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ABSTRACT

Application of artificial neural network (ANN) in forward kinematic solution (FKS) of a novel co-axial
parallel mechanism with six degrees of freedom (6-DOF) is addressed in Current work. The
mechanism is known as six revolute-spherical-universal (RSU) and constructed by 6-RSU co-axial
kinematic chains in parallel form. First, applying geometrical analysis and vectorial principles the
kinematic model is extracted and inverse kinematics solution is done. Due to highly nonlinear
characteristic of the model, forward kinematic solution for 6-RSU is so complicated. Therefore, ANN
based on wavelet analysis, as a powerful solution, is designed and applied to solve FK problem. The
minimum prediction risk principle with using final prediction error (FPE) is applied to find the best
and optimum topology of our proposed neural network (WNN) in this paper. Furthermore, proposed
wavelet WNN is developed to approximate the specific reference trajectories for manipulated platform
of mechanism and the results are obtained. Comparing the extracted results by WNN with closed form

solution (CFS) demonstrates the accuracy and efficiency of the proposed WNN.

doi: 10.5829/ije.2018.31.08b.17

1. INTRODUCTION!?

In recent decades, utilization of parallel mechanisms
versus the serial manipulators are expanded due to their
advantages as low inertia, high stiffness, high force-
weight ratio and high acceleration [1-3]. Nevertheless,
small size of work space in parallel mechanisms is
major concern and lots of efforts have been made to
improve it. One solution is to employ co-axial actuated
arms that can rotate around a central base column like 6-
RSU mechanism reported in literature [4]. Since
kinematics solution of mechanisms are extensively
necessary to design of mechanism, workspace analysis
and provide control strategies, inverse and forward
kinematic analysis of 6-RSU is considered in current
contribution. Solution of inverse kinematic problem
(IKP) in parallel mechanisms is straightforward and
there are many solution methods such as geometric
solution, efficient inverse kinematics method, analytic
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method, iterative method and screw theory. However, it
is obvious that the forward kinematic solution for this
kind of mechanisms are difficult and complicated.
Consequently, numerical methods such as Newton-
Raphson, were presented as an extensive and prevalent
solution in spite of their explicit drawbacks including
initial guess, convergence, local minimum problem and
etc. In the literature, many different types of parallel
mechanism were introduced and analyzed and kinematic
solution is extensively investigated [5-8]. Huang et al.
[9]1 proposed a novel 3DOF parallel mechanism
included 3-(PRPR+PRS) kinematic chains as a machine
tool. They have considered inverse and forward
kinematic analysis and developed the stiffness model
and dexterity of mechanism. Gao et al. [10] analyzed
forward kinematic problem (FKP) of the joint variable
space of the general Stewart platform mechanism
applying pseudo-arc length homotopy continuation
algorithm. They compared the results with those
obtained by Newton—Raphson algorithm. Sadjadian et.
al. [11] presented the solution of forward kinematics
problem for a novel redundant parallel manipulator.
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They provided a quasi-closed form solution by
combination of the numerical and analytical method.
Also, they employed MLP, RBF, PNN and ANFIS
types of neural networks for their approach. Rahmani et
al.[12] designed and analyzed a novel redundant hybrid
manipulator included two similar Stewart mechanisms
in serial form. They applied neural network training to
solve forward kinematics. They used various types of
neural networks (NN) such as multi-layer perceptron
(MLP) and radial bias function (RBF) with various
learning algorithms to approximate specific trajectories.
Yi Lu et al. [13] illustrated a novel 5-DOF modular
parallel mechanism for medical applications and studied
kinematics, workspace and singularity analysis. Qazani
et al. [14] have executed extensive investigations about
HEXAROT parallel manipulator with a rotation-
symmetric arm system. They have done Kinematic
analysis and workspace determination. Moreover, they
studied motion error of mechanism and presented
mathematical model along with experimental validation
[15].

In this paper, mathematical model of kinematic
analysis for co-axial symmetric 6-RUS parallel
mechanism is extracted using geometrical analysis and
vectorial principles. Due to nonlinear relations between
work-space and joint-space variables, forward kinematic
solution for 6-RSU is too intricate. Hence, using
learning algorithms and soft computing based on neural
network a WNN is designed and employed to forward
kinematic solution of 6-RSU. For this purpose, invers
kinematic analysis is applied to provide data for
network training and verification. Furthermore, in
current paper, | utilized the minimum prediction risk
principle using final prediction error (FPE) to define the
best and optimum topology of our proposed WNN.
Current contribution, decreases and, in some cases,
eliminates the serious drawbacks of traditional
numerical methods such as initial guess, convergence,
local minimum problem and computing time. Also, we
implement wavelet neural network to track a specific
trajectory in oscillating circle and semi-cardioid spiral
paths of manipulated platform. Finally, the comparison
of the results obtained by WNN with the CFS indicates
the accurate performance and efficiency of the proposed
neural network algorithm.

2. DESCRIPTION OF 6-RSU MECHANISM

6-RSU parallel mechanism consists of a moving
platform as end-effector connected to a base column via
six identical kinematic chains (Figure 1). Each
kinematic chain includes an upper arm attached from
one end to the base column via revolute joint and to
moving platform at its connection point via a 5-DOF
interface link. Also, the link is connected to the moving

platform via universal (U;) and to the upper arm by

spherical joints (S;) . Therefore, due to the configuration
of kinematic chains, the mechanism is known as 6-RSU.
Six revolute joints (R;) on the base column are actuated
joints and provide the whole motion of mechanism by
rotational displacement around the base. To describe the
motion of mechanism and for kinematic analysis, two
frames were employed. First, base frame oy} is fixed
and placed on the base column. Second, platform frame
{mo} attached to center of moving platform and moves
along with the platform. The position and orientation of
the moving platform can be observed relative to both
{rorand oy

The position of six connection points on the moving
platform are illustrated with vector ™P; (i=1,..,6)

relative to {m oy as:

"P.=(P,.P,,0.0)
P, =-P, =R sin(¢), P, =-P, =R cos(z 16— ¢)

P, =-P,, =Rsin(z/3-¢),P, =P, =-R cos(¢) @
P, =P, =Rsin(z/6-¢), P, =P, =Rcos(z/3-¢)

where, R is the radius of peripheral circle surrounds the
manipulated platform and ¢ is the angle shown in
Figure 1. The geometrical specifications of the
considered 6-RSU mechanism are summarized in Table
1.

The length vector of the ith upper arm and interface
link are denoted A; and B;, respectively. Due to
advantages of 6-RSU mechanism such as large work-
space it is useful for working, repairing, positioning and
assembling inside cylindrical spaces such as pipes and
aircrafts.

LL,
Figure 1. Schematic of the 6-RSU Mechanism and
Geometrical Descroption of the Manipulated Platform

TABLE 1. Geometrical specifications of 6-RSU

ai bi hy hz hs hs hs he R o

0.95 1.05 0.75 0.85 1.25 135 175 1.85 0.20  65.0

(all dimensions are in m or deg)
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3. KINEMATICS OF 6-RSU MECHANISM

Kinematics of mechanisms deals with the investigation
of the mechanisms motion regarding to the geometrical
constraints of their links and divided into IKP and FKP.
In fact, IKP is to conclude the movements of
mechanism in the joint-space from the movements of
mechanisms in the work-space. In the other words and
concerning of the 6-RSU mechanism, IKP involves

mapping a known position (X,y,z) and orientation
(ar, B,y) of the moving manipulated platform center
into the rotation angles of the actuated revolute joints
6 (i=1...6) for each arm. Whereas, FKP is vice versa

and more complicate than IKP.

According to the vectorial presentation of the
h

mechanism, the length vector of the it upper arm is
defined relative to base frame as:
A =[Acoss Asing b 1 @

In which 6; is the angle between ° X of the base frame

and the i" upper arm and declares the rotation of the

i upper arm around the base column. Also, the

position vector of each universal joint in base frame
°P, =(°Ry.°Ry "R,.1) is represented by homogeneous
transformation matrix as follows:

bPi:HmovbomPi A3)

In which Hugbo is the homogeneous transformation

matrices from frame (moy to framegboyand are
described as follows:

Riz Rz Rus

R R R
Hug sg = 21 Raz Ras @
' Ra1 R3z Ras

0 0 0

=N< X

where, position of {m"oy with respect to {?oy is defined
by (x y,2) and orientation of {moy is implied by Euler
ZYZ convention as [r,]=R,,, =R, (@R, (AR, ()

Rzvz =
CaCpfCy-SaSy —-CaCpSy-SaCy CaSp 5
SaCBCy+CaSy -SaCpBSy+CaCy SaSp ©)

—-SpCy SB Sy cp
In which, c(.)=cos(), S(.)=sin() -

The length vector of the i"interface link, ®B;, relative
to the base frame {* o} is expressed as:

bB,="P P A, (6)

And the length is:
BY ="B; P="P—"A [ (7)
Substituting Equations (2), (3) into Equation (7) with
some algebraic calculations resulted in:
Kip +Ki>sing, +kizcos @ =0 (8)
where,
kis =2x CaCACy ("Ry—"Ry) + 2y "R,Sa CACy

+°RZ +2(2 - y)°R, CB -2y "Ry Sa CASy

+22(z - y) "RySpSy — 2(2— y) "RySBCy
—2x(°PySa Sy +°RySa Cy-"R,Car SpB) ©)
+2y(°PxCa Sy+°RyCa Cy+°P,Sa 5p)

+x%+ y2 +(z—- hi)2 - Biz + A,-2+bP,§+bP,§

kiz =—2A[y+°PyCa Sy+°PyCaCy
+PP_sa sp+PP, sacpey (10)
-PRysacpsy]

kis = —2A; (x—"Py Sa Sy—"Py SaCy
+PP, Ca Sp+PP CaCpCy (11)
-"PyCaCAsy)
Substituting Equations (9)-(11) into Equation (8) yields
to solution of 6; as:

o = -2arctanfki - k3 + kB + k3)/(kiz — kia)]
for i=1,2,56

6; = —2arctanflkjp + - ki + k% + ki3 )/(kil —ki3)]

for i=34

(12)

Equation (12) is the solution for IKP of 6-RSU
mechanism. As it is clear, the inverse kinematic analysis
of 6-RSU mechanism is easy and straight forward. In
FKP the position (x,y,z) and the orientation (e, 3,y) of
the moving manipulated platform center are unknown
and should be determined based on known joint-space
parameters. But, due to highly nonlinearity of
kinematics model expressed in Equations (8) and (12),
the mapping from known joint-space rotational angles
6, (i=1..,6) into the pose of the moving platforms is so
complicated. Therefore, wavelet based neural network is

proposed and applied to solve the FKP of the 6-RSU
mechanism in current work.

4. WAVELET NEURAL NETWORK
4. 1. Topology of WNN The wavelet neural

network (WNN) is an artificial neural network
technique based on wavelet transformation [16, 17].
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Convenient localization property in time domain,
efficient ability to approximate complicated mappings
and impressive learning ability are the main
characteristics of WNN make it appropriate and
successful in approximation of nonlinear systems.
Furthermore, to avoid the local minimum problem in
training procedure of the NN the WNN is superseded to
neural networks which follow the availability of the
rates of the convergence for approximation by wavelet
based networks. Proposed WNN is constructed by
association of neurons in forward pathway. In current
contribution, a feed forward MIMO-WNN is designed
with three input-hidden-output layers using wavelets as
the activate functions of the hidden layer. The proposed
WNN consist of m, p and n nodes in the input, hidden
and output layers, respectively. The number p is defined
by the minimum prediction risk principle with using
final prediction error (FPE). Figure 2 illustrates the
topology of the proposed WNN with the activate
function of the jt node in the hidden layer as:

0=y jo12
Vaj.b; —‘/;‘// a 1=12.. p (13)

where, w(t) is the wavelet function and chosen Morlet
wavelet function and f(t) is considered sigmoid
function.

4. 2. Training Algorithm For training a feed
forward networks the back propagation (BP) algorithm
is the most useful and applicable [18, 19] and it is
employed to train the proposed WNN. BP includes
forward and backward passes. The output performance
of the network is provided by the forward pass and the
backward pass specifies the initial errors for each node
of the network. So, for minimizing all specified errors
the weights of the network are regulated. Since the input
vector X =(xq, Xy, Xy,) IS feed to the proposed WNN in

Figure 2; the output of the j™ node in hidden layer is
defined as:

Dy o0 wy_ 1 FP b
Wa»,b»(z Wilxk =077) =g, b, (Fj7) =——w( ) (14)
1 = ] J aJ aJ

m
FO = widx —of) (15)
k=1

The i™ node of output layer yields to:

p
Vi = QWP (F) -0 = 1(F®) (16)
=
2 P (2) @ (2)
Fi =Z(Wij l//aj,bj(Fj )_0i ) (17)
1

Y =(Yy;,Y5,---,Y,) IS determined as the output vector of

the WNN by Equation (16). Therefore, the total error
for the network should be minimized is considered as
follows:

q=11i

Q .n
E- %Z (Vo —Yq)? (18)
=1

In which, Q is training samples, Y = (¥4, 42, Yqn) @nd
Yq = (Vg Yq2:-+ Yqn) @r€ the desired and trained WNN

output vectors, respectively. For minimizing E , the
iterative gradient descent method is employed to
formulate the WNN parameters as follows:
oE

)
wl?)
oE
w)
OE
00
OE
a6
oE
6aj
bj(t+1):(1+a)|oj(t)-obj(t-l)—ﬂtE

wi? (t+1) = @+ )W (©) - owP (t-1) - 2

wgf(ul) = (1+U)W§1k)(t)fowﬁ<)(tfl)fl

6P (t+1) = 1+0)6P 1) -0t -1 -2

(19)

0P t+) =1+ 0)0 O -coP t-1)-2

aj(t+]) =(1+op)aj()-oaj(t-1 -1

In which, tand A the are learning iteration index and
the rate of learning, respectively. Also, o is the
momentum factor and considered 0 <o <1 to improve
the rate of learning. The partial derivatives of the error
E respect to each parameter can be calculated easily.

4. 3. Optimum Topology for WNN Identification
the optimum topology and correct construction of the
network is most important steps in NN simulation which
is included the number of hidden layers and the number
of neurons in the hidden layers.

M

[ —
Output Layer

6 Neurons

[ —)

Hidden Layer Lplai (%, v, 2. B y)
6 Neurons 73 Neurons

00,. 05, ...00)

Figure 2. Topology of the Proposed WNN

Input Layer
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Networks with more or fewer hidden units than needed,
result in over-fited model or poor learning the
underlying function, respectively. In current paper, we
utilized the minimum prediction risk principle with
using final prediction error (FPE) [20] to find the best
and optimum topology of our proposed WNN.The

prediction risk P, measures the generalization ability
of network and is defined as below for network:

P, = [dx pOOL() 0] +x° =
E{%i:(y;—v;f}

where, u(x) is an unknown function, p(x) is stationary
probability density function, « is the variance of
independent random variables. Also, (x},,y,) are the

new observations that were not used in the construction

(20)

of the network and 9; is the network output forx*p.

Since finding the prediction risk is not a straight
forward procedure, we used (FPE) criterion as reported
in literture [20]:

1+E n

- n * g2 21
P 2n72k;(yp Yp) ( )

where, K is the number of parameters of the network
and nis the number of training patterns in the training

sample. The target value is given byy,, and yp the

approximation of the target value by the network. To
find the optimum topology of WNN the algorithm is
followed as below. At first a WNN without any hidden
unit is constructed. So, the network is trained and then
the prediction risk is estimated by FPE. Next, 1 hidden
unit is added to hidden layer and the network training
and prediction risk estimation is repeated. We continued
the procedure by adding hidden unit and repeating
network training and prediction risk estimation until we
reach to the predefined maximum number of hidden
units. The number of hidden units relevant to smallest
prediction risk define the optimum number of wavelets
for the best topology of network.

The algorithm is illustrated in Figure 3. Also, Figure
4 shows the prediction risk versus number of hidden
units for our proposed WNN. As it is clear, the optimum
number occurred in 73 units with 1.379 prediction risk.

5. WNN SOLUTION FOR FKP

In order to solve the FKP of 6-RSU mechanism by
means of WNN, the rotation angles of revolute joints in

joint-space, X = (6,,6,,...6;) are considered as input

data and Along with the training samples are feed to the
network for process training procedure.

To approximate the kinematics model of the 6-RSU
mechanism, the algorithm of wavelet neural network is
summarized in 5 steps.

Step 1: Set the initial values of the momentum factor o,
rate of learning 4 and the parameters of network

(W(l)’W(2)‘@(l)l@(Z)’al“_‘,ap’bly__‘bp).
Step 2: Give the input vectors X =(6,,6,,...6;) and
desired output vector Y = (X, Vq:Zq: &g By:7q) @S

the training data to handle the training of network. The
exact theoretical values of training data were obtained
by inverse kinematic solution from Equation (8).

Step 3: Estimate the output of the WNN by Equation
(16) for each input data.

Step 4: Regulate the networks parameters employing
gradient descent algorithm by Equation (19).

Step 5: The total error of the proposed network is
estimated by Equation (18).

| Train a wavelet network with zero hidden units |

A4

'_Pi Estimate the Prediction Risk |

A A
| Add one hidden unit |

YES

| Choose the model that minimizes Prediction Risk |

Figure 3. Optimum Topology Selection Algorithm by Using
FPE

Minimum Prediction Risk Criterion

Prediction Risk

Number of Units: 73
Prediction Risk : 1.379
0 20 40 60 80 100
Number of Hidden Units

Figure 4. Prediction Risk Versus Number of Hidden Units for
Our Proposed WNN
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If the error is in the desired range, the networks
parameters are determined and the learning process is
completed, else restart the learning procedure.

6. SUMULATION AND RESULTS

The results of the proposed WNN on approximating the
forward kinematic analysis of the 6-RSU mechanism
are presented in this section. The proposed structure for
designed wavelet network has one input layer with six
neurons, one hidden layer with 73 neurons and one
output layer with six neurons. The network was trained
with a learning rate of 0.21, a momentum term of 0.55,
and 1024 learning iterations. The largest error E or
given precision is less than 0.6%. First, using inverse
kinematic solution for the Hexarot, the closed form
solution (CFS) were obtained for two different paths
(paths I and I1I). Data extracted by path (I) is feed to
train the network. Besides, to verify the performance of
network after training, path (I1) is applied. Figures 5 to
10 show the results of the proposed WNN using the path
(1) for simulation.

Using the inverse kinematic analysis for proposed
paths, the motions of the each upper arm is defined.
Then, the proposed WNN is feed by the arms motions to
get the trajectory and movement paths of the
manipulated platform. Again, the outputs of the
proposed WNN are employed for inverse kinematic
analysis to define the new motions of the arms and to
the comparison with those obtained by CFS.

Figures 5 to 7 show the results for joint-space and
angular position for all six arms During Path (I). Figures
8 and 9 indicate the results for position and orientation
of manipulated platform, respectively. Also, the results
displayed in Figure 10 show the position of manipulated
platforms in 3D view. These results are employed to
train the WNN. However, verification of the proposed
WNN is executed by path (11). The results are illustrated
in Figures 11 to 16. Figures 11 to 13 present the
comparison of the results between WNN and CFS for
the movments of the arms in joint space during path (11).

Figures 14, 15 and 16 illustrate the CFS and WNN
results in work-space included position, orientation and
spatial displacement for the manipulated platform.

According to the results illustrated in Figures 5 to 16
there is good agreement between the exact solution
(CFS) and the outputs of proposed WNN. The errors are
less than %1 and it demonstrates the efficiency and
superiorityof the WNN as a powerful method to
approximate the highly nonlinear dynamic systems.

Joint-Space Positions Path(l)

©
o

—— CFS (Arm1)
® WNN (Arm1) *
CFS (Arm2)

#*  WNN (Arm2)

Angular Psition(deg)
N N ® @ © @ @
s ® & &N B & &

~
N

~
N

70 ' - - !
0 2 4 6 8 10 12

Time (s)
Figure 5. Results for Joint-Space kinematic parameters

During Path (1) — Angular Position for Arms 1 and 2

Joint-Space Positions Path(l)

——CFS (Am3)
* WNN (Am3)
CFS (Arm4)
* WNN (Arm4) o

Angular Psition(deg)
o
L

0 2‘ 4;. 6 E 1‘0 1é

Time (s)
Figure 6. Results for Joint-Space kinematic parameters
During Path (1) — Angular Position for Arms 3 and 4

90 Joint-Space Positions Path(l)

—— CFS (ArmS5)
s ® & WNN (Arm5)
85 CFS (Armé)
* * WNN (Arm6)

80 L

75

Angular Psition(deg)

65

60 ' - . !
0 2 4 6 8 10 12
Time (s)
Figure 7. Results for Joint-Space kinematic parameters

During Path (I) — Angular Position for Arms 5 and 6
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8. Results for Work-Space Kkinematic parameters

During Path (1) — Position of Manuplated Platform

150

100 -

Orientation (deg)
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o

-50 F
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Orientation of Manipulated Platform (path I)

— -CFS
®  a-WNN
3-CFS
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4-WNN

0 2 4 6 8 10 12
Time (s)

Figure 9. Results for Work-Space kinematic parameters
During Path (1) — Orientation of Manuplated Platform

3D Plot for Position of Platform (path I)

—CFS
® WNN
.
-
\\\ //,// 12
1 — > e
T~ o 1.1
0.9 T~
y pose (m) 1 X pose (m)

Figure 10. 3D Plot for Position Results of Manuplated

Platform

During Path (1) by CFS and WNN

Angular Psition(deg)

125

120 -

115

110

Joint-Space Positions Path(ll)

= CFS (Arm1)
® WNN (Arm1)
CFS (Am2)

*  WNN (Arm2)

0 2 4 6 8 10 12
Time (s)

Figure 11. Results for Joint-Space kinematic parameters
During Path (1) — Angular Position for Arms 1 and 2
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40+
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2r

Joint-Space Positions Path(ll)

—— CFS (Arm3)
* WNN (Arm3)
L CFS (Am4)
* WNN (Arm4)

0 2 4 6 8 10 12
Time (s)

Figure 12. Results for Joint-Space kinematic parameters
During Path (1) — Angular Position for Arms 3 and 4

Angular Psition(deg)
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150 ¢

130 -

125 ¢

120

Joint-Space Positions Path(ll)

= CFS (Arm5)
| ® WNN (Arm5)
——— CFS (Arm8)
#  WNN (Arm8)

0 2 4 6 8 10 12
Time (s)

Figure 13. Results for Joint-Space kinematic parameters
During Path (1) — Angular Position for Arms 5 and 6
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Position of Manipulated Platform (path II)

E —
e et —— X-CFS
S 0.8 [T * X-WNN
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a 06 *  Y-WNN
=——Z.CFS
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0
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0 2 4 6 8 10 12
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Figure 14. Results for Work-Space kinematic parameters
During Path (1) — Position of Manuplated Platform

Orientation of Manipulated Platform (path II)

—-CF8
80 ® o WNN
3-CF8
60 *  3-WNN
+CFS
4-WNN

40

20

-20

Orientation (deg)
o

-40

-60

-80

100 ‘ . . . . .
0 2 4 6 8 10 12

Time (s)
Figure 15. Results for Work-Space kinematic parameters

During Path (I1) — Orientation of Manuplated Platform

3D Plot for Position of Platform (path Il)

E * WNN
o 1.5
2
g 1
N
0.5
02 14
1 <
0 > 712
0 ™ <
> e
01 ™
g e
0.2 ‘\\)// 0.8
X pose (m ose (M,
pose (m) 03 06 y pose (m)

Figure 16. 3D Plot for Position Results of Manuplated
Platform During Path (I1) by CFS and WNN

To estimate the training and computing time for
proposed WNN, the “tic” and “toc” functions were used
in the code written in MATLAB. The training time for
1024 learning iteration is 20.68 (s) and the computing
time for simulation after training the network is less

than 0.2 (s). So, the proposed WNN can be employed to
practical applications.

7. CONCLUSIONS

The main goal of the current contribution is the
application of wavelet neural network as a useful tool to
solve the forward kinematics problem of the Hexarot.
To this end, using the vectorial and geometrical
principles, the kinematic model of the mechanism is
obtained and the inverse kinematic problem is solved.
Due to the difficulty of the forward kinematic analysis
of the parallel mechanisms and the serious impediments
of the classical numerical algorithms, neural network
analysis based on wavelet functions is proposed.
Therefore, the invers kinematic analysis is employed to
provide data for network training and verification. Back
propagation algorithm and the iterative gradient descent
method are used to minimize the total error of the
network and to formulate the WNN parameters. The
minimum prediction risk principle with using final
prediction error are utilized to find the best and
optimum topology of our proposed WNN. The proposed
WNN are exerted to the deferent paths and the accurate
results are generated. According to training approach of
the network the maximum error is less than 0.6%. So,
the comparison of the results obtained by WNN with the
CFS indicates the accurate performance and the
superiority of the proposed neural network algorithm.
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