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A B S T R A C T  
 

 

This paper considers a multi-period, multi-product inventory-routing problem in a two-level supply 
chain consisting of a distributor and a set of customers. This problem is modeled with the aim of 

minimizing bi-objectives, namely the total system cost (including startup, distribution and maintenance 

costs) and risk-based transportation. Products are delivered to customers by some heterogeneous vehicles 
with specific capacities through a direct delivery strategy. Additionally, storage capacities are considered 

limited and the shortage is assumed to be impermissible. To validate this new bi-objective model, the ε-

constraint method is used for solving problems. The ε-constraint method is an exact method for solving 
multi-objective problems, which offers Pareto's solutions, such as meta-heuristic algorithms. Since 

problems without distribution planning are very complex to solve optimally, the problem considered in 

this paper also belongs to a class of NP-hard ones. Therefore, a non-dominated sorting genetic algorithm 
(NSGA-II) as a well-known multi-objective evolutionary algorithm is used and developed to solve a 

number of test problems. In this paper, 20 sample problems with the -constraint method and NSGA-II 

are solved and compared in different dimensions based on Pareto's solutions and the time of resolution. 

Furthermore, the computational results showed the better performance of the NSGA-II. 
doi: 10.5829/ije.2018.31.04a.10 

 

 
1. INTRODUCTION 
1 
An inventory-routing problem (IRP) is derived from a 

vehicle routing problem (VRP), in which inventory 

control and routing decisions are merged. Numerous 

studies and analyses have been carried out on IRPs 

previously; for example, a comprehensive review has 

been presented by Anderson [1]. Having analyzed the 

industrial aspects of the problem, an inclusive 

classification and review of previous studies, direct 

shipment is discussed. That is one of many distribution 

strategies used in IRP; in which each vehicle only 

delivers products to retailers once during each cycle. Due 

to the simplicity of implementation associated with this 

distribution strategy, it is normal for such a strategy to be 

considered first in IRP [2]. 

Li et al. [3] considered IRP with a condition of a 

supplier only holding one means of transport and only 

being able to deliver products to one customer in each 
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period. They developed an innovative algorithm to obtain 

the feasible sequence. Campbell and Hardin [4] 

examined the minimum number of required vehicles in 

IRP with direct shipment and proposed a greedy 

algorithm as a solution. Cheng and Duran [5] proposed a 

model for the IRP in global crude oil supply chain, in 

which customer demand and shipment duration are 

indecisive, and a customer demand is dynamic. In this 

paper for planning and controlling the inventory and 

transportation system, a decision support system method 

was used. 

Niyakan and Rahimi [6] studied the multi-objective 

IRP with a fuzzy approach in a health environment. They 

proposed a combined fuzzy approach to solve the 

problem in a state of uncertainty and proved the 

performance and efficiency of this proposed algorithm. 

Cheng et al. [7] also studied the multi-period IRP based 

on environmental issues. They used a hybrid genetic 

algorithm (GA) and obtained the significance of the 
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environmental issue (i.e., the amount of carbon dioxide 

emissions).  

Cardenas-Barron et al. [8] proposed a new approach to 

solve the multi-product multi-period inventory lot sizing 

with a supplier selection problem. They applied a new 

algorithm based on a reduced and optimized approach. 

They proposed a new valid inequality to solve the model.  

Moubed and Mehrjerdi [9] suggested a hybrid dynamic 

programming method for an inventory-routing problem 

in collaborative reverse supply chains. They used a 

hybrid heuristic algorithm combining dynamic 

programming, ant colony optimization and tabu search in 

order to solve the problem. Esmaili and Sahraeian [10] 

proposed a new bi-objective model for a two-echelon 

capacitated IRP for perishable products with the 

environmental factor. They solved the model with the 

simple additive weighting (SAW) and compared with 

GAMS software. 

Fattahi et al. [11] proposed a bi-objective model for a 

multi-period two-echelon perishable product IRP with 

production and lateral transshipment. They used the 

NSGA-II to solve the model. 

One of the important issues in IRPs at tour selection is 

the manner of risk issue. In the IRP, we should consider 

the risk of transporting hazardous material and 

environmental and human, which can cause damage. 

Given the importance of this issue, in our model, also the 

risk was considered. 

It is to be noted that except for the investigations by 

Niakan and Rahimi [6] and Nolz et al.[12], who 

introduced a risk factor in IRP by considering it in their 

problems. There was no studies that have considered 

such issues in IRPs. Therefore, our contributions in this 

paper are as follows: 

 Considering the transportation risk in the model. 

 Considering the backhaul transportation option on 

IRP model. 

 Considering the problem in a bi-objective multi-

product, multi-period and heterogeneous fleet form. 

The problem discussed in this paper is considered NP-

hard based on previous research. Thus, solving the 

problem in reasonable computational time using exact 

methods is not possible, especially for large-scale 

problems. However, it is possible to use meta-heuristic 

algorithms in order to obtain near-optimal (or Pareto-

optimal) solutions in a reasonable amount of 

computational time. To the best of our knowledge, 

heuristic/meta-heuristic algorithms have been considered 

a few studies in solving IRP under some mentioned 

constraints. Therefore, NSGA-II algorithm is employed 

to solve the given problem, and its efficiency is compared 

to the epsilon-constraint method on several random 

sample problems. 

 

 

 

2. MATHEMATICAL MODEL 
 
2. 1. Modeling Framework       This paper proposes a 

multi-objective multi-period and multi-product IRP with 

backhaul transportation, which can be formulated in the 

form of a mixed-integer programming (MIP) model. The 

model consists of two objective functions. The first 

objective function minimizes the total system cost (i.e., 

startup, distribution and maintenance costs) and the 

second objective function reduces transportation risk. 

In connection with this issue, for each route that 

transit happens, risk variables are used. These variables 

are different for specific periods and products. In this 

model, each route is associated with a specific 

transportation risk rijvt. This risk is usually considered for 

the transportation of hazardous materials (e.g., gas pipes 

and oil). Risk calculations have been carried out using the 

findings of Marhavilas [13].  

However, for simplicity, we use random numbers 

with a uniform distribution in the calculation of the 

transportation risk. 

Finally, the proposed model is based on the 

following assumptions: 

 Model is a single depot that services to all of the 

customers. 

 Distribution fleet is heterogeneous. 

 Distances between points are known. 

 Demands of customers are predetermined. 

 Shortages are not allowed. 

Before describing the model, the notations used to 

describe the model are defined below. 

 

2. 2. Sets and Indices 

i, j, µ, λ: Demand nodes index 

A: 
Total number of customers 

(A=1,…,U, U+1,…, U+W) 

u: Index of customers on the inhaul trip 

w: Index of customers on the backhaul trip 

{0,U+W+1}: Depot index 

v: Vehicle index 

P: Distributable product index 

t: Index of time periods 

 

2. 3. Parameters  
cfv

t:      Fixed cost of using vehicle v in period t 

cvv
t:     Variable costs of using vehicle v in period t 

duit
p:   Demand of the i-th customer on the initial trip  for 

product p in period t 

dwit
p:  Demand of the i-th customer on return trip for  

product p period t.  

Qv:      Capacity of vehicle v per unit weight 
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rijvt:    Risk between customers i and j by vehicle v in 

period t 

Ci:      Inventory capacity of the i-th customer 

Sij:      Edge length between customers i and j 

Cijvt:  Costs of traverse between customers i and j by  

vehicle v in period t. 

yi
p:     Storage and maintenance costs undergone by the i-

th customer product p 

qp:     Weight of product p. 

 

2. 4. Variables 
Mivt

p: Amount of product p delivered to the i-th customer 

by vehicle v in period t (inhaul trip). 

Nivt
p: Amount of product p received from the i-th 

customer by vehicle v in period t (backhaul trip). 

Iit
p:   Amount of inventory of product p held by the i-th 

customer at the end of period t. 

Bijvt
p: The amount of product p transported from customer 

i to j by vehicle v during period t. 

 

2. 5. Mathematical Model 

Min 𝑍1 = ∑ ∑ ∑ 𝑐𝑓𝑣
𝑡 . 𝑥0𝑗𝑣𝑡 +𝑈+𝑊

𝑗=1
𝑉
𝑣=1

𝑇
𝑡=1

∑ ∑ ∑ ∑ 𝑐𝑖𝑗𝑣𝑡. 𝑥𝑖𝑗𝑣𝑡 +𝑉
𝑣=1

𝑈+𝑊
𝑗=0

𝑈+𝑊
𝑖=0

𝑇
𝑡=1

∑ ∑ ∑ 𝑦𝑖
𝑝

. 𝐼𝑖𝑡
𝑝𝑃

𝑝=1
𝑈+𝑊
𝑖=1

𝑇
𝑡=1   

(1) 

Min 𝑍2 =
∑ ∑ ∑ ∑ 𝑟𝑖𝑗𝑣𝑡. 𝑥𝑖𝑗𝑣𝑡

𝑉
𝑣=1

𝑈+𝑊
𝑗=0

𝑈+𝑊
𝑖=0

𝑇
𝑡=1    ;    ∀ 𝑣, 𝑡  

(2) 

𝐼𝑖,𝑡−1
𝑝

− 𝐼𝑖,𝑡
𝑝

+ ∑ 𝑀𝑖𝑣𝑡
𝑝

= 𝑑𝑢𝑖𝑡
𝑝

 ;  ∀ 𝑖 ∈𝑉
𝑣=1

{1, … , 𝑈} , 𝑣, 𝑡       
(3) 

𝐼𝑖,𝑡−1
𝑝

− 𝐼𝑖,𝑡
𝑝

− ∑ 𝑁𝑖𝑣𝑡
𝑝

= −𝑑𝑤𝑖𝑡
𝑝

  ;𝑉
𝑣=1   

∀ 𝑖 ∈ {𝑈 + 1, … , 𝑈 + 𝑊} , 𝑣, 𝑡  
(4) 

∑ ∑ 𝐵𝜇𝑖𝑣𝑡
𝑝

− ∑ ∑ 𝐵𝑖𝜆𝑣𝑡
𝑝

=𝑈+𝑊+1
𝜆=1

𝑉
𝑣=1

𝑈
𝜇=0

𝑉
𝑣=1

∑ 𝑀𝑖𝑣𝑡
𝑝𝑉

𝑣=1   ;  

∀ 𝑖 ∈ {1,2, … , 𝑈} , ∀ 𝑡, 𝑝  ,   𝑖 ≠ µ ≠ 𝜆 

(5) 

∑ ∑ 𝐵𝑖𝜆𝑣𝑡
𝑝

− ∑ ∑ 𝐵𝜇𝑖𝑣𝑡
𝑝

=𝑈+𝑊
𝜇=1

𝑉
𝑣=1

𝑈+𝑊+1
𝜆=𝑈+1

𝑉
𝑣=1

∑ 𝑁𝑖𝑣𝑡
𝑝𝑉

𝑣=1  ;   

∀ 𝑖 ∈ {𝑈 + 1, … , 𝑈 + 𝑊} , ∀ 𝑡, 𝑝, 𝑖 ≠ µ ≠ 𝜆 

(6) 

∑ ∑ 𝑥𝑖𝑗𝑣𝑡 ≤ 1    ; 𝑈+𝑊
𝑖=0

𝑉
𝑣=1   

∀ 𝑗 𝜖 {1, … , 𝑢 + 𝑤 + 1}  , ∀ 𝑡  
(7) 

∑ 𝑥0𝑗𝑣𝑡 ≤ 1𝑈+𝑊
𝑗=1     ;   ∀ 𝑣, 𝑡  (8) 

∑ 𝑥𝑖,(𝑈+𝑊+1)𝑣,𝑡 = ∑ 𝑥0𝑗𝑣𝑡
𝑈+𝑊
𝑗=1

𝑈+𝑊
𝑖=1  ;     ∀ 𝑣, 𝑡  (9) 

∑ 𝑥𝑖𝜇𝑣𝑡 − ∑ 𝑥𝜇𝑗𝑣𝑡 = 0 ; ∀ µ ∈ {1 … , 𝑢 +𝑈+𝑊
𝑗=1

𝑈+𝑊
𝑖=1

𝑤} , 𝑡, 𝑣   
(10) 

∑ ∑ ∑ 𝑥𝑖𝑗𝑣𝑡 ≥ 1     ;      ∀ 𝑡𝑉
𝑣=1

𝑈+𝑊
𝑗=𝑈+1

𝑈
𝑖=1   (11) 

∑ 𝐼𝑖𝑡
𝑝

≤ 𝐶𝑖      ;       ∀ 𝑖 ∈ 𝐴𝑃
𝑝=1   (12) 

∑ 𝑞𝑝. 𝐵𝜇𝑖𝑣𝑡
𝑝

− ∑ 𝑞𝑝 . 𝐵𝑖𝜆𝑣𝑡
𝑝

≥ 0      𝑈+𝑊
𝜆=0

𝑈+𝑊
𝜇=0   (13) 

0 ≤ ∑ 𝑞𝑝𝑃
𝑝=1 . 𝐵𝑖𝑗𝑣𝑡

𝑝
≤ 𝑄𝑣. 𝑥𝑖𝑗𝑣𝑡  (14) 

𝑀𝑖𝑣𝑡
𝑝

≥ 0 , 𝑁𝑖𝑣𝑡
𝑝

≥ 0, 𝑋𝑖𝑗𝑣𝑡 ∈ {0,1}, 𝐼𝑖𝑡
𝑝

≥ 0, 𝐵𝑖𝑗𝑣𝑡
𝑝

≥

0   
(15) 

The first objective function includes fixed routing 

costs, shipment and delivery, and maintenance costs 

undergone by customers. The second objective function 

minimizes transportation risks on routes taken by 

vehicles. Equations (3) and (4) express the inventory 

balance for customers on a round trip with respect to their 

demand, respectively. Equations (5) and (6) represent the 

difference between the input and output of each node for 

customers on a round trip. Equation (7) shows that each 

customer is visited by a vehicle utmost once during each 

period. Equations (8) and (9) indicates that each vehicle 

starts at the central depot and returns to that after each 

trip. Constraint (10) shows the continuity of the travel 

path. Equation (11) indicates that customers on the inhaul 

trip are to be visited and provided with service before 

customers on the backhaul trip. Equation (12) indicates 

compliance with the allowed storage capacity limit for 

each customer. Equation (13) is used to sub-tour 

elimination from vehicle routing problems. Constraint 

(14) shows the maximum and minimum load of variable 

products for each vehicle during inhaul and backhaul 

trips. Also, other constraints show the type of variables. 

 

 

2. NSGA-II ALGORITHM  
 

Highlights and significant facts regarding this NSGA 

optimization method are given below: 

 The solutions to which no superior is found holds the 

most points. Solutions are ranked and sorted based on 

the number of answers superior to them. 

 Suitability of a solution is determined based on its 

rank and lack of predominance and superiority of 

other solutions.  

 Shared suitability method is used for solutions with 

close results in order to adjust distribution; allowing 

answers and solutions to be distributed uniformly in 

the searching space. Also, the NSGA-II flowchart is 

presented in Figure 1.  
 

3. 1. Presenting the Particles      One of the most 

important decisions taken during the design of a meta-

heuristic algorithm is how to present the solutions and 

provide an effective, unique and identifiable relation 

between these solutions and search space of the 

analysis. In this paper, a common string method is 

used to display the chromosomes. For example, in a 

transport network consisting of m origins and n 

destinations, a feasible chromosome is considered as 

a permutation of  m+n  bits (i.e., gens), 
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Figure 1. Flowchart of the NSGA-II 

 

 

which in fact represents the order of the nodes for 

participation in the transport network tree. Thus, in our 

problem, a feasible chromosome assuming u=4 and w=4 

is as shown in Figure 2. 

 
3. 2. Creating the initial population       In general, 

the quality of early solutions may vastly affect the 

performance of a meta-heuristic algorithm. Therefore, 

designing an effective method to produce the initial 

solutions is considered of great significance. Hence, a 

quasi-random method is designed to produce initial 

chromosomes in the proposed algorithm. This method 

consists of the following steps: 

 A random sequence of vehicles, along with another 

random sequence of customers, is created in order to 

form the initial population. 

 Starting with the first vehicle, different customers 

are assigned to each vehicle. It is noted that 

customers are assigned to vehicles depending on the 

timing of delivery for each customer, and the 

capacity of each vehicle. The same procedure is 

repeated for each customer, and so, all the remaining 

customers are assigned to a vehicle with regard to the 

capacity and timing schedule of the vehicle.  

Finally, the amount of inventory and delivery or 

receiving the shipment for all customers are determined 

according to the matrices described in the next section. 

 

3. 3. Position Matrix      This matrix shows the timing 

of vehicles and pinpoints, which vehicle is to be used in 

each period. 
 
 

 

4 8 6 1 3 7 5 2 
Figure 2. Presentation of a feasible chromosome 

The position matrix contains U+W+V-1 columns and T 

rows consisting of V-1 zeros, and ones for all remaining 

values. Hence, with the use of this matrix, vehicle timing 

schedules during each period of time may be observed 

from each row in the position matrix. For example, if the 

following numbers are found in one such matrix, it may 

be concluded that during this time period the first vehicle 

will cover the 2nd and 3rd customers, while the 1st and 4th 

customers are assigned to the second vehicle, and the 

third vehicle is to provide service to the 5th customer only 

as shown in Figure 3. 
 

3. 4. Distribution Matrix      The distribution matrix is 

a matrix with the size of P×(U+W)×T, which is related to 

the distribution of products. In other words, for each 

period, the distribution matrix is defined as a two-

dimensional matrix with the size of P×(U+W). As an 

example, the distribution matrix for the first period of 

time is shown in Figure 4. This figure indicates that 

during the first period of time, the vehicle has delivered 

17 units of product Type I, 23 units of product Type II, 

etc. to the 1st customer. 

After calculating the initial population, the best 

available solution needs to be found and the acts of 

crossover and mutation need to be carried out in order to 

complete the algorithm and achieve the optimal solution. 
 

3. 4. 1. Crossover Operator in position matrix     A 

clever single-point method is used for the crossover 

operator in this model. The clever single point method is 

explained in the following example (suppose U=W=3). 
5 6 2 3 4 1 Parent1 

5 1 3 4 2 6 Parent2 

The hatched cells result in the following offspring: 

5 1 3 3 4 1 Child1 

5 6 2 4 2 6 Child2 

It is easily noticed that for child number one, the third 

customer is repeated twice, which is incorrect. The 

intellectual property of the operator used in this model 

ensures that the 6th customer comes after the third 

(according to the sequence of child No. 2), the 5th 

customer after that, and finally the 2nd customer at the 

end. Consequently, the resulting chromosome is as 

follows 
 

 

5 0 4 1 0 2 3 T=1 

Figure 3. Example of allocating vehicles to customers 

 
 

 ----- C1  

P1 ----- 17 

T=1: 
P2 ----- 23 
P3 ----- 15 
P4 ----- 12 
P5 ----- 14 

Figure 4. Example of a distribution matrix by a vehicle 

5 2 6 3 4 1 Child1 
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5 3 1 4 2 6 Child2 

Finally, given that customers on the inhaul trip must 

be provided with service to customers on the backhaul, 

the adjusted chromosome will be as shown in Figure 5. 

 

3. 4. 2. Mutation Operator in the Position Matrix   

In this model, a swap method is used for the mutation 

operation (e.g., swapping the chromosomes from the 

previous example will result in a new child) as shown in 

Figure 6. However, the priority of inhaul customers over 

backhaul customers is to be maintained. 
 

3. 4. 3. Crossover Operator in Distribution Matrix    

An arithmetic mean method is used in this model for the 

distribution matrix crossover operator. For example, 

assuming that the following chromosomes in Figure 7 

indicate a part of a distribution matrix, resulting children 

can be obtained from the following Equation (16). 

Childi=Parenti (α) +Parentj (1-α); 0≤α≤1 (16) 

 

11 5 16 15 10 20 Parent1 

9 11 3 6 12 14 Parent2 

 

 
3. 4. 4. Mutation Operator in the Distribution 
Matrix   In this model, the insertion pattern is used as 

shown in Figure 8. 

 

3. 5. Reasonability   In order to ensure the feasibility of 

the model, a repair process is used. 

 

 

5 6 4 2 3 1 Child1 

5 4 6 3 1 2 Child2 

Figure 5. Crossover operator for the position matrix 

 

 

5 6 4 3 1 2 Parent1 

4 6 5 3 1 2 Child1 

Figure 6. Mutation operator for the position matrix 

 

 

11 7 13 13 11 18 Child1 

10 10 7 9 12 16 Child2 

Figure 7. Crossover operator for the distribution matrix (ɑ= 

0.7) 

 
 

11 5 16 15 10 20 Parent1 

11 5 15 16 10 20 Child1 

Figure 8. Mutation operator for the distribution matrix 

In other words, the vehicle capacity, storage capacity and 

the like should be checked and inspected for each case, 

separately. In addition, deliveries to each customer are 

not to be less than demanded by the customer, as lacking 

and insufficiency are not considered allowed in the 

problem. If this occurs; however, the customer must be 

removed. 

 
3. 6. Algorithm Iteration   After the initial population 

of parents is randomly created and evaluated, a 

population of children that is equal to the population of 

parents will generate in accordance with the selection 

method and genetic operators described in previous 

sections. The combination of these two sets of 

populations according to the previously presented 

structure will result in the next generation. This 

procedure will be repeated until the termination criterion 

of the algorithm is met. Finally, the first fronts of the last 

generation, which in fact represent the non-dominated 

solutions of the problem, are obtained as the output of the 

algorithm. 

 
3. 7. Termination Criteria of the Algorithm   This 

condition can be defined as criteria determining how far 

the algorithm iteration loop will continue. Depending on 

the designer, these criteria may be different for each 

algorithm. The most common criterion is the number of 

iterations (e.g., the algorithm may be designed to 

terminate after K iterations). This termination criterion 

(i.e., number of iterations) is also used in the model 

presented in this paper. 

 

 

2. EPSILLON-CONSTRAINT METHOD 
 

The ε-constraint method is one of the best-known 

methods for solve the MOP. In this method, one of the 

objective functions must be considered as the main 

objective function (randomly) and other objective 

functions must be converted to model constraints. 

Marhavilas et al. [13] proposed the ε-constraint method 

with Relations (17). 
𝑀𝑎𝑥  𝑓1(𝑥)  

st. 

    𝑓2(𝑥) ≥ 𝑒2  

    𝑓𝑚(𝑥) ≥ 𝑒𝑚  

    𝑥 ∈ 𝑆  

(17) 

The following steps are necessary to apply the proposed 

ε-constraint method: 

 Create the payoff Table. To do this, optimize each 

objective function individually, and calculate the 

value of other objective functions at this optimal 

point. For each objective function, call the interval 

between the ideal value and the worst value (nadir 
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value). In cases where finding nadir value is not 

straightforward, generate the payoff table with a 

lexicographic method.  

 Choose one of the objective functions (fj(x)) as the 

main objective function to be optimized, and 

transform other functions into constraints. 

 Solve mathematical model, as provided in Equation 

(17). In this model, ei is the nadir value of the 

objective function. 

 

 

5. COMPUTATIONAL RESULTS 
 

In this section, the computational results of the 

aforementioned model are analyzed. Therefore, the 

problem is solved with -constraint method in small and 

medium sizes. In order to validate the proposed meta-

heuristics, the results obtained from -constraint method 

are compared to those obtained from the NSGA-II. The 

problem is solved on a personal computer with an Intel 

core2duo 2.67 GHz processor and 3GB internal storage, 

using GAMS software and MATLAB software for small 

and large-size problems, respectively. 

 

5. 1. Creating Sample Problems   Sample problems 

for this section are designed as to provide a two-

dimensional 25×25 unit square inside, which customers 

are randomly scattered. The distance between all points 

is calculated based on the Euclidean distance. Customer 

demand is generated within the range of 20 to 60 using a 

uniform distribution. The amount of risk associated with 

each travel path is also generated using a normal 

distribution, and range from 10 to 100. The number of 

customers for small and medium-scale problems is set 

between 5 and 25, and the number of planning periods is 

selected between 2 to 12. The vehicle capacity is assumed 

within the range of 50 and 200 units. 

 

5. 2. Measuring Metrics   In this section, we introduce 

the main measuring metrics used in the proposed meta-

heuristic algorithms. 

 Number of Pareto solutions (NP): This criterion 

indicates the number of Pareto solutions obtained by 

each algorithm. According to this index, a higher 

number of Pareto solutions are associated with a 

higher algorithm quality.  

 Spacing metric (SM): This criterion measures the 

uniformity of a non-dominated solutions distribution 

within the solution spacing, and can be defined by:  

𝑆 = √
1

𝑛−1
 ∑ (�̅� − 𝑑𝑖)

2𝑛
𝑖=1    &    

(18) 

   𝑑𝑖 = 𝑚𝑖𝑛𝑗≠𝑖(∑ |𝑓𝑖
𝑚 − 𝑓𝑗

𝑚|)           𝑀
𝑚=1   

 Diversity metric (DM): This criterion evaluates the 

diversity and distribution of Pareto solutions, and is 

defined by: 

𝐷 = [∑ max (‖𝑥�̂�  −  𝑦�̂�‖
𝑛
𝑖=1 ]2      (19) 

 Mean Ideal Distance (MID): This criterion measures 

the average distance of Pareto solutions from the 

origin and is preferred to be as little as possible.  

𝑀𝐼𝐷 = ∑ √∑ 𝐹𝑠𝑜𝑙.𝑔
2𝑛𝑢𝑚𝑏𝑒𝑟 𝑂𝐹

𝑔=1
𝑛
𝑠𝑜𝑙=1                        (20) 

 

5. 3. Setting the Parameters      In this section, 

parameters required for the adjustment of the NSGA-II, 

with the aim of ensuring achievement of the best solution, 

are presented using the Taguchi method. Four parameters 

(i.e., the population size, mutation and crossover rate, and 

iteration number) are used in the NSGA-II, and three 

levels are defined for each of these parameters. Minitab 

software is used for experimental design and analysis of 

the results. Given the number of factors and levels 

selected for the analysis, standard interactive Table L9, 

provided by the Taguchi method, is chosen for this study. 

As may be observed from Figure 9, the minimum point 

of each parameter in the software output is usually 

considered the best level for that parameter (based on 

minimum signal noise); thus, the most appropriate levels 

and values for each parameter will be as presented in 

Table 1. 

 

5. 4. Results       12 small and medium-sized problems 

are solved in this section by using the NSGA-II and -

constraint method with due attention to Pareto Fronts. 

The results are presented in this Table for small-size 

problems, a meta-heuristic algorithm can easily achieve 

the optimal solution with the minimum error percentage. 

The efficiency of these methods in substantially reducing 

solution time is shown as well.  

It is also to be concluded from Table 2 that the 

proposed algorithm provides a high yield and 

performance, as well as close-to-optimum Pareto 

solutions, and a very low average calculation error. 

However, as the calculation time in GAMS software 

increases exponentially with the enlargement of problem 

sizes, up to a maximum number of 24 customer knots are 

considered for solving the problem using the -constraint 

method. Solving the problem in larger sizes by using 

GAMS software is considered close to impossible, and 

requires an enhanced use of meta-heuristic algorithms, as 

further explained in the following section. 

Figure 10 shows the computational time for two 

algorithms, which is increasing exponentially in GAMS 

software due to the enlargement of problem scales. For 

this reason, problems that take more than 30 minutes of 

time to be solved in GAMS are considered large-scale 

problems and are only solved using the NSGA-II. 

The amounts of error for the algorithm, regarding the 

opt solution, can also be found with respect to the 

objective functions. The error values are obtained by: 

(21) 𝐸𝑟𝑟𝑜𝑟 (𝐺𝐴𝑃) =
𝑂𝐹𝑁𝑆𝐺𝐴 −𝑂𝐹𝐺𝐴𝑀𝑆

𝑂𝐹𝐺𝐴𝑀𝑆
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TABLE 1. Results of parameters for the NSGA-II 

Parameters 

 Iteration 

Number 

Mutation 

Rate 

Crossover 

Rate 

Population 

Size 

3 1 3 2 Level 

200 0.2 0.8 100 Amount 

 

 

 
Figure 9. Minitab output for parameters setting 

 

 

Table 3 presents the results of solving large-scale 

problems. These include eight sample problems, which 

take more than 30 minutes of time to be solved with -

constraint method. 
 

5. 5. Discussion           In small-sized problems, the 

Epsilon method was better than the NSGA-II algorithm, 

in terms of the value of the objective function, although 

the NSGA-II is faster than the Epsilon to get Pareto's 

front. 

 

 
Figure 10. Comparison of computational time for two 

algorithms 
 

But in large-sized problems, the computational time by 

-constraint method is exponentially increasing, and so 

we compare them to the following way. For example, we 

consider sample problem P15. The sorted Pareto solutions 

(seven Pareto based on Table 3) that is related to the 

NSGA-II includes:  

(626441, 190.5), (632386, 187.1), (634458, 184.1), 

(649473, 179.6), (682323, 179.4), (707899, 179.3) and 

(723777, 178.5).  

Also, the Pareto solutions of this problem based on -

constraint method are as follows: 

(624707, 187.8), (638762, 187.2), (647890, 184.7), 

(665054, 182.1) and (689158, 179.4). 

It should be noted that in Table 2, we consider the mean 

value of Pareto solutions as the objective function values. 

So, ZTrans for -constraint method for P15 problem is 

653116 and for the NSGA-II is 665251. Although the 

average Pareto cost of -constraint method is less than 

that of the NSGA-II; however, with respect to Figure 11, 

the NSGA-II finds relatively better responses in larger 

dimensions. In small-sized problems, the performance of 

NSGA-II is not superior to -constraint method.  

 
 

TABLE 2. Sample problem results for small-sized problems 

NSGA-II ε-constraint 

Prob.info 

(U/W/P/V/T) 
Prob. Relative GAP 

Time ZRisk ZTrans Time ZRisk ZTrans 

ZRisk ZTrans 

0.078 0.043 21.6 31.8 6058 145.5 29.5 5808 3×3×2×3×2 P01 

0.061 0.049 22.5 50.3 9144 157.2 47.4 8712 4×3×3×2×3 P02 

0.075 0.074 34.6 105.7 27324 250.8 98.3 25435 5×5×3×4×4 P03 

0.072 0.119 31.5 79.9 21429 236.2 74.5 19148 6×4×4×3×3 P04 

0.06 0.086 43 137.7 43428 333.2 129.8 39984 7×5×4×3×4 P05 

0.051 0.053 45.3 159.4 50024 362.4 151.6 47471 7×7×3×4×4 P06 

0.084 0.068 51.6 171.3 57704 425.7 158 54018 8×6×5×4×4 P07 

0.053 0.035 63.7 278 111359 541.5 263.9 107505 9×7×5×5×6 P08 

0.04 0.033 84.3 324.1 138840 737.6 311.6 134289 9×9×6×5×6 P09 

0.035 0.027 91.9 463.1 204148 827 447.1 198736 11×9×6×7×7 P10 

0.03 0.021 114.5 524 225486 1059.1 508.7 220732 11×11×8×6×7 P11 

0.019 0.015 137.3 728.7 380410 1304.3 714.8 374528 13×11×9×9×8 P12 

0

200

400

600

800

1000

1200

1400

P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12

GAMS

NSGA-II



595                                               R. Arab et al. / IJE TRANSACTIONS A: Basics  Vol. 31, No. 4, (April 2018)   588-596 
 

TABLE 3. Computational results of the NSGA-II in terms of four criteria 

MID 
metric 

Spacing 
metric 

Diversity metric 
Number of 

Pareto 
Time [min] 
(NSGA-II) 

Prob.info (U/W/P/V/T) Prob. 

13.34 0.74 262.5 8 3.15 15×15×9×8×6 P13 

21.96 0.77 227.9 6 5.21 18×17×10×8×7 P14 

23.07 0.64 317.5 7 8.84 20×20×12×9×8 P15 

20.87 1.11 293.9 9 11.45 25×25×13×10×9 P16 

13.28 0.81 365.1 5 15.36 30×30×15×11×10 P17 

56.13 0.73 474.7 8 19.77 35×35×18×11×11 P18 

30.3 1.4 339 5 25.63 40×40×20×11×12 P19 

26.5 0.91 352.3 7 32.5 50×50×22×12×12 P20 

25.67 0.88 329.1 7 15.23 - Average 

 
 

 
Figure 11. Pareto solutions of two proposed algorithms 

 

 

6. CONCLUSION 
 

This paper has addressed the multi-period, multi-product 

inventory-routing problem with the aim of minimizing 

the total system costs and transportation risks. For this 

problem, it is assumed that numerous products are 

transported to a set of retailers, through direct distribution 

using a fleet of heterogeneous vehicles with limited 

capacities. Due to the high computational complexity of 

the problem in this paper, a non-dominated sorting 

genetic algorithm (NSGA-II) has been used along with -

constraint method for sample problems. The efficiency of 

the proposed NSGA-II has been compared to the -

constraint method using several randomly generated 

sample problems. In small-sized problems, the multi-

objective meta-heuristic algorithm, namely NSGA-II, 

has roughly found good Pareto-optimal solutions than the 

-constraint method; however, it has been able to answer 

in less computational time. By increasing the problem 

size, the -constraint method could not be reached within 

a reasonable time. Because of this, the efficiency of the 

NSGA-II has been evident in this case, which could reach 

Pareto solutions in much less time. Additionally, in large-

sized problems, the Pareto front of the NSGA-II has had 

a higher quality according to the criteria mentioned in 

Section 5.2.  

For future research, the given problem can be 

developed for conditions, in which lacking of products or 

sending multiple vehicles to one retailer in each period of 

time are allowed. Also developing any exact solution 

method (e.g., branch-and-price), and solving the model 

in an uncertain condition by a fuzzy (or robust 

optimization) method can be taken into account for future 

studies. 
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چكيده
 

 

ای در یک زنجیره تامین دو سطحی چند هدفه، چند محصولی و چند دورهموجودی  -در این مقاله، یک مسئله مسیریابی

های سیستم )شامل هزینه شود. مسئله با هدف حداقل سازی کل هزینهشامل یک توزیع کننده و جندین مشتری ارائه می

ان حمل ناهمگن باشد. محصولات توسط یک ناوگاندازی، توزیع و نگهداری( و حداقل کردن ریسک حمل و نقل، مدل میراه

شوند. ضمنا ظرفیت حمل نیز معین و محدود است و با ظرفیت حمل مشخص توسط استراتژی حمل مستقیم توزیع می

شود. برای اعتبارسنجی مدل دو هدفه جدید ارائه شده، از روش محدودیت اپسیلون کمبود موجودی نیز غیر مجاز فرض می

شود. همچنین به دلیل سخت بودن مسئله، از الگوریتم آید، استفاده میمیکه روشی دقیق در حل مسائل چندهدفه به شمار 

کند، های پارتو عمل میکه مانند روش اپسیلون بر مبنای جبهه (NSGA-II)سازی نامغلوب ژنتیک چندهدفه مبتنی بر مرتب

و مورد تجزیه و تحلیل قرار های مذکور حل نمونه تولید شده و سپس با روش 20شود. در این مساله، تعداد استفاده می

 در حل مسئله مورد نظر، کارایی بالایی دارد. NSGA-IIدهد که عملکرد گیرد. در نهایت، نتایج محاسباتی نشان میمی
doi: 10.5829/ije.2018.31.04a.10 

 


