our research showed that -COOH and -OH containing materials are worthy of further investigation, with COOH-IRMOF-1

and OH-IRMOF-1 outperforming the other materials in CO_2 adsorption.

5. REFERENCES

- Albo, J., Luis, P. and Irabien, A., "Carbon dioxide capture from flue gases using a cross-flow membrane contactor and the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate", *Industrial & Engineering Chemistry Research*, Vol. 49, No. 21, (2010), 11045-11051.
- Romano, M.C., Chiesa, P. and Lozza, G., "Pre-combustion CO₂ capture from natural gas power plants, with ATR and MDEA processes", *International Journal of Greenhouse Gas Control*, Vol. 4, No. 5, (2010), 785-797.
- Rao, A.B. and Rubin, E.S., "A technical, economic, and environmental assessment of amine-based CO₂ capture technology for power plant greenhouse gas control", *Environmental science & technology*, Vol. 36, No. 20, (2002), 4467-4475.
- Hedenus, F., Karlsson, S., Azar, C. and Sprei, F., "Cost-effective energy carriers for transport-the role of the energy supply system in a carbon-constrained world", *International Journal of Hydrogen Energy*, Vol. 35, No. 10, (2010), 4638-4651.
- Littel, R., Versteeg, G. and Van Swaaij, W.P.M., "Physical absorption into non-aqueous solutions in a stirred cell reactor", *Chemical Engineering Science*, Vol. 46, No. 12, (1991), 3308-3313.
- Bishnoi, S. and Rochelle, G.T., "Absorption of carbon dioxide into aqueous piperazine: Reaction kinetics, mass transfer and solubility", *Chemical Engineering Science*, Vol. 55, No. 22, (2000), 5531-5543.
- Rochelle, G.T., "Amine scrubbing for CO₂ capture", *Science*, Vol. 325, No. 5948, (2009), 1652-1654.
- Park, S.-W., Choi, B.-S. and Lee, J.-W., "Chemical absorption of carbon dioxide with triethanolamine in non-aqueous solutions", *Korean Journal of Chemical Engineering*, Vol. 23, No. 1, (2006), 138-143.
- Park, S.W., Choi, B.S. and Lee, J.W., "Chemical absorption of carbon dioxide into aqueous colloidal silica solution with diethanolamine", *Separation Science and Technology*, Vol. 41, No. 14, (2006), 3265-3278.
- Harlick, P.J. and Tezel, F.H., "An experimental adsorbent screening study for CO₂ removal from N₂", *Microporous and Mesoporous Materials*, Vol. 76, No. 1-3, (2004), 71-79.
- Arjmandi, M. and Pakizeh, M., "An experimental study of h2 and CO₂ adsorption behavior of C-MOF-5 and T-MOF-5: A complementary study", *Brazilian Journal of Chemical Engineering*, Vol. 33, No. 1, (2016), 225-233.
- Chaffee, A.L., Knowles, G.P., Liang, Z., Zhang, J., Xiao, P. and Webley, P.A., "CO₂ capture by adsorption: Materials and process development", *International Journal of Greenhouse Gas Control*, Vol. 1, No. 1, (2007), 11-18.
- Belmabkhout, Y. and Sayari, A., "Effect of pore expansion and amine functionalization of mesoporous silica on CO₂ adsorption over a wide range of conditions", *Adsorption*, Vol. 15, No. 3, (2009), 318-328.
- Eskandari, A., Jahangiri, M. and Anbia, M., "Effect of particle size of nax zeoilite on adsorption of CO₂/CH₄", *International Journal of Engineering, Transactions A: Basics*, Vol. 29 No. 1, (2016), 1-7.
- 15. Anbia, M. and Salehi, S., "Investigation of carbon dioxide adsorption on amino-functionalized mesoporous silica",

International Journal of Engineering, Transactions C: Aspects, Vol. 28, No. 6, (2015), 848-854.

- Powell, C.E. and Qiao, G.G., "Polymeric CO₂/N₂ gas separation membranes for the capture of carbon dioxide from power plant flue gases", *Journal of Membrane Science*, Vol. 279, No. 1-2, (2006), 1-49.
- Arjmandi, M. and Pakizeh, M., "Mixed matrix membranes incorporated with cubic-MOF-5 for improved polyetherimide gas separation membranes: Theory and experiment", *Journal of industrial and engineering chemistry*, Vol. 20, No. 5, (2014), 3857-3868.
- Arjmandi, M., Pakizeh, M. and Pirouzram, O., "The role of tetragonal-metal-organic framework-5 loadings with extra zno molecule on the gas separation performance of mixed matrix membrane", *Korean Journal of Chemical Engineering*, Vol. 32, No. 6, (2015), 1178-1187.
- Li, S., Martinek, J.G., Falconer, J.L., Noble, R.D. and Gardner, T.Q., "High-pressure CO₂/CH₄ separation using sapo-34 membranes", *Industrial & Engineering Chemistry Research*, Vol. 44, No. 9, (2005), 3220-3228.
- Shimekit, B., Mukhtar, H., Ahmad, F. and Maitra, S., "Ceramic membranes for the separation of carbon dioxide—a review", *Transactions of the Indian Ceramic Society*, Vol. 68, No. 3, (2009), 115-138.
- D'Alessandro, D.M., Smit, B. and Long, J.R., "Carbon dioxide capture: Prospects for new materials", *Angewandte Chemie International Edition*, Vol. 49, No. 35, (2010), 6058-6082.
- Wang, B., Côté, A.P., Furukawa, H., O'Keeffe, M. and Yaghi, O.M., "Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs", *Nature*, Vol. 453, No. 7192, (2008), 207.
- Caskey, S.R., Wong-Foy, A.G. and Matzger, A.J., "Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores", *Journal of the American Chemical Society*, Vol. 130, No. 33, (2008), 10870-10871.
- Llewellyn, P.L., Bourrelly, S., Serre, C., Vimont, A., Daturi, M., Hamon, L., De Weireld, G., Chang, J.-S., Hong, D.-Y. and Kyu Hwang, Y., "High uptakes of CO₂ and CH₄ in mesoporous metal organic frameworks mil-100 and mil-101", *Langmuir*, Vol. 24, No. 14, (2008), 7245-7250.
- Furukawa, H., Ko, N., Go, Y.B., Aratani, N., Choi, S.B., Choi, E., Yazaydin, A.Ö., Snurr, R.Q., O'Keeffe, M. and Kim, J., "Ultrahigh porosity in metal-organic frameworks", *Science*, Vol. 329, No. 5990, (2010), 424-428.
- Rowsell, J.L., Spencer, E.C., Eckert, J., Howard, J.A. and Yaghi, O.M., "Gas adsorption sites in a large-pore metal-organic framework", *Science*, Vol. 309, No. 5739, (2005), 1350-1354.
- Llabrés i Xamena, F.X., Corma, A. and Garcia, H., "Applications for metal– organic frameworks (MOFs) as quantum dot semiconductors", *The Journal of Physical Chemistry C*, Vol. 111, No. 1, (2007), 80-85.
- Li, H., Eddaoudi, M., O'Keeffe, M. and Yaghi, O.M., "Design and synthesis of an exceptionally stable and highly porous metalorganic framework", *Nature*, Vol. 402, No. 6759, (1999), 276.
- Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'keeffe, M. and Yaghi, O.M., "Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage", *Science*, Vol. 295, No. 5554, (2002), 469-472.
- Sarmiento-Perez, R.A., Rodriguez-Albelo, L.M., Gomez, A., Autie-Perez, M., Lewis, D.W. and Ruiz-Salvador, A.R., "Surprising role of the bdc organic ligand in the adsorption of CO₂ by MOF-5", *Microporous and Mesoporous Materials*, Vol. 163, (2012), 186-191.

1477

- Jhon, Y.H., Cho, M., Jeon, H.R., Park, I., Chang, R., Rowsell, J.L. and Kim, J., "Simulations of methane adsorption and diffusion within alkoxy-functionalized IRMOFs exhibiting severely disordered crystal structures", *The Journal of Physical Chemistry C*, Vol. 111, No. 44, (2007), 16618-16625.
- Sagara, T., Klassen, J., Ortony, J. and Ganz, E., "Binding energies of hydrogen molecules to isoreticular metal-organic framework materials", *The Journal of Chemical Physics*, Vol. 123, No. 1, (2005), 014701.
- Karra, J.R. and Walton, K.S., "Molecular simulations and experimental studies of CO₂, CO, and N₂ adsorption in metal– organic frameworks", *The Journal of Physical Chemistry C*, Vol. 114, No. 37, (2010), 15735-15740.
- Peng, S., Cho, K., Qi, P. and Dai, H., "Ab initio study of cnt no2 gas sensor", *Chemical Physics Letters*, Vol. 387, No. 4-6, (2004), 271-276.
- Wang, G.-C., Jiang, L., Morikawa, Y., Nakamura, J., Cai, Z.-S., Pan, Y.-M. and Zhao, X.-Z., "Cluster and periodic dft calculations of adsorption and activation of CO₂ on the Cu (hkl) surfaces", *Surface Science*, Vol. 570, No. 3, (2004), 205-217.
- Cabrera-Sanfelix, P., "Adsorption and reactivity of CO₂ on defective graphene sheets", *The Journal of Physical Chemistry A*, Vol. 113, No. 2, (2008), 493-498.
- Walton, K.S., Millward, A.R., Dubbeldam, D., Frost, H., Low, J.J., Yaghi, O.M. and Snurr, R.Q., "Understanding inflections and steps in carbon dioxide adsorption isotherms in metal-organic frameworks", *Journal of the American Chemical Society*, Vol. 130, No. 2, (2008), 406-407.
- Dubbeldam, D., Frost, H., Walton, K.S. and Snurr, R.Q., "Molecular simulation of adsorption sites of light gases in the metal-organic framework IRMOF-1", *Fluid Phase Equilibria*, Vol. 261, No. 1-2, (2007), 152-161.
- Martín-Calvo, A., García-Pérez, E., Castillo, J.M. and Calero, S., "Molecular simulations for adsorption and separation of natural gas in IRMOF-1 and Cu-BTC metal-organic frameworks", *Physical Chemistry Chemical Physics*, Vol. 10, No. 47, (2008), 7085-7091.
- De Toni, M., Pullumbi, P., Coudert, F.-X. and Fuchs, A.H., "Understanding the effect of confinement on the liquid– gas transition: A study of adsorption isotherms in a family of metal– organic frameworks", *The Journal of Physical Chemistry C*, Vol. 114, No. 49, (2010), 21631-21637.

- Fairen-Jimenez, D., Seaton, N.A. and Düren, T., "Unusual adsorption behavior on metal- organic frameworks", *Langmuir*, Vol. 26, No. 18, (2010), 14694-14699.
- Hu, Y.H. and Zhang, L., "Amorphization of metal-organic framework MOF-5 at unusually low applied pressure", *Physical Review B*, Vol. 81, No. 17, (2010), 174103.
- Yang, L.-M., Vajeeston, P., Ravindran, P., Fjellvåg, H. and Tilset, M., "Theoretical investigations on the chemical bonding, electronic structure, and optical properties of the metal– organic framework mof-5", *Inorganic Chemistry*, Vol. 49, No. 22, (2010), 10283-10290.
- Petrova, T., Michalkova, A. and Leszczynski, J., "Adsorption of RDX and TATP on IRMOF-1: An ab initio study", *Structural Chemistry*, Vol. 21, No. 2, (2010), 391-404.
- Foresman, J., Ortiz, J., Cioslowski, J. and Fox, D., "Gaussian 09, revision d. 01; gaussian, inc", *Wallingford, CT*, (2009).
- Koopmans, T., "Ordering of wave functions and eigenenergies to the individual electrons of an atom", *Physica*, Vol. 1, (1933), 104-113.
- Mulliken, R.S., "Electronic population analysis on lcao-mo molecular wave functions. I", *The Journal of Chemical Physics*, Vol. 23, No. 10, (1955), 1833-1840.
- Lotfi, R. and Saboohi, Y., "Effect of metal doping, boron substitution and functional groups on hydrogen adsorption of MOF-5: A dft-d study", *Computational and Theoretical Chemistry*, Vol. 1044, (2014), 36-43.
- Samadizadeh, M., Rastegar, S.F. and Peyghan, A.A., "F-, cl-, li+ and na+ adsorption on aln nanotube surface: A dft study", *Physica E: Low-dimensional Systems and Nanostructures*, Vol. 69, (2015), 75-80.
- Yan, M.-K., Zheng, C., Yin, J., An, Z.-F., Chen, R.-F., Feng, X.-M., Song, J., Fan, Q.-L. and Huang, W., "Theoretical study of organic molecules containing n or s atoms as receptors for Hg (ii) fluorescent sensors", *Synthetic Metals*, Vol. 162, No. 7-8, (2012), 641-649.
- Hudson, G.A., Cheng, L., Yu, J., Yan, Y., Dyer, D.J., McCarroll, M.E. and Wang, L., "Computational studies on response and binding selectivity of fluorescence sensors", *The Journal of Physical Chemistry B*, Vol. 114, No. 2, (2009), 870-876.
- Soltani, A., Taghartapeh, M.R., Mighani, H., Pahlevani, A.A. and Mashkoor, R., "A first-principles study of the scn- chemisorption on the surface of AlN, AlP, and BP nanotubes", *Applied Surface Science*, Vol. 259, (2012), 637-642.

Interpreting the CO₂ Adsorption on Functionalized Organic Group of IRMOF-1: A B3LYP Density Functional Theory based Study

M. Arjmandi^a, M. Pourafshari Chenar^a, M. Peyravi^b, M. Jahanshahi^b, A. Arjmandi^c, A. Shokuhi Rad^d

^a Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

^b Membrane Research Group, Nanotechnology Institute, Babol Noshirvani University of Technology, Shariati Ave.,Babol, Iran

· Department of Chemical Engineering, Mazandaran University of Science and Technology, Mazandaran, Iran

^d Department of chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran

PAPER INFO

Paper history: Received 29 May 2017 Received in revised form 23 April 2018 Accepted 26 April 2018

Keywords: IRMOF-1 CO₂ Capture Functionalization Density Functional Theory تکنیک تئوری نظریه چگال به منظور مطالعه جذب CO2 بر روی IRMOF-1های عامل دار شده به وسیله Br. COOH. Br و ID مورد استفاده قرار گرفت. برای بررسی پدیده جذب، بهینه سازی هندسه، چگالی حالات و آنالیز انرژی opt. OH مورد استفاده قرار گرفت. برای H2BDC و X-H2BDC او NH2 مولیه و همچنین فرمهای کمپلکس آن با مولکول Acd مورد استفاده قرار گرفت. خواص جذبی برای H2BDC و NH2BDC او Mulliken محاسبه شده و مورد تجزیه و OD بر اساس انرژی های اتصال، ساختارهای باند، چگالی حالات کلی و بار Mulliken محاسبه شده و مورد تجزیه و OD بر اساس انرژی های اتصال، ساختارهای باند، چگالی حالات کلی و بار Mullike محاسبه شده و مورد تجزیه و OD بر اساس انرژی های اتصال، ساختارهای باند، چگالی حالات کلی و بار H2BDC محاسبه شده و مورد تجزیه و OD بر اساس انرژی های است. یافته انشان می دهد که انرژی جذبی در BDC H2BDC و Br-H2BDC و BR-H2BDC و DD با 2004. و DD با 2005 OH بیشتر است. Mullike ان می دهد که انرژی های جذبی در BCOH-H2BDC و H2BDC محینی تا حدودی در OH -H2BDC و H2BDC H2BDC و Active COH-H2BDC و DD و H2BDC doi: 10.5829/ije.2018.31.09c.01

چکيده