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A B S T R A C T  
 

 

Characterization of properties of composites has attracted a great deal of attention towards exploring 

their applications in engineering. The purpose of this work is to study the difference of two 
computational microstructure models which are widely used for determining effective transverse 

elastic properties of unidirectional fiber reinforced composites. The first model based on the classic 

mechanics of materials permits free unloaded opposite boundaries in the unit cell; while the second one 
introduces straight-edge constraints in the unit cell to represent interactions of neighboring cells during 

deformation. The two approaches are firstly verified by the periodic circular hole problems. Then three 

microstructures are taken into consideration including the circular fibers, square fibers, and circular 
fiber clusters periodically embedded in the matrix and subsequently are solved by finite element 

analysis. A comparison of the numerical results demonstrated that the two computational models with 

and without periodic conditions can give different predictions on the effective elastic properties of 
composite for both low and high fiber volume fractions, especially for the effective Poisson’s ratio of 

composite. Applying periodic straight-edge constraints after deformation can prevent any over-

constrained conditions in the numerical model and give more stable results. 

doi: 10.5829/ije.2018.31.09c.04 

 

 
1. INTRODUCTION1 
 

Unidirectional fiber reinforced composites have been 

widely used in practical engineering situations due to 

their higher stiffness-to-weight and strength-to-weight 

ratio over those of single phase materials [1-5]. Such 

application requirements have made necessary the 

development of effective tools to predict their whole 

mechanical properties. With the assumption of 

periodicity of fiber arrangement in a matrix, 

homogenization process, that is an averaging of local 

properties, can be performed in a representative volume 

element, or a unit cell, which usually includes a single 

fiber surrounded by a matrix, so that the analytical cost 

is greatly reduced [6, 7]. The properties of composite as 

a whole are assumed to be same as those of this 

characteristic unit cell. Once a unit cell is cut from 
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periodic composite, the proper boundary constraints can 

be applied to its boundary, So that the unit cell can be 

further solved numerically by the finite element 

simulation [8-10], the boundary element method (BEM) 

[11, 12] or the hybrid finite element method [13-16], 

etc, to obtain stress and displacement variations in unit 

cell. These approaches are important to perform 

homogenization analysis for determining the overall 

properties of composite. Currently, there are several 

homogenization approaches available for determining 

effective elastic properties of such composite materials 

[17]. Actually, the longitudinal modulus of composite 

can be well predicted by the simplest rule of mixture, 

while the prediction of transverse elastic properties of 

composite is still on the way. Moreover, there is lack of 

a comparison of results from these predictive 

approaches to give more practical guidance to 

engineers. 

In this paper, the comparison of two predictive 

approaches is made, including the mechanics of 
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materials approach [12, 18, 19] and the eigenfunction 

expansion variational method [8, 11, 20], which are 

widely used as tools for predicting overall transverse 

elastic properties of composites. In the first predictive 

approach, the free boundary conditions on unloaded 

opposite edges of the unit cell are introduced. For the 

second approach, the periodic straight-edge constraints 

are applied along the whole boundary of the unit cell to 

represent the deformation constraint of neighboring 

cells in the whole composite. Correspondingly, the 

chosen unit cell is solved by finite element analysis to 

give the stress and displacement distributions, so that 

the effective elastic properties can be further obtained. 

In order to fully compare these two approaches, the 

effects of volume fraction of fibers, as well as the fiber 

shape and the fiber distribution are investigated. In 

addition to the regular distribution of fibers in the 

matrix, the influence of fiber cluster is also considered 

in this study. 
 
 

2. MICROMECHANICAL COMPUTATIONAL 
MODELS 
 

In this paper, the effective transverse mechanical 

properties of unidirectional fiber reinforced composites 

are determined by two different computational models. 

It is assumed that the general-shaped fibers are 

periodically dispersed in the matrix material in a square 

pattern. This means that a unit cell shown in Figure 1, 

can be taken from the composite for further analysis 

such that the effective properties of composite in a 

whole is same as those of the unit cell. For simplicity, it 

is assumed that both the fiber and the matrix are 

isotropic and homogeneous, and they are perfectly 

bonded on their common interface. Theoretically, the 

transverse plane of composite with arbitrarily shaped 

fibers can be considered to be homogeneous and 

anisotropic, thus the transverse constitutive relation 

under plane stress state can be written as follows: 

11 11 1 22 2

22 12 11 1 22 2

12 12 12

/ /

/ /

/

E E

E E

G

  
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where  ( , 1,2)ij i j  and  ( , 1,2)ij i j   are strain and stress 

components,  ( 1,2)iE i   denotes the Young’s modulus 

in the direction ix , ij  represents the Poisson’s ratio of 

negative of the normal strain in the direction jx  to the 

normal strain in the direction ix , and 12G  denotes the 

shear modulus in the coordinate plane 1 2x x . 

Additionally, the engineering constants in Equation (1) 

should satisfy the following reciprocal relation: 

12 1 21 2/ /E E 
 (2) 

 

 
Figure 1. The unit cell under (a) uniform tension along the x1 

direction, (b) uniform tension along the x2 direction and (c) in-

plane shear 

 

 
2. 1. Free Boundary Model       For this computational 

model, which was widely employed for determining 

effective elastic properties of composites [1, 12, 18, 19, 

21], three sets of boundary conditions are applied on the 

boundary of the unit cell, as shown in Figure 1. 
 

Uniform tension 

For the case of uniform tension along the x1 direction, as 

illustrated in Figure 1(a),   is the prescribed value of 

displacement. 

The unit cell can be solved by the finite element 

simulations. Further, the average stress along the right 

edge of the unit cell can be evaluated by: 

 11 11 2 2, d / 2
L

L
L x x L 



 
    (3) 

Correspondingly, the average normal strain along the 

x1 direction and  the x2 direction can be given by: 

11 / 2L 
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where 1u  and 2u  are the displacements along the x1 and 

x2 directions, respectively. Then from the constitutive 

relation one obtains: 

1 11 11 12 22 11/ ,   /E         (5) 

Similarly, for the unit cell shown in Figure 1(b) under 

uniform tension along the 2x  direction, solving it can 

give the stress variations in it, then the average tensile 

stress along the upper edge is evaluated by: 

 22 22 1 1, d / 2
L

L
x L x L 



 
    (6) 

Correspondingly, the average normal strain 

. Then the effective Young’s modulus along 

the 2x  direction can be given by: 

2 22 22/E    (7) 

In-plane shear 
For the in-plane shear case, as shown in Figure 1(c),   

is the given value of displacement. Once the stress 
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variation in the unit cell is determined by finite element 

analysis, the effective shear modulus, the average shear 

stress
12  and the average shear strain 

12 in the 

transverse plane can be given by: 

 12 12 2 2 12, d / 2 ,   / 2
L

L
L x x L L  



   
    (8) 

from which we have the effective shear modulus 

12 12 12/G   . 

 

2. 2. Straight-side Model       To represent the 

constraint of neighboring cells to the one under study, 

the proper periodic straight edge condition should be 

taken into consideration. Applying periodic boundary 

conditions can prevent any over-constrained conditions 

in the numerical model and result in more accurate 

predictions of overall properties. Here, the 

computational model based on the eigenfunction 

expansion variational method [8, 22] is described by 

introducing periodic deformation in periodic 

composites. For simplicity, such computational model is 

called as straight-edge model. In this computational 

model, the suitable periodic boundary conditions are 

applied along the outer boundary of cell to keep the 

boundaries straight after the deformation. Figure 2 

displays the cases of biaxial tension and shear 

deformation. 
 

Biaxial tension 

As shown in Figure 2(a), the the unict cell is subjected 

to the biaxial tension, and  1  and 2  are respectively 

the unknown displacements, which are set to keep the 

four edges of the unit cell straight after deformation. 

When a constant stress p  is applied along the 1x  

direction, the equilibrium relationship of the unit cell 

can be written as follows: 
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where (1)

11  and (1)

22  are stresses in the submodel 1, and 
(2)

11  and (2)

22  are stresses in the submodel 2, as 

indicated in [8, 11, 22]. Obviously, solving the linear 

system of equations, one can get 1  and 2 . Then the 

average strains can be given by: 

11 1 22 2 12/ ,    / ,    0L L        (10) 

Considering the constant stress state 11 p  , 22 0  , 

12 0  . From the constitutive relation in Equation (1), 

one can determine the effective Young’s modulus and 

Poisson’s ratio of the composite by: 
 

 

 
Figure 2. Unit cell under periodic boundary conditions for (a) 

biaxial tension and (b) in-plane shear 

 

 

1 11 11 1 12 22 11 2 1/ / ,       / /E pL v             (11) 

Similarly, when a constant stress p  is applied along 

the 2x  direction, that is, 11 0  , 22 p  , 12 0  , the 

equilibrium relationship of the unit cell can be written 

as follows: 
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from which, one can get 1  and 2 . Then the average 

strains can be given by: 

11 1 22 2 12/ ,    / ,    0L L        (13) 

Thus, using the constitutive relation (1), one can 

determine the effective Young’s modulus and Poisson’s 

ratio of the composite by: 

2 22 22 2 21 11 22 1 2/ / ,     / /E pL v             (14) 

 

In-plane shear 

For the shear case shown in Figure 2(b), 3  and 4  are 

constant displacement constraints to be determined. In 

the same way, the equilibrium relationship of the unit 

cell subject to a uniform shear stress p  can be written 

as 
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where (3)

12  and (4)

12  are shear stresses in the submodels, 

as described in [8, 11, 22]. Solving Equation (1) yields 

the unknown 1  and 2 , and then we have: 

11 22 12 3 40,     0,     ( ) / L         (16) 

Subsequently, with the shear stress condition 11 0  , 

22 0  , 12 p  , we finally have 

12 12 12 3 4/ / ( )G pL       (17) 
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3. NUMERICAL RESULTS 

 
To comparison the results from the two different 

computational models, the following three cases are 

considered: (a) the centered single circular or square 

fiber in the unit cell; (b) the circular fiber cluster in the 

unit cell. The first two cases represent the regular 

periodic square pattern of fibers in the matrix, while the 

third case represents the periodically clustered 

distribution of fibers in the matrix in square pattern (see 

Figure 3). Moreover, for both the circular fiber and the 

square fiber, the composite consisting of repeated unit 

cells can be simplified as isotropic medium, due to the 

the geometrical symmetry of them. For such case, only 

three effective elastic parameters of composite need to 

be determined, 
1 2

cE E E  , 
12 21

c     and 
12

cG G . 

During the computation, the elastic properties of fiber 

and matrix are [12]  

84GPa,  0.22,  4GPa,  0.34f f m mE v E v     (18) 

Besides, various fiber volume fractions covering low 

fraction to high fraction are studied in this section. For 

the cases of single circular and square fibers, the value 

of fiber volume fraction is been set to change from 10 to 

70%. For the periodic cluster of circular fibers, the 

maximum value of the fiber volume fraction is taken to 

be 50%. 

The unit cell is discretized by two-dimensional plane 

stress linear quadrilateral finite elements implemented 

in ABAQUS 6.13. In order to achieve accurate and 

convergent results, a relatively high mesh density is 

employed so that the maximum relative difference in 

the predicted Young’s modulus between two different 

meshing schemes is less than a specified tolerance, i.e. 

0.1%. Here, the element size is set as one-fiftieth of the 

side length of the unit cell to satisfy such requirement. 

Moreover, the side length of the unit cell is 1 for 

simplicity and the fiber’s radius can be evaluated by the 

given fiber volume fraction. 

 
3. 1. Verification       To validate the computational 

models, the doubly periodic circular hole is first 

analyzed, which has reference solutions from the BEM 

[11]. The hole can be viewed as a special inclusion with 

zero elastic modulus, and the matrix is assumed to have 

Young’s modulus 1 and Poisson’s ratio 0.3. During the 

computation, the hole volume fraction to the unit cell is 

assumed to change from 0.785 to 38.485%, which 

covers low and medium contents. Table 1 summarized 

the numerical results from the free boundary model, the 

straight-edge model and the BEM, and one can find that 

there is an excellent agreement between them, 

especially for the low hole volume contents. 

Moreover, the results in Table 1 approximately 

satisfy the relationship . 

 

 
Figure 3. Schematic diagram of composite with periodically 

clustered fibers in the matrix 

 

 

TABLE 1. Comparison of results for the case of hole 

 fV  0.785% 7.069% 19.635% 38.485% 

cE  

BEM 0.9770 0.8244 0.6168 0.4069 

Free 0.9770 0.8171 0.5916 0.3650 

Straight 0.9771 0.8244 0.6160 0.4062 

cv  

BEM 0.3006 0.2975 0.2665 0.1974 

Free 0.3008 0.3082 0.3234 0.3679 

Straight 0.3007 0.2974 0.2668 0.1969 

cG  

BEM 0.3754 0.3045 0.1856 0.0725 

Free 0.3755 0.3072 0.1976 0.0859 

Straight 0.3754 0.3043 0.1856 0.0722 

 

 

All the three approaches give decreased Young’s and 

shear modulus when the size of hole increases, as 

expected. However, it is observed that the free boundary 

model gives higher Poisson’s ratio. This can be 

explained by the unloaded less-constrained opposite 

edges in the free boundary model, which practically 

affects the displacement and strain along the 

perpendicular direction to the tensile direction. More 

illustrations on such phenomenon can be found in the 

following tests. 
 

3. 2. Single Fiber      For the case of single centered 

circular fiber in the unit cell, the numerical results 

obtained by the two different models are plotted in 

Figures 4-6. It is found that both the Young’s modulus 

and the shear modulus of the composites increase 

nonlinearly with the increase of fiber volume fraction, 

however, the Poisson’s ratio decreases when the fiber 

volume fraction becomes larger. Due to the 

reinforcement of fiber, the Young’s modulus of 

composite is apparently larger than that of matrix, as 

expected. Also, it is found from Figure 4 that both the 

free boundary model and the straight-edge model 

produce similar values of Young’s modulus. 

Additionally, it is seen from Figure 5 that there is 

significant discrepancy between results of Poisson’s 

ratio from the free-boundary model and the straight-
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edge model, and such discrepancy becomes bigger with 

the increase of fiber volume fraction. The straight-edge 

model can give smaller prediction of Poisson’s ratio 

than the free boundary model. The main reason is that 

the free boundary conditions applied on the opposite 

upper and bottom edges of the unit cell cause the large 

discrepancy of the prediction of transverse displacement 

2u , which finally affects the average strain component 

22 . Besides, the shear modulus of composite is also 

shown significant difference, as displayed in Figure 6. 

Also, the single square fiber is investigated in this study 

and the simialr trends can be observed. 
 

3. 3. Periodically Clustered Circular Fibers     Next, 

the clustered fibers in the matrix is considered. It is 

assumed that the fiber volume fraction changes from 10 

to 50%. Results in Figures 7-9 indicate that the straight-

edge model produces higher Young’s modulus than the 

free boundary model again, although the difference of 

results from them is slight. 

Meanwhile, it produces significantly lower 

Poisson’s ratio and shear modulus than the free 

boundary model, as indicated in Figure 8. Typically, for 

the free boundary model, the resulted Poisson’s ratio is 

obviously bigger than that of the matrix material. 

 

 

 
Figure 4. Variation of effective Young’s modulus for the 

centered single circular fiber 

 

 

 
Figure 5. Variation of effective Poisson’s ratio for the 

centered single circular fiber 

 
Figure 6. Variation of effective shear modulus for the 

centered single circular fiber 

 

 

 

This can be attributed to the stronger oscillation of 

displacement solutions along the upper and bottom 

edges of the unit cell, due to the stronger interaction of 

fiber cluster and the boundary edges. Therefore, the 

average strain 22 required for evaluating the effective 

Poisson’s ratio of composite may show obvious 

instability when the fiber volume fraction changes. 
 

 

 

 
Figure 7. Variation of effective Young’s modulus for the 

periodically clustered circular fibers 

 

 

 
Figure 8. Variation of effective Poisson’s ratio for the 

periodically clustered circular fibers 



W. Lin et al. / IJE TRANSACTIONS C: Aspects  Vol. 31, No. 9, (September 2018)   1498-1504                                           1503 
 

 
Figure 9. Variation of effective shear modulus for the 

periodically clustered circular fibers 

 

 

4. CONCLUSIONS 
 

In this study, the two different models characterizing the 

transverse elastic properties of unidirectional fiber 

reinforced composites are compared by considering 

three tests including the unit cells embedded with 

centered single circular and square fibers and the 

centered circular fiber cluster, respectively. It is found 

that: (1) Both the two models can give increasing 

Young’s modulus as the fiber volume fraction increases. 

However, the straight-edge model can produce slightly 

higher values than the free boundary model. (2) The 

straight-edge model can give lower effective Poisson’s 

ratio than the free boundary model for any fiber volume 

ratio, and the difference becomes bigger for larger fiber 

volume fraction. The main reason is that the free 

boundary conditions applied on the unloaded opposite 

upper and bottom edges of the unit cell affects the 

accuracy of the transverse displacement. Applying 

periodic straight-edge constraints can prevent such 

over-constrained conditions in the numerical model. (3) 

Both the two models can give decreasing effective shear 

modulus of composite when the fiber volume fraction 

increases, and the results from the straight-edge model 

is always lower than that from the free boundary model. 
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 چكيده 

 

 

ن در مهندسی دارد. هدف از این کار مطالعه آهای کاربردی ها توجه زیادی به مطالعه برنامهمشخصه خواص کامپوزیت

های تين خواص کششی موثر برای کامپوزیای برای تعير محاسباتی است که به طور گستردهتفاوت دو مدل ریزساختا

 رزهای مخالفد. اولين مدل مبتنی بر مكانيک کلاسيک مواد مجاز آزادانه تخليه مشوتقویت شده فيبری همسو استفاده می

های احد برای نشان دادن تعاملات سلولهای خطی را در سلول وکه دومين محدودیت در سلول واحد است. در حالی

سه پس سد شده است. ای تایيبتدا توسط طرح مسئله در سوراخ دایرهدهد. این دو روش ااطراف در طی تغيير شكل می

ای در ماتریس قرار رت دورهای که به صوهای فيبر دایرهای، فيبرهای مربعی و خوشهریزپردازنده شامل الياف دایره

گيرند. مقایسه نتایج عددی نشان داد یمشوند، مورد توجه قرار تجزیه و تحليل عناصر محدود حل میگيرند و سپس با می

های مختلفی بر خواص مؤثر کششی کامپوزیت برای هر بينیتواند پيشای میبدون شرایط دورهل محاسباتی با و که دو مد

ی مستقيم خطی هامپوزیت ارائه دهد. اعمال محدودیتدو فاکتور حجم کم و زیاد، بخصوص برای نسبت موثر پواسون کا

 ا ارائه دهد.شود و نتایج پایدارتری رتواند مانع هرگونه شرایط بيش از حد محدود در مدل عددی پس از تغيير شكل می

doi: 10.5829/ije.2018.31.09c.04 
 
 
 


