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A B S T R A C T  
 

 

Application of artificial neural network (ANN) in forward kinematic solution (FKS) of a novel co-axial 
parallel mechanism with six degrees of freedom (6-DOF) is addressed in Current work. The 

mechanism is known as six revolute-spherical-universal (RSU) and constructed by 6-RSU co-axial 

kinematic chains in parallel form. First, applying geometrical analysis and vectorial principles the 
kinematic model is extracted and inverse kinematics solution is done. Due to highly nonlinear 

characteristic of the model, forward kinematic solution for 6-RSU is so complicated. Therefore, ANN 

based on wavelet analysis, as a powerful solution, is designed and applied to solve FK problem. The 
minimum prediction risk principle with using final prediction error (FPE) is applied to find the best 

and optimum topology of our proposed neural network (WNN) in this paper. Furthermore, proposed 

wavelet WNN is developed to approximate the specific reference trajectories for manipulated platform 
of mechanism and the results are obtained. Comparing the extracted results by WNN with closed form 

solution (CFS) demonstrates the accuracy and efficiency of the proposed WNN. 

 

 
1. INTRODUCTION1 
 
In recent decades, utilization of parallel mechanisms 

versus the serial manipulators are expanded due to their 

advantages as low inertia, high stiffness, high force-

weight ratio and high acceleration [1-3]. Nevertheless, 

small size of work space in parallel mechanisms is 

major concern and lots of efforts have been made to 

improve it. One solution is to employ co-axial actuated 

arms that can rotate around a central base column like 6-

RSU mechanism reported in literature [4]. Since 

kinematics solution of mechanisms are extensively 

necessary to design of mechanism, workspace analysis 

and provide control strategies, inverse and forward 

kinematic analysis of 6-RSU is considered in current 

contribution. Solution of inverse kinematic problem 

(IKP) in parallel mechanisms is straightforward and 

there are many solution methods such as geometric 

solution, efficient inverse kinematics method, analytic 
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method, iterative method and screw theory. However, it 

is obvious that the forward kinematic solution for this 

kind of mechanisms are difficult and complicated. 

Consequently, numerical methods such as Newton-

Raphson, were presented as an extensive and prevalent 

solution in spite of their explicit drawbacks including 

initial guess, convergence, local minimum problem and 

etc. In the literature, many different types of parallel 

mechanism were introduced and analyzed and kinematic 

solution is extensively investigated [5-8]. Huang et al. 

[9] proposed a novel 3DOF parallel mechanism 

included 3-(PRPR+PRS) kinematic chains as a machine 

tool. They have considered inverse and forward 

kinematic analysis and developed the stiffness model 

and dexterity of mechanism. Gao et al. [10] analyzed 

forward kinematic problem (FKP) of the joint variable 

space of the general Stewart platform mechanism 

applying pseudo-arc length homotopy continuation 

algorithm. They compared the results with those 

obtained by Newton–Raphson algorithm. Sadjadian et. 

al. [11] presented the solution of forward kinematics 

problem for a novel redundant parallel manipulator. 

 

 

 doi: 10.5829/ije.2018.31.08b.17
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They provided a quasi-closed form solution by 

combination of the numerical and analytical method. 

Also, they employed MLP, RBF, PNN and ANFIS 

types of neural networks for their approach.  Rahmani et 

al.[12] designed and analyzed a novel redundant hybrid 

manipulator included two similar Stewart mechanisms 

in serial form. They applied neural network training to 

solve forward kinematics. They used various types of 

neural networks (NN) such as multi-layer perceptron 

(MLP) and radial bias function (RBF) with various 

learning algorithms to approximate specific trajectories. 

Yi Lu et al. [13] illustrated a novel 5-DOF modular 

parallel mechanism for medical applications and studied 

kinematics, workspace and singularity analysis. Qazani 

et al. [14] have executed extensive investigations about 

HEXAROT parallel manipulator with a rotation-

symmetric arm system. They have done Kinematic 

analysis and workspace determination. Moreover, they 

studied motion error of mechanism and presented 

mathematical model along with experimental validation 

[15].  

In this paper, mathematical model of kinematic 

analysis for co-axial symmetric 6-RUS parallel 

mechanism is extracted using geometrical analysis and 

vectorial principles. Due to nonlinear relations between 

work-space and joint-space variables, forward kinematic 

solution for 6-RSU is too intricate. Hence, using 

learning algorithms and soft computing based on neural 

network a WNN is designed and employed to forward 

kinematic solution of 6-RSU. For this purpose, invers 

kinematic analysis is applied to provide data for 

network training and verification. Furthermore, in 

current paper, I utilized the minimum prediction risk 

principle using final prediction error (FPE) to define the 

best and optimum topology of our proposed WNN. 

Current contribution, decreases and, in some cases, 

eliminates the serious drawbacks of traditional 

numerical methods such as initial guess, convergence, 

local minimum problem and computing time. Also, we 

implement wavelet neural network to track a specific 

trajectory in oscillating circle and semi-cardioid spiral 

paths of manipulated platform. Finally, the comparison 

of the results obtained by WNN with the CFS indicates 

the accurate performance and efficiency of the proposed 

neural network algorithm.  
 

 

2. DESCRIPTION OF 6-RSU MECHANISM 
 

6-RSU parallel mechanism consists of a moving 

platform as end-effector connected to a base column via 

six identical kinematic chains (Figure 1). Each 

kinematic chain includes an upper arm attached from 

one end to the base column via revolute joint and to 

moving platform at its connection point via a 5-DOF 

interface link. Also, the link is connected to the moving 

platform via universal )( iU  and to the upper arm by 

spherical joints )( iS . Therefore, due to the configuration 

of kinematic chains, the mechanism is known as 6-RSU. 

Six revolute joints )( iR  on the base column are actuated 

joints and provide the whole motion of mechanism by 

rotational displacement around the base. To describe the 

motion of mechanism and for kinematic analysis, two 

frames were employed. First, base frame }{ O
b  is fixed 

and placed on the base column. Second, platform frame 

}{ O
m  attached to center of moving platform and moves 

along with the platform. The position and orientation of 

the moving platform can be observed relative to both 

}{ O
m and }{ O

b .  

The position of six connection points on the moving 

platform are illustrated with vector )6,...,1( ii
m

P  

relative to }{ O
m  as: 
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 (1) 

where, R is the radius of peripheral circle surrounds the 

manipulated platform and   is the angle shown in 

Figure 1. The geometrical specifications of the 

considered 6-RSU mechanism are summarized in Table 

1. 

The length vector of the thi  upper arm and interface 

link are denoted iA  and iB , respectively. Due to 

advantages of 6-RSU mechanism such as large work-

space it is useful for working, repairing, positioning and 

assembling inside cylindrical spaces such as pipes and 

aircrafts. 
 

 

 
Figure 1. Schematic of the 6-RSU Mechanism and 

Geometrical Descroption of the Manipulated Platform 

 
TABLE 1. Geometrical specifications of 6-RSU  

ai bi h1 h2 h3 h4 h5 h6 R   

0.95 1.05 0.75 0.85 1.25 1.35 1.75 1.85 0.20 65.0 

(all dimensions are in m or deg) 
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3. KINEMATICS OF 6-RSU MECHANISM 
 
Kinematics of mechanisms deals with the investigation 

of the mechanisms motion regarding to the geometrical 

constraints of their links and divided into IKP and FKP. 

In fact, IKP is to conclude the movements of 

mechanism in the joint-space from the movements of 

mechanisms in the work-space. In the other words and 

concerning of the 6-RSU mechanism, IKP involves 

mapping a known position ),,( zyx  and orientation 

),,(   of the moving manipulated platform center 

into the rotation angles of the actuated revolute joints 

)6,...,1( ii  for each arm. Whereas, FKP is vice versa 

and more complicate than IKP.   

According to the vectorial presentation of the 

mechanism, the length vector of the 
thi  upper arm is 

defined relative to base frame as: 

T
iiiiii

b hAA ]1sincos[ A  (2) 

In which i  is the angle between Xb  of the base frame 

and the 
thi  upper arm and declares the rotation of the 

thi  upper arm around the base column. Also, the 

position vector of each universal joint in base frame 

)1,,,( iz
b

iy
b

ix
b

i
b PPPP  is represented by homogeneous 

transformation matrix as follows: 

i
m

OOi
b

bm PHP
,

  (3) 

In which 
OO bm ,

H is the homogeneous transformation 

matrices from frame }{ O
m  to frame }{ O

b and are 

described as follows: 
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where, position of }{ O
m  with respect to }{ Ob  is defined 

by ),,( zyx  and orientation of }{ O
m  is implied by Euler 

ZYZ convention as [ ] ( ) ( ) ( )
ij ZYZ Z Y Z

R    R R R R : 
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In which, ).sin().(,).cos().(  SC . 

The length vector of the thi interface link, i
b

B , relative 

to the base frame }{ Ob  is expressed as: 

i
b

i
b

i
b

APB   (6) 

And the length is: 

222 |||| i
b

i
b

i
b

iB APB   (7) 

Substituting Equations (2), (3) into Equation (7) with 

some algebraic calculations resulted in: 

0cossin 321  iiiii kkk   (8) 
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Substituting Equations (9)-(11) into Equation (8) yields 

to solution of i  as: 
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Equation (12) is the solution for IKP of 6-RSU 

mechanism. As it is clear, the inverse kinematic analysis 

of 6-RSU mechanism is easy and straight forward. In 

FKP the position ),,( zyx  and the orientation ),,(   of 

the moving manipulated platform center are unknown 

and should be determined based on known joint-space 

parameters. But, due to highly nonlinearity of 

kinematics model expressed in Equations (8) and (12), 

the mapping from known joint-space rotational angles 

)6,...,1( ii  into the pose of the moving platforms is so 

complicated. Therefore, wavelet based neural network is 

proposed and applied to solve the FKP of the 6-RSU 

mechanism in current work. 

 

 

4. WAVELET NEURAL NETWORK 
 
4. 1. Topology of WNN          The wavelet neural 

network (WNN) is an artificial neural network 

technique based on wavelet transformation [16, 17]. 
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Convenient localization property in time domain, 

efficient ability to approximate complicated mappings 

and impressive learning ability are the main 

characteristics of WNN make it appropriate and 

successful in approximation of nonlinear systems. 

Furthermore, to avoid the local minimum problem in 

training procedure of the NN the WNN is superseded to 

neural networks which follow the availability of the 

rates of the convergence for approximation by wavelet 

based networks. Proposed WNN is constructed by 

association of neurons in forward pathway. In current 

contribution, a feed forward MIMO-WNN is designed 

with three input-hidden-output layers using wavelets as 

the activate functions of the hidden layer. The proposed 

WNN consist of m, p and n nodes in the input, hidden 

and output layers, respectively. The number p is defined 

by the minimum prediction risk principle with using 

final prediction error (FPE). Figure 2 illustrates the 

topology of the proposed WNN with the activate 

function of the thj  node in the hidden layer as: 

pj
a

bt

a
t

j

j

j

ba jj
,...,2,1)(

1
)(, 


   

(13) 

where, )(t  is the wavelet function and chosen Morlet 

wavelet function and )(tf  is considered sigmoid 

function.  

 

4. 2. Training Algorithm          For training a feed 

forward networks the back propagation (BP) algorithm 

is the most useful and applicable [18, 19] and it is 

employed to train the proposed WNN. BP includes 

forward and backward passes. The output performance 

of the network is provided by the forward pass and the 

backward pass specifies the initial errors for each node 

of the network. So, for minimizing all specified errors 

the weights of the network are regulated. Since the input 

vector ),...,,( 21 mxxxX  is feed to the proposed WNN in 

Figure 2; the output of the thj  node in hidden layer is 

defined as: 
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The thi  node of output layer yields to: 
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),...,,( 21 nyyyY  is determined as the output vector of 

the WNN by Equation (16). Therefore, the total error 

for the network should be minimized is considered as 

follows:  
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In which, Q  is training samples, ),...,,( 21 qnqqq yyyY  and 

),...,,( 21 qnqqq yyyY  are the desired and trained WNN 

output vectors, respectively. For minimizing E , the 

iterative gradient descent method is employed to 

formulate the WNN parameters as follows: 
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(19) 

In which, t and   the are learning iteration index and 

the rate of learning, respectively. Also,   is the 

momentum factor and considered 10   to improve 

the rate of learning. The partial derivatives of the error 

E  respect to each parameter can be calculated easily. 
 

4. 3. Optimum Topology for WNN     Identification 

the optimum topology and correct construction of the 

network is most important steps in NN simulation which 

is included the number of hidden layers and the number 

of neurons in the hidden layers.  

 

 

 
Figure 2. Topology of the Proposed WNN 
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Networks with more or fewer hidden units than needed, 

result in over-fitted model or poor learning the 

underlying function,  respectively. In current paper, we 

utilized the minimum prediction risk principle with 

using final prediction error (FPE) [20] to find the best 

and optimum topology of our proposed WNN.The 

prediction risk P  measures the generalization ability 

of network and is defined as below for network: 

2 2

* * 2
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ˆ( )[ ( ) ( )]

1
ˆ( )

n

p p

p

P dx p x x x

E y y
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
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where, )(x  is an unknown function, )(xp is stationary 

probability density function,   is the variance of 

independent random variables. Also, ),( **
pp yx  are the 

new observations that were not used in the construction 

of the network and 
*ˆ py  is the network output for *

px .  

Since finding the prediction risk is not a straight 

forward procedure, we used (FPE) criterion as reported 

in literture [20]: 
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22
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where, k is the number of parameters of the network 

and n is the number of training patterns in the training 

sample. The target value is given by py , and pŷ  the 

approximation of the target value by the network. To 

find the optimum topology of WNN the algorithm is 

followed as below. At first a WNN without any hidden 

unit is constructed. So, the network is trained and then 

the prediction risk is estimated by FPE. Next, 1 hidden 

unit is added to hidden layer and the network training 

and prediction risk estimation is repeated. We continued 

the procedure by adding hidden unit and repeating 

network training and prediction risk estimation until we 

reach to the predefined maximum number of hidden 

units. The number of hidden units relevant to smallest 

prediction risk define the optimum number of wavelets 

for the best topology of network. 

The algorithm is illustrated in Figure 3. Also, Figure 

4 shows the prediction risk versus number of hidden 

units for our proposed WNN. As it is clear, the optimum 

number occurred in 73 units with 1.379 prediction risk. 

 

 

5. WNN SOLUTION FOR FKP 
 
In order to solve the FKP of 6-RSU mechanism by 

means of WNN, the rotation angles of revolute joints in 

joint-space, ),...,,( 621 X  are considered as input 

data and Along with the training samples are feed to the 

network for process training procedure. 

To approximate the kinematics model of the 6-RSU 

mechanism, the algorithm of wavelet neural network is 

summarized in 5 steps. 

Step 1: Set the initial values of the momentum factor , 

rate of learning   and the parameters of network

)( ,...,,,...,,,,, 11
)2()1()2()1(

pp bbaaWW  .  

Step 2: Give the input vectors ),...,,( 621 X  and 

desired output vector ),,,,,( qqqqqqq zyx Y  as 

the training data to handle the training of network. The 

exact theoretical values of training data were obtained 

by inverse kinematic solution from Equation (8). 

Step 3: Estimate the output of the WNN by Equation 

(16) for each input data. 

Step 4: Regulate the networks parameters employing 

gradient descent algorithm by Equation (19). 

Step 5: The total error of the proposed network is 

estimated by Equation (18).  

 

 
Figure 3. Optimum Topology Selection Algorithm by Using 

FPE 

 

 
Figure 4. Prediction Risk Versus Number of Hidden Units for 

Our Proposed WNN 
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If the error is in the desired range, the networks 

parameters are determined and the learning process is 

completed, else restart the learning procedure. 
 
 
6. SUMULATION AND RESULTS 

 
The results of the proposed WNN on approximating the 

forward kinematic analysis of the 6-RSU mechanism 

are presented in this section. The proposed structure for 

designed wavelet network has one input layer with six 

neurons, one hidden layer with 73 neurons and one 

output layer with six neurons. The network was trained 

with a learning rate of 0.21, a momentum term of 0.55, 

and 1024 learning iterations. The largest error E or 

given precision is less than 0.6%. First, using inverse 

kinematic solution for the Hexarot, the closed form 

solution (CFS) were obtained for two different paths 

(paths I and II). Data extracted by path (I) is feed to 

train the network. Besides, to verify the performance of 

network after training, path (II) is applied. Figures 5 to 

10 show the results of the proposed WNN using the path 

(I) for simulation.  

Using the inverse kinematic analysis for proposed 

paths, the motions of the each upper arm is defined. 

Then, the proposed WNN is feed by the arms motions to 

get the trajectory and movement paths of the 

manipulated platform. Again, the outputs of the 

proposed WNN are employed for inverse kinematic 

analysis to define the new motions of the arms and to 

the comparison with those obtained by CFS. 

Figures 5 to 7 show the results for joint-space and 

angular position for all six arms During Path (I). Figures 

8 and 9 indicate the results for position and orientation 

of manipulated platform, respectively. Also, the results 

displayed in Figure 10 show the position of manipulated 

platforms in 3D view. These results are employed to 

train the WNN. However, verification of the proposed 

WNN is executed by path (II). The results are illustrated 

in Figures 11 to 16. Figures 11 to 13 present the 

comparison of the results between WNN and CFS for 

the movments of the arms in joint space during path (II). 

Figures 14, 15 and 16 illustrate the CFS and WNN 

results in work-space included position, orientation and 

spatial displacement for the manipulated platform.  

According to the results illustrated in Figures 5 to 16 

there is good agreement between the exact solution 

(CFS) and the outputs of proposed WNN. The errors are 

less than %1 and it demonstrates the efficiency and 

superiorityof the WNN as a powerful method to 

approximate the highly nonlinear dynamic systems. 

 

 

 
Figure 5. Results for Joint-Space kinematic parameters 

During Path (I) – Angular Position for Arms 1 and 2 

 

 

 
Figure 6. Results for Joint-Space kinematic parameters 

During Path (I) – Angular Position for Arms 3 and 4 

 

 

 
Figure 7. Results for Joint-Space kinematic parameters 

During Path (I) – Angular Position for Arms 5 and 6 
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Figure 8. Results for Work-Space kinematic parameters 

During Path (I) – Position of Manuplated Platform 

 

 
Figure 9. Results for Work-Space kinematic parameters 

During Path (I) – Orientation of Manuplated Platform 

 

 
Figure 10. 3D Plot for Position Results of Manuplated 

Platform During Path (I) by CFS and WNN 

 
Figure 11. Results for Joint-Space kinematic parameters 

During Path (II) – Angular Position for Arms 1 and 2 

 

 
Figure 12. Results for Joint-Space kinematic parameters 

During Path (II) – Angular Position for Arms 3 and 4 

 

 
Figure 13. Results for Joint-Space kinematic parameters 

During Path (II) – Angular Position for Arms 5 and 6 
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Figure 14. Results for Work-Space kinematic parameters 

During Path (I) – Position of Manuplated Platform 

 

 
Figure 15. Results for Work-Space kinematic parameters 

During Path (II) – Orientation of Manuplated Platform 

 

 
Figure 16. 3D Plot for Position Results of Manuplated 

Platform During Path (II) by CFS and WNN 

 
 
To estimate the training and computing time for 

proposed WNN, the “tic” and “toc” functions were used 

in the code written in MATLAB. The training time for 

1024 learning iteration is 20.68 (s) and the computing 

time for simulation after training the network is less 

than 0.2 (s). So, the proposed WNN can be employed to 

practical applications. 

 

 

7. CONCLUSIONS 
 

The main goal of the current contribution is the 

application of wavelet neural network as a useful tool to 

solve the forward kinematics problem of the Hexarot. 

To this end, using the vectorial and geometrical 

principles, the kinematic model of the mechanism is 

obtained and the inverse kinematic problem is solved. 

Due to the difficulty of the forward kinematic analysis 

of the parallel mechanisms and the serious impediments 

of the classical numerical algorithms, neural network 

analysis based on wavelet functions is proposed. 

Therefore, the invers kinematic analysis is employed to 

provide data for network training and verification. Back 

propagation algorithm and the iterative gradient descent 

method are used to minimize the total error of the 

network and to formulate the WNN parameters. The 

minimum prediction risk principle with using final 

prediction error are utilized to find the best and 

optimum topology of our proposed WNN. The proposed 

WNN are exerted to the deferent paths and the accurate 

results are generated. According to training approach of 

the network the maximum error is less than 0.6%. So, 

the comparison of the results obtained by WNN with the 

CFS indicates the accurate performance and the 

superiority of the proposed neural network algorithm. 
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چكيده

 
 

که در مقایسه با سایر مکاانیزم ااای ماوازی دارای ی اای      HEXAROTدر این مقاله ابتدا یک مکانیزم موازی جدید بنام 

درجه آزادی بوده و با توجه باه ساااتار ساینیاتیکی آه باه      6کاری به مراتب بیشتری است، معریی می شود. این مکانیزم 

نیز معروف می باشد.  سپس با استفاده از جبر برداراا و روش ماتریس ایوژه مدل ساینیاتیکی مکاانیزم    RSU-6مکانیزم 

استخراج و حل سینیاتیک معکوس مکانیزم به جهت تولید دیتااای لازم برای آموزش شبکه انجام مای شاود. از آنجاییکاه    

غیراطی بوده شدید معادلات سینیاتیکی است، محاسابات   بدلیل پیچیده بوده مدل سینیاتیکی مکانیزم مذکور که ناشی از

جهت حل ساینیاتیک   (WNN)مربوط به حل سینیاتیک مستقیم عیلا غیر میکن است از اینرو مدل شبکه عصبی ویولت 

مستقیم طراحی و استفاده شده و نتایج بدست آمده از آه با نتایج حاصل از سینیاتیک معکوس صحه گذاری گردیده است. 

و  (Morlet)بکه عصبی مصنوعی ارایه شده در این مقاله یاک شابکه ساه لایاه باا ناروه ااای یعالساازی مارلات          مدل ش

برای لایه اای میانی و اروجی است که توپولوژی بهیناه بارای آه باا اساتفاده از روش حادا ل       (Sigmoied)سیگیویید 

به دست آمده است. در این مقاله جهت شبیه سازی و بررسی  (FPE)و پیش بینی اطای نهایی  (MPR)ریسک پیش بینی 

جهات تولیاد    Iعیلکرد شبکه عصبی طراحی شده دو مسیر با معادلات پیچیده غیراطی در نظر گریته شده اسات. مسایر   

جهت صحه گذاری شبکه آموزش داده شده استفاده شده است. مقایسه نتایج بدسات   IIدیتااا برای آموزش شبکه و مسیر 

 ده از شبکه عصبی با نتایج حاصل از حل د یق بیانگر د ت و کارآمدی شبکه عصبی طراحی شده می باشد.آم

 

doi: 10.5829/ije.2018.31.08b.17 


