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A B S T R A C T  
 

 

Condition monitoring is the foundation of a condition based maintenance (CBM). To relate the 

information obtained from the condition monitoring to the actual state of the system, it is usually required 
a stochastic model. On the other hand, considering the interactions and similarities that exist between 

CBM and statistical process control (SPC), the integrated models for CBM and SPC have been 

developed. These models apply control charts as a condition monitoring technique, and the inference 
about the operational states of the system is based on the collected information about the quality of the 

produced items. Finally, it is decided whether to implement certain type of maintenance actions. This 
paper describes the application of multivariate control charts as a condition monitoring technique for 

CBM purposes. To this end, an integrated model is developed, while it is used a chi-square control chart. 

Also, to determine the inspection time points, a constant hazard policy is applied. 
doi: 10.5829/ije.2018.31.04a.11 

 

 

 

NOMENCLATURE 

Ri 
Expected revenue for the system operation per time unit, 

when the system is in operational state i (i=0,1) (R0>R1) 
t Equipment age at the start of each production cycle 

CQC Sampling inspection cost 𝑘 dimension of the observations 

CPM Preventive maintenance cost 
ti (i=1,..,m-
1) 

time points of the sampling inspection (they are  the 
decision variables of the model) 

CCM Corrective maintenance cost   Probability of type I error for the control chart 

CI The cost of the maintenance inspection 
 Probability of type II error for the control chart 

ZPM Expected time required for the preventive maintenance N 
The sample size in each sampling inspection (it is a 

decision variable of the model) 

ZCM Expected time required for the Corrective maintenance tm 
Maximum duration of each production cycle (decision 

variable) 

ZI Expected time required for the maintenance inspection m 
Maximum number of the inspection periods (decision 

variable) 

f(t) Density function of time of quality shift E[T0] 
The expected time that the system operates in state 0 

during each production cycle 

F(t) 
Cumulative distribution function (c.d.f) of the time of  

quality shift (�̅�(𝑡) = 1 − 𝐹(𝑡)) 
𝑃𝑃𝑀 

Probability that a production cycle is terminated due to 

the preventive maintenance 

𝜑𝑖(𝑡) 
Density function of time to failure state if the system is in 

state i (i=0,1) at t=0 
𝑃𝐶𝑀 

Probability that a production cycle is terminated due to 

the corrective maintenance 

𝜙𝑖(𝑡) 
Cumulative distribution function (c.d.f) of time to failure 

state if the system is in state i (i=0,1) at t=0 
  

 
1. INTRODUCTION1 
 

In the most models developed for condition based 

maintenance (CBM), it is usually assumed that the 

system has several operational states plus a failure state. 

In the failure state the system stops, thus, this state is 
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directly and immediately observable. It can be easily 

distinguished from the operational states. On the other 

hand, the difference between the operational states is 

undetectable and inference about the actual operational 

state of the system is based on the condition monitoring. 

Thus, in CBM it is usually assumed that the actual 
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operational state of the system is not observable and the 

obtained information in the condition monitoring only 

partially informs about the system state. This type of 

condition monitoring is called indirect condition 

monitoring. Hence, in the indirect condition monitoring, 

it is necessary to establish a stochastic model for relating 

the obtained information from the condition monitoring 

to the actual system state [1-5].  

On the other hand, as stated by many authors, there 

are great interactions and interrelations between CBM 

and SPC [1, 6-8]. Considering the interactions and 

similarities that exist between CBM and SPC, the 

integrated models for CBM and quality control have been 

developed. These models usually apply the control chart 

as a condition monitoring technique. In these models, the 

inference about the operational states of the system is 

based on the collected information about the quality of 

the produced items. Finally, it is decided whether or not 

to implement certain types of maintenance actions. 

Indeed, the integrated models for CBM and SPC have 

been developed based on the fact that the product quality 

can partially indicates the actual operational state of the 

system.  

Wang [2] used the multivariate Bayesian control chart 

for CBM. Panagiotidou and Tagaras [6], Panagiotidou 

and Tagaras [9] proposed an integrated model for CBM 

and SPC based on the �̅� control chart. Yin et al. [10] 

developed an integrated model for CBM and SPC, while 

it was used a delayed monitoring for the CBM purposes. 

Panagiotidou and Nenes [11] used an adaptive Shewhart 

chart for the CBM purposes and proposed an integrated 

model for maintenance planning and economical design 

of  an adaptive Shewhart chart. Ardakani et al. [12] 

developed an integrated maintenance planning and SPC 

model based on the multivariate exponentially weighted 

moving average (MEWMA) chart. Jamshidi and Madie 

[13] proposed an integrated model for maintenance and 

work-rest scheduling. Lie et al. [14], according to the 

geometric process, proposed a model for CBM and SPC. 

Wu and Makis [1] proposed a model for the economic 

design of a chi-square control chart for a CBM 

application. Wu and Makis assumed that the system has 

three states including: in-control state, out-of-control 

state and failure states. Also, transition time between 

these states is based on the exponential distribution, and 

it is used Markov chain for deriving the integrated model.  

In this paper, the proposed model by Wu and Makis 

is developed based on three main contributions:  

1. while in the Wu and Makes’ study, the 

deterioration mechanism is assumed to follow the 

exponential distribution; we place no restrictive 

assumption on the deterioration mechanism of the 

system. In other words, the time to quality shift as well 

as the time to the failure state from each operational states 

were assumed as a general continuous distribution 

function.  

2. considering the memory less property of the 

exponential distribution, Wu and Makis applied Markov 

chain in deriving their model. While in this paper, 

developing the integrated CBM and SPC model is based 

on the recursive equations and renewal reward process. 

 3. the proposed model in this paper is applicable for 

different types of inspection policy, while the proposed 

model by Wu and Makis is based on the fixed time 

interval inspection policy. Thus, by releasing many 

assumptions of the Wu and Makis’ model, our proposed 

model can be applied in more practical situations and has 

a wider application domain. Indeed, the proposed model 

by Wu and Makis can be considered as a special state of 

the proposed model in this paper.  

The rest of the paper is organized as follows: section 

2 describes the considered system. In section 3, the 

proposed model is derived. In section 4, the proposed 

model in section 3 is applied for a situation that a chi-

square control chart is used as a condition monitoring 

technique. Also, constant hazard policy is introduced in 

this section. Section 5 presents two examples of the 

application of the model. Some sensitivity analyses are 

presented in section 6. Finally, section 7 concludes the 

paper.  

 

 

2. DESCRIPTION  
 
Consider a production process or a single production 

machine which may operate under different conditions. 

Specifically, the system has two operational states, as 

well as a failure state that is non-operational. The 

operational states include in-control state (denoted as 

state 0) and out-of-control state (denoted as state 1). 

Every production cycle starts from the in-control state 

and zero equipment age. The system may shift from state 

0 to state 1 or directly shift from state 0 to the failure state 

due to the usage and age. Having shifted the system to 

state 1, if this state is not identified, the system eventually 

shifts from state 1 to the failure state.   

The system operation in state 1 is undesirable in 

comparison with its operation in state 0, due to the lower 

level of the produced item quality, the lower revenue and 

the higher chance for the system complete failure. In the 

failure state, the system stops and cannot produce the 

item. No matter what is the operational states, the system 

may transit from an operational state to the failure state. 

It is assumed that the transition time from state 0 to 1, 

from state 0 to the failure state and from state 1 to the 

failure state are based on the probability functions that 

follow a general continuous distributions.  Also, the 

failure rate of the system in state 1 is higher than the 

failure rate in state 0. 

The failure state is directly and immediately 

observable because the system stops, while the inference 

about the operational states of the system (whether the 
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system is in state 1 or 0) is based on the condition 

monitoring. More specifically, the operational condition 

of the system is inferred based on the quality of the 

produced item.  Condition monitoring is implemented as 

follows: at the specific time points, such as t1, t2,…, tm-1, 

that are decision variables in the model, a sample with 

size n is taken from the produced item of the system.  

Based on the information collected from the quality 

of this sample, an appropriate statistic is computed and 

plotted on a suitable multivariate control chart. If the 

value of this statistic exceeds the control limits of the 

chart, the chart alarms meaning that the system probably 

operates in the out-of-control state. To determine the 

actual state of the system, an error free inspection is 

conducted after releasing each alarm from the control 

chart.  This inspection is called maintenance inspection 

to distinguish it from the sampling inspection.  If the 

maintenance inspection indicates that the system is in 

state 1 then preventive maintenance (PM) is implemented 

on the system. But if the maintenance inspection 

concludes that the system state is 0 (in other words the 

chart alarm is incorrect) then the system will continue its 

operation without any further actions.  

Once the system transits to the failure state, the 

corrective maintenance (CM) is conducted and the 

system renews. It is possible for the system to operate 

without transiting to the failure state until the end of the 

production cycle (at time point tm). In this situation the 

system may be in state 0 or 1 however, regardless of the 

system state at tm , the PM is implemented. Thus, PM is 

conducted in two general situations: 1- after releasing a 

true out-of-control signal from the control chart and 2- if 

the system reaches the time point tm. Hence, two types of 

maintenance is implemented on the system: PM and CM. 

It is assumed that both types of the maintenance are 

perfect such that they can renew the system to the as-

good-as new state. Once each type of the maintenance is 

implemented on the system, the system renews and a new 

production cycles starts.  

 

 

 

3. MODEL DEVELOPMENT 
 

In this section, based on the renewal reward process and 

recursive equations, an integrated stochastic model is 

developed for CBM and SPC 

 

3. 1. System Evolution During an Inspection 
Interval        In each inspection interval, six different 

scenarios are possible for the system operation. These 

scenarios are illustrated in Table 1. Also, in this table, the 

pertinent  

3. 2. System State at the Start of Each Inspection 
Interval      Let denote  𝑃𝑡𝑖

0  , 𝑃𝑡𝑖
1  as the probabilities that, 

immediately after inspection at ti, the system operates in 

the in-control state or out-of-control state, respectively. 

In this subsection, the computation of these probabilities 

is described. 𝑃𝑡𝑖

0  is given by:  

𝑃𝑡𝑖

0 = �̅�(𝑡𝑖)Φ̅0(𝑡𝑖);  ;   1 ≤ 𝑖 ≤ 𝑚     (1) 

This equation is obtained based on the fact that the 

system operates in state 0 at 𝑡𝑖, if and only if the time to 

quality shift as well as the transition time from state 0 to 

the failure state be greater that 𝑡𝑖.  𝑃𝑡𝑖
1  is calculated based 

on this recursive formula: 

𝑃𝑡𝑖

1 = 𝛽𝑃𝑡𝑖−1

0 . 𝑃(𝑏𝑡𝑖−1
) + 𝛽𝑃𝑡𝑖−1

1 . 𝑃(𝑒𝑡𝑖−1
);   1 ≤ 𝑖 ≤ 𝑚 − 1  (2) 

This equation is obtained as follows: with respect to 

Table 1, it is clear that the system will operate in state 1 

at 𝑡𝑖 in two cases: (1) if the system is in state 0 at 𝑡𝑖−1 , 

scenario b occurs and the control chart cannot identify 

this state; or (2) the system is in state 1 at 𝑡𝑖−1, scenario 

e occurs and the control chart cannot identify this state. It 

is assumed that there is no sampling inspection at tm. 

Hence, for the last inspection time we have: 

𝑃𝑡𝑚

1 = 𝑃𝑡𝑚−1

0 . 𝑃(𝑏𝑡𝑚−1
) + 𝑃𝑡𝑚−1

1 . 𝑃(𝑒𝑡𝑚−1
)  (3) 

Both maintenance types are assumed to be perfect. 

Hence, at the start of each production cycle the following 

equation is held: 

𝑃𝑡0

0 = 1; 𝑃𝑡0

1 = 0  (4) 

Equation (4) indicates that, as it was assumed, each 

production cycle starts with a new zero-age system. In 

other words, at the start of each production cycle the 

system is in state 0. 

 
3. 3. Expected In-control and out-of-control Time    
Expected time during each production cycle that the 

system operates in the in-control state can be obtained 

using the following equation: 

𝐸[𝑇0] = ∫ �̅�(𝑡)�̅�0(𝑡)𝑑𝑡
𝑡𝑚

0
  (5) 

Expected time during the inspection interval (𝑡𝑖−1, 𝑡𝑖) 

that the system operates in the out-of-control state is 

denoted by 𝑇1
𝑖 . Using the following equation, 𝑇1

𝑖 can be 

computed:  

𝑇1
𝑖 = 𝑃(𝑡𝑖−1

0 ) [∫ (𝑡𝑖 − 𝑡)
𝑓(𝑡)

�̅�(𝑡𝑖−1)

�̅�0(𝑡)

�̅�0(𝑡𝑖−1)

𝑡𝑖

𝑡𝑖−1

�̅�1(𝑡𝑖)

�̅�1(𝑡)
𝑑𝑡] +  

𝑃(𝑡𝑖−1
0 ) ∫ (𝑡′ − 𝑡)

𝑓(𝑡)

�̅�(𝑡𝑖−1)

𝑡𝑖

𝑡𝑖−1

�̅�0(𝑡)

�̅�0(𝑡𝑖−1)
∫

𝜑1(𝑡′)

�̅�1(𝑡)

𝑡𝑖

𝑡
𝑑𝑡′𝑑𝑡  

+ 𝑃(𝑡𝑖−1
1 )[

�̅�1(𝑡𝑖)

�̅�1(𝑡𝑖−1)
(𝑡𝑖 − 𝑡𝑖−1) + ∫ (𝑡 − 𝑡𝑖−1)

𝜑1(𝑡)

Φ̅1(𝑡𝑖−1)

𝑡𝑖

𝑡𝑖−1
𝑑𝑡];    

1 ≤ 𝑖 ≤ 𝑚 

(6) 

This equation is obtained considering the depicted 

scenarios in Table 1 and their corresponding in-control 

and out-of-control duration.   
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TABLE 1. Different scenarios that may occur for the evolution of the considered system during each inspection interval 

Scenario Figure Probability In-control time Out-of-control time 

a 

 

𝑃(𝑎𝑡𝑖−1
) =

�̅�(𝑡𝑖)�̅�0(𝑡𝑖)

�̅�(𝑡𝑖−1)�̅�0(𝑡𝑖−1)
  𝑡𝑖 − 𝑡𝑖−1 0 

b 

 

𝑃(𝑏𝑡𝑖−1
) = ∫

𝑓(𝑡)

�̅�(𝑡𝑖−1)

�̅�0(𝑡)

�̅�0(𝑡𝑖−1)

𝑡𝑖

𝑡𝑖−1

�̅�1(𝑡𝑖)

�̅�1(𝑡)
𝑑𝑡  𝑡 − 𝑡𝑖−1 𝑡𝑖 − 𝑡 

c 

 

𝑃(𝑐𝑡𝑖−1
) ∫

𝜑0(𝑡)

�̅�0(𝑡𝑖−1)

�̅�(𝑡)

�̅�(𝑡𝑖−1)

𝑡𝑖

𝑡𝑖−1
𝑑𝑡  𝑡 − 𝑡𝑖−1 0 

d 

 

𝑃(𝑑𝑡𝑖−1
) =

∫
𝑓(𝑡)

�̅�(𝑡𝑖−1)

𝑡𝑖

𝑡𝑖−1

�̅�0(𝑡)

�̅�0(𝑡𝑖−1)
∫

𝜑1(𝑡′)

�̅�1(𝑡)

𝑡𝑖

𝑡
𝑑𝑡′𝑑𝑡  

𝑡 − 𝑡𝑖−1 𝑡′ − 𝑡 

e 

 

𝑃(𝑒𝑡𝑖−1
) =

�̅�1(𝑡𝑖)

�̅�1(𝑡𝑖−1)
  0 𝑡𝑖 − 𝑡𝑖−1 

f 

 

𝑃(𝑓𝑡𝑖−1
) = ∫

𝜑1(𝑡)

Φ̅1(𝑡𝑖−1)

𝑡𝑖

𝑡𝑖−1
𝑑𝑡  0 𝑡 − 𝑡𝑖−1 

 

 

3. 4. Performance Probability of Each Type of the 
Maintenance     Probability of performance of the PM 

action at the end of the inspection interval (𝑡𝑖−1, 𝑡𝑖) is 

denoted by 𝑃𝑃𝑀
𝑖 . Using the following equation 𝑃𝑃𝑀

𝑖  can 

be calculated: 

𝑃𝑃𝑀
𝑖 = 𝑃𝑡𝑖−1

0 (1 − 𝛽)𝑃(𝑏𝑡𝑖−1
) + 𝑃𝑡𝑖−1

1 (1 −

𝛽)𝑃(𝑒𝑡𝑖−1
);     1 ≤  𝑖 ≤ 𝑚 − 1  

(7) 

This equation is obtained as follows: with respect to 

Table 1, it is clear that at ti, PM is implemented on the 

system in two cases: (1) if the system is in state 0 at 𝑡𝑖−1 

, scenario b occurs and the control chart identify this 

state; or (2) the system is in state 1 at 𝑡𝑖−1, scenario e 

occurs and the control chart identify this state. At time 

point tm , neither maintenance inspection nor sampling 

inspection is implemented on the system. Thus, the 

probability for conducting the PM action at tm is 

computed as follows:  

𝑃𝑃𝑀
𝑚 = 𝑃𝑡𝑚−1

0 [𝑃(𝑎𝑚−1) + 𝑃(𝑏𝑚−1)] +

𝑃𝑡𝑚−1

1 𝑃(𝑒𝑚−1);      
(8) 

Based on the description presented in Section 2, a 

production cycle may be terminated by conducting PM 

or CM action. Thus, the probability for terminating a 

production cycle by conducting  CM on the system is as 

follows:  

𝑃𝐶𝑀 = 1 − ∑ 𝑃𝑃𝑀
𝑖𝑚

𝑖=1   (9) 

 

3. 5. Probability of Conducting the Sampling 
Inspection       The probability of conducting the 

sampling inspection at the end of the inspection interval 

(𝑡𝑖−1, 𝑡𝑖) is denoted by 𝑃𝑄𝐶
𝑖 . Using the following equation 

𝑃𝑄𝐶
𝑖  can be obtained:  

𝑃𝑄𝐶
𝑖 = 𝑃𝑡𝑖−1

0 . [𝑃(𝑎𝑡𝑖−1
) + 𝑃(𝑏𝑡𝑖−1

)] +

𝑃𝑡𝑖−1

1 𝑃(𝑒𝑡𝑖−1
);   1 ≤  𝑖 ≤ 𝑚 − 1  

(10) 
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Also, in the special case that m=1, 𝑃𝑄𝐶 = 0. Equation 

(10) is true because the sampling inspection is performed 

at 𝑡𝑖, if and only if, the system is in state 0 or 1 at 𝑡𝑖. 

Considering Table 1, it is clear that the system is in state 

0 or 1 if one of the scenarios a, b or e occurs. 

 

3. 6. Probability of Releasing a False Alarm   The 

probability of releasing a false alarm from the control 

chart at inspection time point 𝑡𝑖 is denoted by 𝑃𝛼
𝑖 . Using 

the following equation 𝑃𝛼
𝑖  can be obtained: 

𝑃𝛼
𝑖 = 𝛼�̅�(𝑡𝑖)Φ̅0(𝑡𝑖); ;   1 ≤  𝑖 ≤ 𝑚 − 1 (11) 

Equation (11) is obtained based on the fact that the 

control chart releases a false alarm at 𝑡𝑖 ,if and only if, the 

time to quality shift as well as the time to failure state 

from state 0, be greater that 𝑡𝑖. Also 𝛼 is the probability 

of releasing a false alarm from the control chart. For the 

special state that m=1, 𝑃𝛼 = 0. 
 

3. 7. Expected Profit Per Time Unit    The integrated 

model consists of independent and stochastic identical 

cycles. Thus the expected profit per time unit (EPT) for 

the system operation can be computed based on the 

renewal reward process. Let define E[T] and E[P] as the 

expected time for the system operation in each 

production cycle and the expected profit for the system 

operation in each production cycle, respectively. Then 

EPT is computed as follows:   

𝐸𝑃𝑇 =
𝐸[𝑃]

𝐸[𝑇]
 (12) 

Considering the descriptions presented so far E[T] and 

E[P] are computed as follows:  

𝐸[𝑃] = 𝑅0𝐸[𝑇0] + 𝑅1 ∑ 𝑇1
𝑖𝑚

𝑖=1 − 𝐶𝑄𝐶 ∑ 𝑃𝑄𝐶
𝑖𝑚−1

𝑖=1 −

𝐶𝐼 ∑ 𝑃𝛼
𝑖𝑚−1

𝑖=1 − (𝐶𝐼 + 𝐶𝑃𝑀) ∑ 𝑃𝑃𝑀
𝑖𝑚

𝑖=1 − 𝐶𝐶𝑀𝑃𝐶𝑀 + 𝐶𝐼. 𝑃𝑃𝑀
𝑚   

(13) 

𝐸[𝑇] = 𝐸[𝑇0] + ∑ 𝑇1
𝑖𝑚

𝑖=1 − 𝑍𝐼 ∑ 𝑃𝛼
𝑖𝑚−1

𝑖=1 − (𝑍𝐼 +
𝑍𝑃𝑀) ∑ 𝑃𝑃𝑀

𝑖𝑚
𝑖=1 − 𝑍𝐶𝑀𝑃𝐶𝑀 + 𝑍𝐼. 𝑃𝑃𝑀

𝑚   
(14) 

Finally, optimization of Equation (12) determines the 

decision variables of the integrated model. 

 

 

4. CBM USING A MULTIVARIATE CONTROL CHART 
AND DETERMINING THE INSPECTION POLICY 
 

In this section, it is assumed that a chi-square control 

chart is applied as a condition monitoring technique. 

Also, the application of the constant hazard policy as an 

inspection policy is elaborated. 

 
4. 1. Application of a Chi-square Control Chart for 
CBM     Consider a chi-square control chart is employed 

for the CBM purposes. In the following the details are for 

the CBM purposes. In the following the details are 

described. It is assumed that when the system is in state 

0, Xi, the quality characteristic of the item at time ti, is a 

k-dimensional vector has a multivariate normal 

distribution with parameters (𝝁𝟎, 𝚺𝟎). In the out-of-

control state Xi has a multivariate normal distribution 

with parameters (𝝁𝟏, 𝚺𝟎). Thus, occurring of the 

assignable cause only affects the mean of the system 

while has no influence on the covariance matrix. In the 

sampling time points 𝑡1, 𝑡2, … , 𝑡𝑚−1, a sample with size n 

is taken from the system and the value of the statistic 

𝜒𝑖
2 = 𝑛(�̅�𝒊 − 𝝁𝟎)′𝚺𝟎

−𝟏(�̅�𝒊 − 𝝁𝟎) is computed and plotted 

on the chi – square control chart.  If the system is in state 

0 then 𝜒𝑖
2 has a central chi-square distribution with k 

degrees of freedom. In the out-of-control state, 𝜒𝑖
2 has a 

non - central chi-square distribution with k degrees of 

freedom and non-centrality parameter 𝛿 = 𝑛(𝝁𝟏 −

𝝁𝟎)′𝚺𝟎
−𝟏(𝝁𝟏 − 𝝁𝟎). 

As any control chart, the chi-square control chart also has 

three parameters that includes the sample size, sampling 

interval and control limit. The chi-square control chart 

only has an upper control limit denoted by UCL. The 

probability of type I error is computed using the 

following equation: 

𝛼 = ∫ 𝑓(𝑥)𝑑𝑥

∞

𝑈𝐶𝐿

 (15) 

where, f(x) is a chi-square distribution with k degrees of 

freedom. When the system operates in state 1 the 

probability of type II error is computed as follows: 

𝛽 = ∫ 𝑓𝛿(𝑥)𝑑𝑥

𝑈𝐶𝐿

0

 (16) 

while, 𝑓𝛿(𝑥) is a non-central chi-square distribution with 

 as a non-centrality parameter and k degrees of freedom.  
 

4. 2. Constant Hazard Policy      In this subsection, it 

is discussed how the inspection time points, 

(𝑡1, 𝑡2, … , 𝑡𝑚−1), can be determined. As states by [15] 

different types of inspection policy may be applied for 

process monitoring and determining the inspection time 

points. Constant hazard policy is an inspection policy that 

appropriate for a system that its deterioration does not 

follow the exponential distribution [6]. Based on this 

policy, the inspection time points are determined such 

that the probability for quality shift remains constant in 

each inspection interval given that the system operates in 

the in-control state at the start of that interval. The 

inspection times are determined using the following 

equation: 

∫ ℎ(𝑡)𝑑𝑡
𝑡𝑖

𝑡𝑖−1
= ∫ ℎ(𝑡)𝑑𝑡

𝑡𝑖+1

𝑡𝑖
;   𝑖 = 1,2, … , 𝑚  (17) 

In this formula, h(t) is the hazard rate function that is 

obtained as follows: 

ℎ(𝑡) =
𝑓(𝑡)

𝐹(𝑡)
  (18) 
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By assigning an arbitrary value to t1 the other inspection 

time points can be determined by Equation (17). 

 

 

5. NUMERICAL EXAMPLE 
 

In the numerical examples presented in this section, it is 

assumed that time to quality shift, time  to transit from 

state 0 to the failure state as well as time to transit from 

state 1 to the failure state are based on a Weibull 

distribution as the following cumulative distribution 

function: 

𝐹(𝑥) = 1 − exp[−(𝜆𝑡)𝑣] ;     𝑣, 𝜆, 𝑡 ≥ 0 (19) 

where, 𝜆 and v are the scale and shape parameter of the 

Weibull distribution, respectively.  

Example 1. In this example, the observation vector has  

two dimensions as follows: 𝝁𝟎 = (0,0) , 𝝁𝟏
′ = (2,5.25) 

and 𝚺𝟎 = [
2 1
1 2.5

] ,hence 𝛿  is obtained 11.  

Also, the sample size is assumed 1 as the We and 

Makis’ study [1]. The other parameters of the numerical 

example are shown in Table 2. In this table Cf and Cv are 

the fixed and variable sampling cost, respectively Thus, 

CQC for n units is Cf+n×Cv. 

It is used a grid search algorithm coded in MATLAB 

program for optimizing the proposed integrated model. 

The result of the integrated model optimization is as 

follows: 

EPT=351; t1=3.3; UCL= 9.2; m=19; tm=14.38 

This result indicates that monitoring of the process is 

started after passing 3.3 time unit from the start of each 

production cycle. Other inspection time points are 

obtained based on Equation (17). In each inspection time, 

a sample is taken from the process and for each item a 

vector of observation is obtained and the value of the 

statistic 𝜒𝑖
2 is computed. The upper limit of the chi – 

square control chart is 9.2. After passing 19 inspection 

periods and at time 14.38 the production cycle is 

terminated. Applying these approach leads to maximize 

the expected profit per time that is equal to 351. The 

control chart used in this example is illustrated in Figure 

1.  

Example 2. Suppose that the observation vector has 

three dimensions. The means of the process in the in-

control state and out-of-control state are: 𝝁𝟎 =
[1.5, 2.3, 2.5]; 𝝁𝟏

′ = [4.7, 4.3, 6.6]  respectively. The 

covariance matrix is: Σ = [
3 2.5 −1

2.8 6.1 4
4.2 3.8 5.1

]. 

 

 
Figure 1. A Chi-square control chart to monitor the process 

 

 

Based on equation 𝛿 = 𝑛(𝝁𝟏 − 𝝁𝟎)′𝚺𝟎
−𝟏(𝝁𝟏 − 𝝁𝟎), 𝜹 =

𝟑. 𝟐𝟗. The other parameters are similar to Example 1. 

The results are as follows:  

𝐸𝑃𝑇 =97.79; 𝑡1 = 6.9; 𝑈𝐶𝐿 = 4.6; 𝑚 = 3; 𝑡𝑚 = 11.95.  

 

 

6. SENSETIVITY ANALYSIS 
 

In this section, some sensitivity analysis is conducted on 

the key parameters of the process. Throughout this 

section, with respect to Example 1 in Section 5, some 

changes are made on the values of the process parameters 

and the result of the integrated model optimization is 

analyzed. 

 

6. 1. The Effect of the Parameters of the Weibull 
Distribution      In this subsection, the effect of the 

parameters of the Weibull distribution is studied. First, 

the effect of the shape parameter, 𝜈, is studied. Figure 2 

illustrates the effect of the shape parameter. As can be 

seen, an increase in the value of the shape parameter has 

an increasing effect on the values of EPT and 𝑡1. On the 

other hand, the increase in the value of the shape 

parameter leads to a decrease in the values of m and tm. 

Increase in the value of 𝑡1 can be justified based on the 

fact that in a Weibull distribution (for a fixed value of the 

scale parameter), increase of the shape parameter leads to 

the reduction of the variance of the distribution. Hence, 

for the larger values of the shape parameter, it is easier to 

predict the failure time. Also, change on the value of the 

shape parameter has no significant effect on the value of 

UCL. Now, we proceed to study the effect of the scale 

parameter of the Weibull distribution. The result is 

indicated in Figure 3. 

 

 

TABLE 2. The parameters of the numerical example 

parameter δ fC vC IR 0R 1C CMC PMC IZ RMZ PMZ 𝒗 = 𝒗𝟎 = 𝒗𝟏 𝝀 = 𝝀𝟎 𝝀𝟏 

value 11 5 1 50 500 50 1000 500 0.5 2 1 2 0.059 0.089 
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Figure 2. the effect of the shape parameter of the Weibull 

distribution 
 
 

Decreasing the values of the scale parameter, as 

expected, leads to an increase in the value of EPT, 

because in a Weibull distribution, the smaller values of 

the scale parameter yield to a larger values of the mean 

value. 
 

 

 
Figure 3. The effect of the scale paramter of the Weibull 

distribution 

6. 2. The Effect of the Revenue Parameters      In this 

subsection, the effect of change on the values of 𝑅0 and 

𝑅1 is analyzed. First, assume that the values of 𝑅1 

increases from 50 to 100. The results of optimization are 

as follows: EPT=352; t1=3.5; UCL=9.2; m=17; tm=14.3. 

As observed, increase in the value of R1 from 50 to 

100 does not have a significant effect on the decision 

variables of the model. In the next step, the values of R_0 

changes from 500 to 200. The results are as follows: 

EPT=101; t1=4.9; UCL=7.8; m=10; tm=14.7 

As can be seen, unlike the effect of R_1, a decrease in 

the value of R0 has a drastic decreasing effect on EPT , 

so that the value of EPT decreases from 351 to 101.   

 

6. 3. The Effect of the Parameters of the 
Maintenance Costs      Figure 4 illustrates the effect of 

the maintenance cost. To this end, the values of the 

corrective maintenance cost,𝐶𝐶𝑀 is increased, while the 

preventive maintenance cost is unchanged. As expected, 

the increase in the value of  𝐶𝐶𝑀 leads to a decrease on 

the value of EPT. Also, this change has a decreasing 

effect on the values of 𝑡𝑚 and m, while it has no 

significant effect on the values of UCL and 𝑡1. 

 
 

 

 
Figure 4. the effect of the values of the corrective 

maintenance cost 

 
 
4. CONCLOSION 
 
In this paper, an integrated model for CBM and SPC is 

developed. With respect to the current CBM models that 

have used the multivariate control charts as a condition 
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monitoring technique, the proposed model has a more 

general structure and a wider application domain because 

this model has three main novelties:  

1- we place no restrictive assumption on the 

deterioration mechanism of the system. In other words, 

the time to quality shift as well as the time to the failure 

state from each operational states are assumed as a 

general continuous distribution function;  

2- developing the integrated CBM and SPC model in 

this paper is based on the recursive equations and renewal 

reward process. Thus, the model can be easily applied for 

the other control charts; 3- the model can be applied for 

different types of inspection policy, because the 

inspection time points are considered as the decision 

variables of the model. 
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چكيده
 

 

اساس سیاست نگهداری و تعمیرات مبتنی بر وضعیت، پایش وضعیت است. معمولا برای ارتباط دادن اطلاعات بدست آمده 

از پایش وضعیت به حالت واقعی سیستم، نیاز به مدل های احتمالی است. از طرف دیگر، با درنظر گفتن ارتباط نزدیکی که 

فرایند آماری وجود دارد، مدل های یکپارچه توسعه داده شده است.  بین نگهداری و تعمیرات  مبتنی بر وضعیت و کنترل

این مدل ها از نمودارهای کنترل به عنوان یک ابزار پایش وضعیت استفاده می کنند و استنباط در مورد وضعیت عملیاتی 

ه چه نوع تدابیر سیستم برمبنای اطلاعات بدست آمده از پایش وضعیت صورت می گیرد. درنهایت تصمیم گرفته می شود ک

نگهداری و تعمیراتی به کارگفته شود. این مقاله کاربرد نمودارهای کنترل چند متغیره را به عنوان یک تکنیک پایش وضعیت، 

در نگهداری و تعمیرات مبتنی بر وضعیت نشان می دهد. در این راستا، یک مدل یکپارچه توسعه داده شده در حالیکه از 

نرخ  ر استفاده می شود. همچنین برای تعیین دوره های بازرسی، یک سیاست تحت عنوان سیاستنمودار کنترل کای اسکوا

 .شودخرابی ثابت به کار گرفته می
doi: 10.5829/ije.2018.31.04a.11 

  


