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A B S T R A C T  

 

In this paper, size dependent nano-beam type peizoelectric energy hardvester is investigated. For this 

goal, first nonlinear formulation of isotropic piezoelectric Euler-Bernoulli nano-beam is developed 

based on the size-dependent piezoelectricity theory then special nano-beam type piezoelectric energy 
hardvester is probed for different parameters. Basic nonlinear equations of piezoelectric nano-beam are 

derived using principle of minimum potential energy and variational method. To evaluate the 
formulation derived, static deformation and free vibration of the hinged-hinged piezoelectric nano-

beam is investigated in the special case. The results of the derived formulation are investigated under 

different parameters, and particularly, the ability and performance of the beam type piezoelectric low 
power energy harvesting was evaluated in nanoscale. 
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NOMENCLATURE Greek Symbols 

ijklmng  Strain gradient elasticity constants   Density 

kije  Piezoelectric constants   Nonlinear natural frequency 

iD  Electric displacement ij  Stress tensor 

ijklc  Elastic constants ijk  Higher order stress tensor 

ija  Dielectric constants jkl  Strain gradient tensor 

jklif  Electric field-strain gradient coupling coefficient tensor ij  Strain tensor 

iE  Electric field   Electric potential 

 
 

 
 

1. INTRODUCTION1 
 
There are a lot of energy in the environment that are 

dissipated most of time without any applications such as 

wind energy, solar energy, walking energy, sound and 

vibration energy, etc.  The energy harvesting technology 

can use the wasted energies from the environment and 

convert them to electrical energy. Energy harvesting 
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from the environment is the focus of researchers 

recently and many studies have been conducted to 

improve them [1-4].  

Karami and Inman [5] approximated 

electromechanical coupling as equivalent changes in 

damping and frequency to simplify the analysis of 

energy harvesting systems. They used hybrid 

piezoelectric and electromagnetic energy harvester 

system in linear, softly nonlinear and stable cases. Their 

research showed during uses an optimal resistant load, 
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the amplitude of mechanical vibrations is the smallest. 

Mohammadpour et al. [6] focused on nonlinear energy 

harvesting for electro-mechanical system. They used 

semi analytical method for analysis the behavior of a 

multi model nonlinear electromechanical system and 

used arc length method for achieve frequency response 

of the system. 

Nano structures have higher  specific surface than 

other materials therefore classic theory unable explain 

nanomaterials behavior. However, nonclassic theory 

based on continum mechanics utiliezed by researchers 

in the literature to model the large ratio of surface to 

bulk in the nanoscale materials. One of these non classic 

theory is modified couple stress theory (MCST). Many 

researchers used of this theory for modeling the nano 

and micro structures [7, 8]. 

Simsek [9] used the modified couple stress theory 

for Euler Bernouli beam to obtain dynamic response. 

results compared with previously studies and  good 

agreement observed. Bakhshi Khaniki and Hosseini [10] 

by modified couple stress theory modeled the 

microbeams and solved for different types of boundary 

conditions analytically and the effects of nonuniformity 

and microscale effects were investigated. 

Researchers have been studied vibration, deflection 

and buckling for different type of beam with 

nonclassical theories [11-15]. For example, Akgoz and 

Civalek [16] studied vibration response for Euler- 

Bernouli microbeam with modified couple stress theory. 

They used Rayleigh-Ritz solution method to solve free 

vibration. They results exibited that natural frequency 

observed from classic theory is smaller than MCST and 

concluded microbeams modeled on MCST become 

stiffer than classic theory.  

Mehralian et al. [17] used higher-order theory to 

functionally graded piezoelectric cylindrical nanoshell 
and investigated buckling behavior.  

Nonlinear static and dynamic response of laminated 

plates are also investigated by Baltacıoglu et al. [18]. 

Today’s nanoscale piezoelectric materials used in 

nano electromechanical systems, thus understanding the 

behavior of these structures is important [19]. Tadi Beni 

[20] developed size-dependent model for a piezoelectric 

nano-beam. He used the piezoelectric couple stress 

theory proposed by Hadjesfandiari as well as 

Hamilton’s principle to obtained the governing 

equations and boundary conditions. Also Tadi Beni et 

al. [21] investigate size effect in micro and nano 

structures with higher order continuum theory. On 

another article, Tadi Beni [22] used size dependent 

piezoelectricity theory and developed nonlinear 

equations of piezoelectric nano-beam. 

Shah-Mohammadi-Azar et al. [23] modeled 

sandwiched piezoelectric nano-beam based on the 

nonlocal elasticity theory. Wang and Wang [24] 

purposed model for nano size energy harvester and 

investigated flexoelectric effect for voltage and power 

output. 

Liang et al. [25] studied buckling and vibration of 

piezoelectric nanowires. Continuum model for Euler-

Bernoulli beam considered and external voltage applied 

for buckling analysis. They concluded that resonant 

frequency dependent on external applied voltage on the 

beam thickness. Shams Nateri [26] analyzed 

mathematical modeling to consider the effect of 

material properties on the sensitivity of the micro 

electromechanical systems.  Sensitivity of the sensor has 

been improved from -201.3 dB to -192.6 dB by 

choosing the proper material with higher piezoelectric 

coefficients.  

According to previous work [27-29], one concluded 

that the nonlinear analyzed for nano-beam with 

nonclassic theory has not been done yet. Therefore, we 

choose one of the nonclassic theories, specially 

modified couple stress theory, and investigate size effect 

on nonlinear property of the nano-beam. 

In this paper, Euler-Bernouli nano-beam is 

considered as isotropic and piezoelectric.  Nonlinear 

formulation is developed based on the size-dependent 

piezoelectricity theory. For deriving the governing 

equation, principle of minimum potential energy and 

variational method is used. static deformation and 

vibration of the hinged-hinged piezoelectric nano-beam 

is investigated and numerical results for Polyvinylidene 

flouride)PVDF( nano-beam obtaind. 

 

 

2. PRIELIMINARIES 
 

In this section, nonlinear equations with using of size 

dependent piezoelectricity model and modified couple 

stress theory for isotropic piezoelectric nano-beam is 

derived. Also, Euler-Bernoulli beam model is used that 

is acceptable model of beam in the literature. 

A nano-beam of length L, width b and height h is 

considered in Figure (1). The longitudinal axis is 

denoted by
1x  and transverse axis by

3x . Poling 

direction is along 
3x -axis.  

Displacement field for Euler-Bernoulli beam model 

is [22]: 

 

 

 
Figure 1. Schematic of piezoelectric nano-beam 
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where
1u  and

3u are the displacement in longitudinal and 

transverse directions and 
0u  is the displacement of 

midplane of nano beam. The constitutive equations for 

piezoelectric material are proposed as follows [30, 31]: 

        (2) 

,ijk lijk l ijklmn lmnf E g     (3) 

.i ij j ijk jk jkli jklD a E e f     (4) 

where 
iD ,

ij ,
ijk ,

ijklc ,
kije  and 

ija  represent the 

components of electric displacement, stress tensor, 

higher order stress tensor, elastic coefficients, 

piezoelectric coefficients and dielectric coefficients 

,respectively. 
ijklmng

 
is strain gradient elasticity tensor 

and 
jklif  is the electric field-strain gradient coupling 

tensor. Also, 
jkl

 
is strain gradient tensor that defined 

as: 

 

(5) 

Strain tensor
ij  and electric field 

iE  are defined as 

follows: 

, ,

1
( ),

2
ij i j j iu u       (6) 

, .i iE    (7) 

where,   is electric potential. In modified couple stress 

theory that used in this study, by setting strain gradient 

elasticity tensor 
ijklmng , and the electric field-strain 

gradient coupling tensor 
jklif

 
(the higher-order electro-

mechanical coupling tensor) to zero, the formulation of 

classical continuum theory can be obtained. 

 

 

3. GOVERNING EQUATIONS AND RELATED 
BOUNDARY CONDITIONS 
 
Here, principle of minimum potential energy is used to 

obtain the equilibriums equations and related boundary 

conditions that defined as follows: 

0.U W    (8) 

where W  is the variation of external load works on 

nano-beam and U  is the variation of strain energy. 

The modified couple stress strain energy density for 

piezoelectric nano-beams defined as [32]: 

1
[ ].

2
ij ij ijk ijk k k

V
U D E       (9) 

By substituting Equation (1) into Equations (5)-(7), the 

nonzero components of the strain and strain gradient 

tensors are as follow: 

2
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1
( ) ,

2

u w w
x

x x x


  
  
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 (11) 
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x



 


 (12) 

Now, by using non-zero components calculated in 

Equations (10)-(12) and substituting them into 

Equations (2)-(4), the resulted equations are present as 

below: 

11 1111 11 311 3,c e E    (13) 

11 111111 11 13 113113 13 3113 3, ,g g f E       (14) 

1 11 1 3 33 3 311 11 3113 13, .D a E D a E e f      (15) 

The work of external loads is expressed as: 

1 1

0

( ) .

L

W q x wdx    (16) 

According to Equations (13)-(15) the variation of strain 

energy is as follows:  
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(17) 

In above equation A is cross section of beam. By 

substituting Equations (13)-(15) into Equation (17) and 

used variation method, the longitudinal, transverse and 

elecrical governing equations are developed as follows: 

4 2
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(18) 

,ij ijkl kl kij kc e E  

, , ,

1
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The mechanical and electrical boundary conditions that 

used for hinged-hinged nano-beam are as follows: 

1
0 0,L

0,
x

u


                     (21) 

1

2

0

2

1 0,

( ) 0,

x L

u

x






                     (22) 

1 0,
0,

x L
w


                              (23) 

1

/24

111111 3113 34

1 3/2

2

1111 113113 2

1 0,

( )

( )( ) 0,

h

h

x L

w
Ig bf dx

x x

w
Ic Ag

x







  
 

 


  

 


 

(24) 

1

2

2

1 0,

( ) 0,

x L

w

x






                  (25) 

3

33 3 311 11 3113 13 1

0 /2, /2

( )) 0,

L

x h h

a E e f dx 

 

    
 (26) 

1 0,
0.

x L



  (27) 

In above equations, I express area moment of inertia 

about y-axis. Equations (18)-(20) together with 

boundary conditions in Equations (21)-(27) are 

nonlinear equations for hinged-hinged nano-beams with 

modified couple stress theory. It should be noted that, 

on the assumption of isotropic nanobeam 
311e is zero. 

 

 

4. STATIC BENDING OF PIEZOELECTRIC NANO-
BEAM 
 
The equilibrium equations can be transformed for the 

dimensionless case by assuming dimensionless 

parameters as follows: 

3 01
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Equlibirum equations in the dimensionless case defined 

as following: 

 (28) 
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The static deflection of nano beam in the above 

equations can be obtained by using the Galerkin 

method. It should be noted that for the Galerkin method, 

the assumed displacements in the longitudinal and 

transverse directions must be satisfied the boundary 

condituions in Equations (21)-(25). First, Laplaces 

Equation (30) solved by separation method and using 

boundary condition (26), the electric potential can be 

expressed as follows:  

1 3 3
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(31) 

Also, beam deflection is assumed in the way that 

satisfied boundary equations in Equations (23), (25) as 

follows: 

1 1( ) sin( ).w x A x   (32) 

By utilizing the Equations (31)-(32) and using 

remainder boundary conditions in Equations (24) and 

(26), the relationship between parametere An, Bn and A is 

obtained as follows: 
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0.nB   (34) 

By substituting parameter An based on constant A from 

Equation (33) into Equations (31) and (32), The 

longitudinal and transverse displacement of the beam as 

well as electric potential is expressed as: 

0 1 1u ( ) sin( ),x C x  (35) 

1 1( ) sin( ),w x A x  (36) 

1 3
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Now, by substituting 
0 1 1( ), ( )u x w x  and 

1 3( , )x x into 

Equations (28) and (29) and using Galerkin method, the 

values of parameter A and C can be determined. 

 

 

5. NON-LINEAR VIBRATION OF THE 
PIEZOELECTRIC NANO-BEAM 
 
By rendering the nanobeam’s equations of motion 

dimensionless and using the dimensionless 

parameter 1111

4

c I
t

AL



  and dismissing the effect of 

external forces, governing equations for the nanobeam 

free vibrations are expressed as:   
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For the case of nonlinear vibration, first the beam’s 

vibration response and electric potential are considered 

as follows: 

1 1( , ) ( ) ( )w x w x r   (40) 

1 3 1 3( , , ) ( , ) ( )x x x x r     (41) 

The boundary conditions are similar to the previous 

section and all of them satisfied with assuming above 

equations. Then by substituting Equations (40), (41) 

into Equation (38) and using Galerkin method, the 

following nonlinear ordinary differential equation is 

obtained: 

3
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There are different methods for solving nonlinear 

vibrations. In this paper the He's variational  method 

used that done as follow: 
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In the above equation, T is nonlinear vibration period in 

the He's variational  method and ( )r   assumed as 

follows: 

( ) cos( )r a   (44) 

In the above equation, a and   represent nanobeam 

initial deflection and nonlinear natural frequency. By 

substituting Equation (44) into Equation (43), yeilds: 
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According to He's variational  method, for finding 

nonlinear natural frequency we must have
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Now, the nonlinear natural frequency find as follows: 

2

2 1

3

4
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Here a is taken as 3 / 3 . 

 

 

6. RESULTS AND DISCUSSION 
 
In this study, nanobeam made of PVDF film that 

dimension is (100 5 5nm nm nm  ). The properties of 

PVDF  film used are E=238.24 GPa, ρ=1.74 g/cm3 [33]. 

According to previous studies, the size effect has 

considerable affect on the nanoscale materials. 

Maximum deflection  of  PVDF nano-beam at different 

height-to-size effect parameter ratio ( /h l ) obtained for 

linear couple stress theory (LCST) and nonlinear couple 

stress theory (NLCST) and drawn in Figure 2. It should 

be noted that to derive the nano-beam responses, 

assumed here  h=5nm, L=100nm,
3113 5 /f pC m  and 

1 0.5x  . 
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Figure 2 exhibites that with deceasing the size effect 

parameter, deformation increased. In reverse, with 

increasing the size effect parameter, nano-beam 

becomes stiffer therefore deformation decreased. 

As is clear from Figure 3 the closer the size of length 

scale parameter to the constractive dimensions of the 

nanobeam such as its height, the effect of length scale 

parameter is considerable. Another point worth noting is 

that in greater dimensions of the nanobeam or greater 

values of h/l, the results are closer to each other. 

However, the purpose of Figure 3 is to show the 

importance of size effect and nonlinearity in nano-scale 

for nano-beams. The result also has displayed in Table 1 

in another view.  

 

 

 
Figure 2. Effect of material size scale parameter (l) on the  

maximum deflection 

 

 

 
Figure 3. Static deflection of piezoelectric nanobeam 

 

 

 
TABLE 1. Comparison of size effect parametere on deflection 

nano-beam. 

max 1( )w x  10l h  2l h  l h  0.4l h  

LCST 0.001937 0.03567 0.07727 0.1123 

NLCST 0.001937 0.03572 0.07852 0.1181 

Table 1 also has good consent about the considerable 

effect of length scale parameter on the deflection of 

nanobeam. 

By applying the force q(x1) on the nano-beam 

deformation occurred. The shape of deformation of the 

nano-beam drawn on Figure 3. 

Deflection shown in two modes of linear couple 

stress theory and non linear couple stress theory. As is 

clear, the response of the nano-beam deflection equation 

in the nonlinear case is generally lower than that in the 

linear case which is due to increased bending stiffness 

of the beam in the nonlinear couple stress case 

compared to the linear one. 

Figure 4 shows the changes of voltage in thickness 

direction of the nanobeam.  

It is clear that on both sides of nanobeam the 

maximum voltage occurred due to the maximum stress 

occurred in the top and bottom of nanobeam. It should 

be noted that, potential difference on two sides of the 

nanobeam is zero (closed circuit condition). 

The changes of voltage in length of the beam for 

different x3 shown in Figure 5.  

The results show that by farfroming the neutral axis or 

nearing the top or bottom of the nano-beam the stress 

incresed and  caused increasing the output voltage. 

Table 2 illustrate increases size effect parameter 

leads to decreses natural frequency in both cases (linear 

and nonlinear couple stress theory).   

In Figure 6, the nano-beam natural frequency 

variation has also been illustrated similar to Table 2 in 

another view. 

This can be inferred from Figure 6. First, as clear, 

the natural frequency in the nonlinear case is higher 

than that in the linear case. Second, the change of 

natural frequency for couple stress theory for closer the 

size of length scale parameter to the constractive 

dimensions of the nanobeam such as its height is 

considerable. 

 

 

 

 
Figure 4. Voltage  changes in the thickness of the beam 
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Figure 5. Voltage changes in the length of nano- beam 

 

 
TABLE 2. Comparison of size effect parametere on natural 
frequency of the nano-beam 

  10l h  2l h  l h  0.4l h  

LCST 81.1422 18.8793 12.7229 10.4107 

NLCST 81.8142 21.5873 16.4759 14.7631 

 

 

 
Figure 6. The changes of frequency variation with 

dimensionless length scale parameter 

 

 

7. CONCLUSION 
 
In this study, nonlinear formulation of isotropic 

piezoelectric Euler-Bernoulli nano-beam is developed 

based on the size-dependent piezoelectricity theory. 

Basic nonlinear equations of piezoelectric nano-beam 

are derived using principle of minimum potential energy 

and variation method. The effect of length scale 

parameter on the static deformation and vibration of the 

hinged-hinged piezoelectric nano-beam was 

investigated . 

The most important observations are: 

 The deformation of the nano-beam by the linear 

couple stress theory are larger than those by the 

nonlinear couple stress theory. 

 With increasing the size effect parameter, nano-beam 

becomes stiffer therefore deformation decreased. 

 Natural frequency decreased with increas of 

dimensionless length scale parameter in linear and 

nonlinear nano-beam.  

 The natural frequency of the linear case is lower than 

the nonlinear case. 

 The maximum output voltage occurred due to the 

maximum stress occurred in the top and bottom of 

nanobeam. 
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 چکیده
 

 

 

ت. برای این کننده انرژی مورد بررسی قرار گرفته اسدر این مقاله نانوتیر وابسته به اندازه پیزوالکتریک به عنوان برداشت

 ه وآمد خطی از نانوتیر اویلر برنولی ایزوتروپ بر پایه تئوری وابسته به اندازه پیزوالکتریک به دستهدف ابتدا فرمول غیر

خطی پایه با روش معادلات غیر. مورد بررسی قرار گرفته استسپس برای نوع خاصی از این نانوتیر پارامترهای مختلف 

. برای ارزیابی معادلات به دست آمده خمش استاتیکی و ارتعاش ه استگیری به دست آمدوردشکمینه انرژی پتانسیل و 

که دهد میبرای معادلات مذکور نشان نتایج ه و حالت خاصی بررسی گردید برای آزاد نانوتیر پیزوالکتریک دو سر مفصل

 دارد.در مقیاس نانو این تیر قابلیت برداشت کم انرژی را 

doi: 10.5829/ije.2018.31.09c.15 
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