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A B S T R A C T  
 

 

In the oil supply chain, the refined petroleum products are transported by various transportation modes, 
such as rail, road, vessel and pipeline. The latter provides one of the safest and cheapest ways to 

connect production areas to local markets. This paper addresses the operational scheduling of a multi-

product tree-like pipeline connecting several refineries to multiple distribution centers under demand 
uncertainty. A new deterministic mixed-integer linear programming (MILP) model is first presented, 

and then a  two-stage stochastic model is proposed. The aim of this model is to meet depot 

requirements at the minimum total cost including pumping and stoppages costs. The efficiency and 
utility of the proposed model is shown by two numerical examples, which one of them uses the 

industrial and real data. 

doi: 10.5829/ije.2017.30.12c.08 

 

 
1. INTRODUCTION1 
 

Nowadays, operations of a supply chain and logistics 

are among the most important activities in companies 

[1]. Transportation is an important supply chain driver 

because products are rarely produced and consumed in 

the same location [2]. Multi-product pipeline conveying 

a variety of petroleum products are the most common 

means of transportation in the oil industry to transfer the 

products from refineries to depots. Transportation 

planning of petroleum products via pipelines is one of 

the most challenging management problems in the oil 

industry and can increase the annual profit in several 

millions of dollars. Multi-product pipelines stay full 

with product at any time. Consequently when some 

products enter inside a pipeline, the same volume 

should leave that line. Some product sequences are 

forbidden inside the pipelines; for instance, gas and oil 

should never be adjacent to gasoline. Pipeline structures 

vary from straight to treelike and mesh structures. This 

                                                           
*Corresponding Author’s Email: tavakoli@ut.ac.ir (R. Tavakkoli-

Moghaddam) 

paper is concerned with a tree-like pipeline system that 

must distribute a number of petroleum products from 

multiple refineries to several depots. Finding the best 

sequence of product injections at refineries, which 

product removals at depots and the length of pumping 

operations for multi-product ducts to satisfy product 

demands requested by distribution centers on time at the 

minimum total cost, is the most important element of 

pipeline scheduling problem. Several operational 

constraints should also be considered. These include 

keeping the inventory level of depots at the acceptable 

range and maintaining the flow rate in different 

segments at the feasible range.  

In succeeding years, two types of popular 

approaches based on time representation of the planning 

horizon have been studied in the operational planning of 

pipeline networks, namely discrete and continuous time 

mixed-integer linear programming (MILP) approaches. 

In discrete approaches, both pipeline segments and time 

horizon are apportioned into slots of equal size, while 

continuous approaches relax such assumptions. Using 

these tools, oil products distribution scheduling 

problems have been addressed from rather simpler 
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structure including a single refinery and single 

distribution center Relvas et al. [3] and Cafaro and 

Cerda [4], or single refinery with multiple destinations 

Hane and Ratliff [5] and Rejowski and pinto [6] and 

Cafaro and Cerda [7] Mostafaei and Ghaffari Hadigheh 

[8], or multiple refineries and distribution centers, 

Cafaro and Cerda [9] Mostafaei et al. [10, 11] to more 

complex cases with branching configuration Castro and 

Grossman [12] and Cafaro and Cerda [13] and Herran et 

al. [14] Desouza Filho et al. [15] and Boschetto et al. 

[16]and Mostafaei et al. [17] and bidirectional pipeline 

systems connecting a refinery to a harbor [18, 19]. 

All paper mentioned above have focused on the 

aggregate planning providing the optimal sequence of 

batch injections during a known planning horizon. None 

of them focuses on determining the optimal sequences 

of stripping operations at receiving terminals to generate 

a detailed delivery schedule and to get savings in pump 

operating and maintenance costs. Cafaro et al. [20, 21] 

used hierarchical decomposition approaches for detailed 

scheduling of straight of pipeline networks. Mostafaei et 

al.  [22-25]developed monolithic MILP frameworks for 

detailed scheduling of straights pipeline that achieve 

better solution with respect to decomposition 

approaches.   

Mostafaei et al. [26] presented an MILP model for 

detailed scheduling of tree-like pipeline connecting a 

single refinery to multiple depots. The model is based 

on a continuous time representation in both volume and 

time scales. Given product demands at depots, the 

proposed model determines both input and output 

operations of the pipeline in a single step. However, the 

model can only be applied to tree-like pipeline with a 

single refinery and with deterministic product demands 

at depots. The contribution of this paper is as follows. 

Firstly, a generalization of the model presented by 

Mostafaei et al. [26] from a unique refinery at the origin 

of the pipeline to multiple refineries with dual purpose 

stations is developed. Secondly, contrarily to the 

previous studies considering product demands at 

pipeline depot as deterministic data, the proposed 

approach uses stochastic datum for a product 

requirement.  

The rest of this paper is organized as follows. 

Section 2 gives a concise description of the problem 

under study. Section 3 presents the model assumptions. 

Section 4 presents the deterministic MILP model for a 

tree-like scheduling problem. Section 5 proposes a 

stochastic counterpart of the MILP model. Section 6 

gives two case studies to show the validation of the 

proposed model. The paper ends with the conclusions. 

 
 
2. PROBLEM STATEMENT  
 
This paper addresses the scheduling of a tree-like 

pipeline network with a mainline (pipeline n0), several 

secondary lines, multiple refineries, depots and dual 

purpose stations. Figure 1 depicts a tree-like pipeline 

network with two refineries, two secondary lines (i.e., 

pipeline n1 and n2). A dual purpose node composes of 

refinery R2 and depot N2. The refineries inject refined 

petroleum products into the pipeline while depots 

receive them. The dual purpose station performs both 

injecting and receiving operations. We use terms 

“secondary line” or “branching line” for pipelines that 

are emerged from the mainline. In Figure 1, the first 

secondary line leaves the mainline at point 3000 m
3
 

while the second one branches at point 15000 m
3
. The 

volume of a product is regarded as a batch, in which 

each batch only conveys one product and can be at most 

adjacent to two products.  For example, in Figure 1, 

batch I3 in the mainline (i.e., yellow rectangle) conveys 

product P3 and touches two batch I2 and I4 conveying 

products P2 and P1, respectively. Note that each pipeline 

is divided into segments, in which each segment ends 

with a depot or branch point. The mainline composes of 

five segments, in which the segments of the pipeline 

network and their volume are specified by left and right 

arrows.  

The existence batches inside the pipeline n at the start 

time of the time horizon are given by old batches (In
old).  

 

 

 

 Figure 1. Tree-like pipeline
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The set of old batches of pipeline n0, n1 and n2 is 

In0
old = {I2 , I3, I4}, In1

old = {I2 , I3} and In2
old = {I1 }, 

respectively. The set of new batches, which enter in to 

pipeline n during the scheduling horizon, is new batches 

(In
new). In this paper, the number of new batches to be 

injected into the mainline is known beforehand. For 

instance, if we assume that two new batches I5 and I6 are 

injected into the mainline of Figure 1 during the 

planning horizon, we have In0
new{I5 , I6},  In1

new{I4, I5 , I6} 
and In2

new{I2, I3 , I4, I5 , I6}. Set In = In
new ∪ In

old is the set 

of batches to move in pipeline n during planning 

horizon. The set of batches that can be injected from 

refinery r into mainline during planning horizon is given 

by Ir. 
In Figure 1, refinery R1 can only inject batches I4, I5 

and I6 and so 𝐼𝑟1 = {I4, I5 , I6} whereas refinery R2 can 

increase the size of batch I2, I3,…, and so 𝐼𝑟2 =
{I2 , I3, I4, I5 , I6}. The set 𝐼𝑛

𝑆 is set of batches that can be 

received  by depot 𝑠𝑛 (depot 𝑠 on pipeline 𝑛). For 

example, in Figure 1, depot 𝑠1𝑛0 = N1 can only receive 

product from batch I3 and batches I4, I5 and I6 that will 

pass from the output facility of this depot in the future; 

however, batch I2 can never be transferred to depot N1, 

and so we have 𝐼𝑛0
𝑠1 = {𝐼3 , 𝐼4, 𝐼5 , 𝐼6}. 

 

 

3. MATHEMATICAL MODEL  
 
To develop a mathematical tool based on an MILP 

framework, the following assumptions are to be 

considered. 

 A tree-like pipeline with a single mainline and 

several branch lines only emerged from the 

mainline is considered. Flow in all pipelines 

(mainline ant its branches) is unidirectional. 

 Several refineries can be considered on the 

mainline; however, there is no refinery on branch 

point and branch line. 

 All pipeline segment stay full of product at any 

time. 

 Sequence, content and coordinate of old batches in 

each segment are known. 

 Maximum and minimum flow rates in pipeline 

segments are given. 

 Because of vast product contamination, some 

products can never touch each other inside the 

pipeline. 

 At each pumping operation, an active depot can 

receive material from a single batch.  

 Demand for each product is random variable 

(ξp,s,n) with a continuous uniform distribution 

(ξp,s,n ∩ [ap,s,n, bp,s,n]). 

This section presents the proposed MILP 

formulation for the short term scheduling of a tree-like 

pipeline system with several refineries and depots. The 

base model is the mathematical formulation of 

Mostafaei et al. [26] with the following differences: (1) 

our approach considers a tree-like pipeline network with 

several refineries and even dual purpose nodes whereas 

their approach deals with a single refinery at the origin 

of the mainline and (2) our approach considers product 

demands at depots as stochastic variables whereas their 

approach treats product demand as a deterministic 

datum. The sets, parameters and continuous and binary 

variables are all defined from Tables 1 to 3.   
 

3. 1. Sequencing Pumping Runs         The start time 

of pumping run k will be equal to the start time of 

pumping run k − 1 plus the length of run k − 1. 

, 21 1ST ST L kk k k    
 (1) 

 

3. 2. Location of Batch 𝑖 ∈ 𝐼 in Mainline and 
Branch Lines             Continuous variable 𝐿𝑃𝑉𝑖,𝑘,𝑛 is 

the upper coordination of batch 𝑖, which is equal to the 

total volume between the origin of pipeline 𝑛 to the end 

of batch 𝑖. In Figure 2, the upper coordinate of batch I2 

in the mainline is 5000+2000=7000 m
3
. Note that 

𝐿𝑃𝑉𝑖,𝑘,𝑛 − 𝑆𝑃𝑉𝑖,𝑘,𝑛 is the lower coordinate of batch 𝑖. 

, , ,, , ', ,'
LPV SPV i I k K n Nni k n i k n

i i

    

  
(2) 

 

3. 3. Main line feeding operation     By Equation (3), 

only a single batch 𝑖 ∈ 𝐼𝑟  can be injected from refinery 𝑟 

during each pumping operation and the coordinates of 

this batch satisfy Equations (4) and (5). The volume 

injected from refinery r will always be between 

[𝐼𝑃𝑉𝑟,𝑛0
min, 𝐼𝑃𝑉𝑟,𝑛0

max]. 
 

 

TABLE 1. List of sets and indices 

Sets Description 

𝐾 Set of pumping operations indexed by 𝑘, 𝑘 = 0, 1, … , |𝐾| 

𝑁 Set of pipelines indexed by 𝑛, 𝑛′, 𝑛′′ = 0, 1, … , |𝑁| 

𝑅 Set of refineries indexed by 𝑟, 𝑟′ =  1, … , |𝑅| 

𝐼 Set of  all product batches indexed by 𝑖, 𝑖′, 𝑗 =  1, … , |𝐼| 

𝑆𝑛 Set of depots on pipeline 𝑛 indexed by 𝑠, 𝑠′, 𝑠′′ 

𝐼𝑟 
Set of batches that can receive material from refinery 𝑟 (𝐼𝑛 

⊂ 𝐼) 

𝐼𝑛
𝑜𝑙𝑑 Set of old batches inside pipeline 𝑛 (𝐼𝑛

𝑜𝑙𝑑 ⊂ 𝐼) 

𝐼𝑛
𝑛𝑒𝑤 Set of new batches of  pipeline 𝑛 (𝐼𝑛

𝑛𝑒𝑤 ⊂ 𝐼) 

𝐼𝑛 Set of batches to be moved in pipeline 𝑛 (𝐼𝑛 = 𝐼𝑛
𝑜𝑙𝑑 ∪ 𝐼𝑛

𝑜𝑙𝑑) 

𝐼𝑛
𝑆 Set of batches that can be diverted into depot  𝑠𝑛 (𝐼𝑛

𝑠 ⊂ 𝐼) 

𝑃 Set of oil products indexed by 𝑝, 𝑝′ 
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TABLE 2. List of parameters 

Parameters Description 

ℎmax The length of schedule horizon (h) 

𝐶𝑃𝑝,𝑟 Pumping cost of product 𝑝 at refinery 𝑟 ($/m3) 

𝐶𝐵𝑝,𝑠,𝑛 
Backorder cost of product 𝑝 in the depot 𝑠𝑛 𝑡 
($/m3) 

𝑣𝑟𝑟
min/ 𝑣𝑟𝑟

max Min / max injection rate at refinery  𝑟 (m3/h) 

𝐼𝑃𝑉𝑟
max/𝐼𝑃𝑉𝑟

max 
Min / max batch injected size in mainline in each 

run (m3) 

𝐼𝑅𝑉𝑛
min/𝐼𝑅𝑉𝑛

max 
Min / max batch size transferred  to branch line 

𝑛 in each run (m3) 

𝐷𝑃𝑉𝑠,𝑛
max/𝐷𝑃𝑉𝑠,𝑛

min 
Min / max batch size transferred  to depot 𝑠𝑛 in 
each run (m3) 

𝑣𝑠𝑠,𝑛
max/𝑣𝑠𝑠,𝑛

min Min/max flow rate in segment  𝑠𝑛 

𝜃𝑟 
Volumetric coordination of refinery 𝑟 from the 
origin of mainline (m3) 

𝜎𝑛 
Volumetric coordination of secondary line 𝑛 
from the origin of mainline (m3) 

𝜏𝑠,𝑛 
Volumetric coordinate of depot 𝑠𝑛 from the 

origin of pipeline 𝑛 (m3) 

𝑃𝑉𝑛 Volume of pipeline 𝑛 (m3) 

𝑟𝑒𝑓𝑡𝑝,𝑟 
Inventory of product 𝑝 in refinery 𝑟 during 
planning horizon (m3) 

𝑇𝑜𝑢𝑐ℎ𝑝,𝑝′ 
Boolean matrix of possible sequences between 

products p and 𝑝′ (m3) 

𝐷𝑒𝑚𝑎𝑛𝑑𝑠,𝑛,𝑝 Demand of product 𝑝 of depot 𝑠𝑛 (m3) 

𝐼𝑆𝑃𝑉𝑖,𝑛 
Size of old batch 𝑖 in the pipeline 𝑛 at time 𝑠𝑡𝑓 

(m3) 

𝑉𝑆𝐸𝐺𝑠,𝑛 The volume of segment 𝑠𝑛 (m3) 

 
 

TABLE 3. List of variables 

Description Continuous 

Variables 

Start time of composite pumping run 𝑘 (h) 𝑆𝑇𝑘 

Activity length of refinery 𝑟 though composite 

pumping run 𝑘 (h) 
𝐿𝑅𝑟,𝑘 

Length  of composite pumping run 𝑘 (h) 𝐿𝑘 

Unsatisfied demand of product 𝑝 in depot 𝑠𝑛  (m3) 𝐵𝑎𝑐𝑘𝑝,𝑠,𝑛 

Size of batch 𝑖 ∈ 𝐼𝑟  injected into the mainline from 

the refinery 𝑟 during composite pumping run 𝑘 (m3) 
𝐼𝑃𝑉𝑖,𝑟,𝐾 

Size of batch 𝑖 ∈ 𝐼𝑟  conveying product 𝑝 injected 

from the refinery 𝑟 to mainline during composite 

pumping run 𝑘 (m3). 

𝑃𝑃𝑉𝑖,𝑝,𝑟,𝑘 

Volume of batch 𝑖 ∈ 𝐼𝑛 transferred  to branching line 

𝑛 during run 𝑘 (m3) 
𝐼𝑅𝑉𝑖,𝑘,𝑛 

Size of batch 𝑖 ∈ 𝐼𝑛
𝑠 diverted to depot 𝑠𝑛 during 

composite pumping run 𝑘 (m3) 
𝐷𝑃𝑉𝑖,𝑠,𝑘,𝑛 

Size of batch 𝑖 ∈ 𝐼𝑛
𝑠 covering product 𝑝 diverted to 

depot 𝑠𝑛 during run 𝑘 (m3) 
𝑃𝐷𝑃𝑉𝑖,𝑝,𝑠,𝑘,𝑛 

Upper coordinate of batch 𝑖 ∈ 𝐼𝑛 at the end of 

pumping run 𝑘 (m3) 
𝐿𝑃𝑉𝑖,𝑘,𝑛 

Size of batch 𝑖 ∈ 𝐼𝑛 at the end of pumping run 𝑘 (m3) 𝑆𝑃𝑉𝑖,𝑘,𝑛 

stopped volume of segment 𝑠𝑛at the end of pumping 

run k(m3) 
𝑆𝑉𝑠,𝑘,𝑛 

Binary variables 

1 if batch 𝑖 ∈ 𝐼𝑟 is injected from refinery 𝑟  to the 

main line during run 𝑘 
𝜆𝑖,𝑟,𝑘 

1 if secondary line 𝑛 receives batch 𝑖 during  run 𝑘 𝑢𝑖,𝑘,𝑛 

1 if batch 𝑖 ∈ 𝐼𝑛
𝑠 is diverted to depot 𝑠𝑛 during run 𝑘  𝑥𝑖,𝑠,𝑘,𝑛 

1 if  batch 𝑖 transports product 𝑝 𝑦𝑖,𝑝 

1 if segment 𝑠𝑛is active during run k 𝑒𝑠,𝑘,𝑛 

1 if some portion of batch 𝑖 exists in branching line 𝑛 𝑧𝑖,𝑛 

 

 

The activity duration of all active refineries is of the 

same value and determined the length of a pumping 

operation, as imposed by Equation (8).   

1, 1,, , k r Ri r ki Ir
    


 (3) 

. , , ,, 1, , ,
0

LPV i I k K r Rr ri k n i r k     
 (4) 

  1 ,0, 1, 0 , 1, 0 , ,

, ,

LPV SPV PVr rni k n i k n i r k

i I k K r Rr

       

   

 (5) 

min max
,, 0 , 0, , , , , ,

, ,

IPV IPV IPVr n r ni r k i r k i r k

i I k K r Rr

  

   

 (6) 

, , , ,
, ,max , min

IPV IPVi r k i r ki I i Ir r
LR k K r Rr k

vr vrr r

 
 

      (7) 

, ,,LR L r R k Kr k k     (8) 

 

 

3. 4. Batch Feature Constraints       It should be noted 

that each batch 𝑖 ∈ 𝐼𝑛 contains only one product 𝑝, Equation 

(9). If batch 𝑖 contains product p then the size of the 

continuous variable 𝑃𝑃𝑉𝑖,𝑝,𝑟,𝑘 will be equal to 𝐼𝑃𝑉𝑖,𝑟,𝑘; 

otherwise, it will be equal to zero, Equations (10) and (11). 

The volume of product p added to the main line from refinery 

r during the scheduling should be equal or smaller 

than 𝑟𝑒𝑓𝑡𝑟,𝑝.  

1,,y i Ii p
p P
   


 (9) 
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, , ,, , , , ,PPV IPV i I p P r Rri p r k i r kp P
     


 
(10) 

1

max
. . , , ,,0, , ,

k

PPV K IPV y i I p P r Rri pni p r k


    
 

(11) 

, ,,, , ,PPV reft r R p Pr pi p r ki Ik K r
     

  
(12) 

 
3. 5. Operation of Unloading the Main Line and 
Branch Lines          The binary variable 𝑥𝑖,𝑠,𝑘,𝑛 is equal 

to 1 if batch 𝑖 ∈ 𝐼𝑠
𝑛 is sent to depot 𝑠𝑛 during the 

execution of pumping 𝑘. A portion of batch 𝑖 ∈ 𝐼𝑛 can 

be received by depot 𝑠𝑛 only if the coordinates of the 

batch satisfy Equations (13) and (14). When 𝑥𝑖,𝑠,𝑘,𝑛 =
1, depot 𝑠𝑛  will receive a positive portion of batch 𝑖 ∈
𝐼𝑠
𝑛, as imposed by Equation (15). If batch 𝑖 ∈ 𝐼𝑠

𝑛 

contains product p the value of the continuous variable 

𝑃𝐷𝑃𝑉𝑖,𝑝,𝑠,𝑘,𝑛will be equal to 𝐷𝑃𝑉𝑖,𝑠,𝑘,𝑛; otherwise, it is 

equal to zero, as imposed by Equations (16) and (17).  

. ,,, 1, , , ,

, , ,

LPV xs ni k n i s k n

n
i I k K s S n Ns



    

 (13) 

   . 1 ,, ,, , , , , , ,

, , ,

LPV SPV PV xs n n s ni k n i k n i s k n

n
i I k K s S n Ns n

     

    

 (14) 

min max
,, ,, , , , , , , , ,

, , ,

x DPV DPV x DPVs n s ni s k n i s k n i s k n

n
i I k K s S n Ns n

 

    

 (15) 

,, , , , , , ,

, , ,

PDPV DPVi p s k n i s k np

n
i I k K s S n Ns n

 

    

 (16) 

max
. ,, ,, , , ,

, ,

PDPV K DPV ys n i pi p s k nk

n
i I s S n Ns n

 

   

 (17) 

 
3. 6. Branch Lines Feeding Operation         The 

binary variable 𝑢𝑖,𝑘,𝑛 = 1 shows that batch 𝑖 ∈ 𝐼𝑛 in 

pumping k is transferring to the branch line 𝑛. A portion 

of batch 𝑖 in mainline can be received by branch line 

𝑛 only if the coordinates of the batch satisfy Equations 

(18) and (19). By Equation, (20), when 𝑢𝑖,𝑘,𝑛 = 1, 

branch line n will receive a proportion of batch 𝑖 ∈ 𝐼𝑛 . 

,, 1, 0 , ,

, , , 0

LPV uni k n i k n

i I k K n N n nn



    

 (18) 
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 (19) 

min max
,, , , , , ,

, , , 0

IRV u IRV IRV un ni k n i k n i k n

i I k K n N n nn

 

    

 (20) 

 
3. 7. Mass Balance Constraints        The continuous 

variable  𝑆𝑃𝑉𝑖,𝑘,𝑛 is the volume of batch 𝑖 at the end of 

pumping k in pipeline n. Volume of batch 𝑖 at the end of 

pumping k in the main line and branch lines is shown by 

Equations (21) and (22). 

, , 0 , 1, 0 , ,

,, , , 0 , ,
0

, , 10

SPV SPV IPVi k n i k n i r kr R

DPV IRVi s k n i k ns S n SP
n

i I k K kn

   

 
 
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(21) 

,, , , 1, , , , , ,
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i I k K n N n nn

   

    
  

(22) 

In the main line and branch lines, the injected volume is 

always equal to the output volume, Equations (23) and 

(24).  

,, , , , ,

, , 0

IRV DPVi k n i s k ni I s S i In n n
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(23) 
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(24) 

 
3. 8. Forbidden Sequences         For quality reasons 

some products should not touch together inside the 

pipeline. For example in real pipelines, a batch of 

gasoline (premium, regular, etc.) should never be 

adjacent to a batch of gas oil. If 𝑇𝑜𝑢𝑐ℎ𝑝,𝑝′ = 1, product 

𝑝 and 𝑝′  can touch together inside the pipeline, 

otherwise their sequence is forbidden. This restriction 

are controlled by: 

1,, 1, ,

, ,

y y Touchi p i p p p

i I p p P

   

  

 (25) 

 
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i I i I i i p p P n nn n

        
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 (26) 
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where 𝑧𝑖,𝑛 is a binary variable denoting the existence of 

batch 𝑖′ ∈ 𝐼𝑛  in secondary line 𝑛 and satisfies the 

following eq 𝑧𝑖,𝑛 ≤ ∑ 𝑢𝑖,𝑘,𝑛𝑘 ≤ |𝐾|𝑧𝑖,𝑛 ,    ∀𝑖 ∈ 𝐼𝑛
𝑛𝑒𝑤 , 𝑛 ∈

𝑁, , 𝑛 ≠ 𝑛0. 

 
3. 9. Constraints Satisfied Demand        In a 

deterministic mode, the demand of depots is the known 

parameter 𝐷𝑒𝑚𝑎𝑛𝑑𝑠,𝑛,,𝑝 and should be satisfied on time. 

This unsatisfied demand (𝐵𝑎𝑐𝑘𝑠,𝑛,𝑝) will result in 

backorder costs.  

,, , , ,, , , ,

, , ,

PDPV Demand Backs n p s n pi p s k nsk K i In

p P s S n N k Kn

   
 

    

 (27) 

 
3. 10. Identifying Active and Ideal Segments         

The binary variable 𝑒𝑠,𝑘,𝑛 determines the status (active or 

idle) of segment 𝑠 ∈ 𝑠𝑛during pumping run 𝑘 and its 

value satisfy the following equations: 

0,, 0,e n Ns k ns Sn
   
  

(28) 
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3. 11. Flow Rate Constraints is Mainline and 
Branch Lines Segments           During any pumping 

run 𝑘 ∈ 𝐾, the flow rate at each active segment 𝑠 ∈ 𝑠𝑛 

should belong to feasible range [𝑣𝑠𝑠,𝑛
min, 𝑣𝑠𝑠,𝑛

max]. 

Equations (36) and (37) control the flow rate limitation 

on mainline and its branch, respectively. 
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(37) 

 

3. 12. Stoppages Volume        Continuous variable 

𝑆𝑉𝑠,𝑘,𝑛 is the stoppage volume of segment 𝑠 of pipeline 

𝑛 during pumping run 𝑘. If 𝑒𝑠,𝑘−1,𝑛 = 1 and 𝑒𝑠,𝑘,𝑛 = 0, 

the stopped volume of the segment 𝑠𝑛 will be the 

volume of segment 𝑠𝑛 (𝑉𝑆𝐸𝐺𝑠,𝑛), otherwise it will be 

zero. 

, , , 1, , ,( ),,

, ,

s k n s k n s k nSV VSEG e es n

k K n N s Sn

 

   
 

(38) 

3. 13. Problem Objective Function         The problem 

purpose is to minimize the total tree-like pipeline 

operating costs including (a) the product pumping cost, 

(b) backorder demand and (c) pipeline stoppage cost. 

min ., , , ,

. ., , , , , ,

z cp PIVp r i r p kr i pk
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4. STOCHASTIC COUNTERPART 
 
Now in this section, we extend the model for the case 

demand for each product is random variable  𝜉𝑝,𝑠,𝑛 ∩

[𝑎𝑝,𝑠,𝑛 , 𝑏𝑝,𝑠,𝑛]. The objective function can be written as a 

two-stage stochastic model shown below: 
Min 𝑧−s =∑ ∑ ∑ ∑ 𝑐𝑝𝑝,𝑟 . 𝑃𝐼𝑉𝑖,𝑟,𝑝,𝑘𝑟∈𝑅𝑝∈𝑃𝑖∈𝐼𝑟𝑘∈𝐾 +

+∑ ∑ ∑ 𝑐𝑠. 𝑆𝑉𝑠,𝑘,𝑛𝑠𝑘𝑛 + ∑ ∑ ∑ 𝐸 (𝑄(𝜆𝑝,𝑠,𝑛, 𝜉𝑝,𝑠,𝑛))𝑛𝑠𝑝   

s.t. 

Equations (1) − (26), (28) − (38)  

 

where, 𝑄(𝜆𝑝,𝑠,𝑛 , 𝜉𝑝,𝑠,𝑛) is the optimal cost if depot 𝑠𝑛 

receives 𝜆𝑝,𝑠,𝑛 = ∑ ∑ 𝑃𝐷𝑃𝑉𝑖,𝑝,𝑠,𝑘,𝑛𝑖∈𝐼𝑘∈𝐾  units of 

product 𝑝 while demand is random variable 𝜉𝑝,𝑠,𝑛 ∩

[𝑎𝑝,𝑠,𝑛 , 𝑏𝑝,𝑠,𝑛]. So, we have: 
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𝑄(𝜆𝑝,𝑠,𝑛, 𝜉𝑝,𝑠,𝑛) = min∑ 𝑐𝑏𝑝𝐵𝑅𝑝,𝜉𝑝𝑝   

s.t. 

𝐵𝑎𝑐𝑘𝑠,𝑛,𝑝 ≤ 𝜉𝑝,𝑠,𝑛  

𝐵𝑎𝑐𝑘𝑠,𝑛,𝑝 ≥ 𝜉𝑝,𝑠,𝑛 − 𝜆𝑝,𝑠,𝑛  

 

Cleary the optimal value for 𝑄(𝜆𝑝,𝑠,𝑛, 𝜉𝑝,𝑠,𝑛) 

is max  {𝜉𝑝,𝑠,𝑛 − 𝜆𝑝,𝑠,𝑛 , 0}. 

Since  𝜉𝑝,𝑠,𝑛 ∩ [𝑎𝑝,𝑠,𝑛, 𝑏𝑝,𝑠,𝑛], there are three cases: 

 

𝐸 (𝑄(𝜆𝑝, 𝜉𝑝)) =

{
 
 

 
 
(𝑎𝑝,𝑠,𝑛−𝜆𝑝,𝑠,𝑛)

2

2(𝑏𝑝,𝑠,𝑛−𝑎𝑝,𝑠,𝑛)
,          

(𝑏𝑝,𝑠,𝑛−𝜆𝑝,𝑠,𝑛)
2

2(𝑏𝑝,𝑠,𝑛−𝑎𝑝,𝑠,𝑛)

0,                                

,  

𝜆𝑝,𝑠,𝑛 ≤ 𝑎𝑝,𝑠,𝑛 

𝑎𝑝,𝑠,𝑛 ≤ 𝜆𝑝,𝑠,𝑛 ≤ 𝑏𝑝,𝑠,𝑛 

𝑏𝑝,𝑠,𝑛 ≤ 𝜆𝑝,𝑠,𝑛 

So, the objective function is given by: 

Min 𝑧−s =

{
 
 

 
 ∑ ∑ ∑ ∑ 𝑐𝑝𝑝,𝑟 . 𝑃𝐼𝑉𝑖,𝑟,𝑝,𝑘𝑟∈𝑅𝑝∈𝑃𝑖∈𝐼𝑟𝑘∈𝐾 +∑ ∑ ∑ 𝑐𝑠. 𝑆𝑉𝑠,𝑘,𝑛𝑠𝑘𝑛 +∑ ∑ ∑ ∑ ∑ 𝑐𝑏𝑝,𝑠,𝑛

(𝑎𝑝,𝑠,𝑛−𝑃𝐷𝑃𝑉𝑖,𝑝,𝑠,𝑘,𝑛)
2

2(𝑏𝑝,𝑠,𝑛−𝑎𝑝,𝑠,𝑛)
𝑛𝑠𝑝∈𝑃𝑖∈𝐼𝑘∈𝐾 ,                          

∑ ∑ ∑ ∑ 𝑐𝑝𝑝,𝑟 . 𝑃𝐼𝑉𝑖,𝑟,𝑝,𝑘𝑟∈𝑅𝑝∈𝑃𝑖∈𝐼𝑟𝑘∈𝐾 + ∑ ∑ ∑ 𝑐𝑠. 𝑆𝑉𝑠,𝑘,𝑛𝑠𝑘𝑛 +∑ ∑ ∑ ∑ ∑ 𝑐𝑏𝑝,𝑠,𝑛
(𝑏𝑝,𝑠,𝑛−𝑃𝐷𝑃𝑉𝑖,𝑝,𝑠,𝑘,𝑛)

2

2(𝑏𝑝,𝑠,𝑛−𝑎𝑝,𝑠,𝑛)
𝑛𝑠𝑝∈𝑃𝑖∈𝐼𝑘∈𝐾 ,          

∑ ∑ ∑ ∑ 𝑐𝑝𝑝,𝑟 . 𝑃𝐼𝑉𝑖,𝑟,𝑝,𝑘𝑟∈𝑅𝑝∈𝑃𝑖∈𝐼𝑟𝑘∈𝐾 +∑ ∑ ∑ 𝑐𝑠. 𝑆𝑉𝑠,𝑘,𝑛𝑠𝑘𝑛 ,                                                                                                               

  

Case 1 

Case 2 

Case 3 

 

Cases 1 and 3 are not economical ones since Case 1 

seeks for the optimal cost in a lower level demand and 

Case 3 just leads to an infeasible solution in most cases. 

So, Case 2 is being tackled in the two-stage stochastic 

model. Note that the stochastic counterpart of the 

deterministic model is a mixed-integer quadratic 

programming (MIQP) model. 

 
 
5. RESULTS AND DISCUSSION 
 
In this section, two case studies are solved. The first one 

is a simple structure and uses the deterministic data for 

the demand while the second one uses the industrial 

data and demands are random variables with a 

continuous uniform. All MILP models are implemented 

on GAMS 24.1.2 / CPLEX using an Intel i7-4790K (4.0 

GHz) processor and 8 GB of RAM. Note that the 

stochastic counterpart of the proposed deterministic 

model was solved using GAMS 24.1.2 / BARON. 

 
5. 1. Case Study 1          This example, which is a small 

tree network with deterministic demands, deals with a 

tree-like pipeline network for transporting six products 

from two refineries to three depots and is a variant of a 

case study introduced recently by Mostafaei et al. [26]. 

Note that depot N1 is considered as a dual purpose node. 

Maximum and minimum batch sizes injected/diverted to 

each pipeline/depot though any pumping run, depot and 

branch point volume coordinates and flow rate range at 

segments, are shown in Figure 2. Product inventories 

and pumping cost at refinery and product demands for 

next 5 days at depots are given in Table 4. Unit 

backorder cost is $200/m
3 

and unit stoppage cost is $1/ 

m
3
.  

Table 5 shows computational results of Case study 

1. Compared to the previous work [26], the proposed 

approach finds the optimal solution in a lower CPU time 

due to a lower number of pumping operations, having a 

major impact on the problem size in term of the number 

of variables and equations.  

 
5. 2. Case Study 2           This example is a real-world 

problem of the oil pipeline industry, which a variant of 

the real world case study introduced by Mostafaei et al. 

[24] that incorporates a dual purpose node on the 

mainline. The pipeline structure is depicted in Figure 1. 

The pump rate at refineries should be kept between 300 

and 800 m
3
/h. The length of planning horizon is 

ℎmax = 192 h. The maximum injection volume into 

each pipeline is 15000 m
3
 while the minimum one is 

500 m
3
. The minimum delivery to each depot is also 500 

m
3
. The inventory of products at refinery and also 

pumping cost of each product are all listed in Table 6. 

Unit flow stoppage cost is 1.0 $/m
3
. Demand for each 

product at pipeline depots is random variable (𝜉𝑝,𝑠,𝑛) 

with a continuous uniform distribution in [3000; 10000], 

given in m
3
.  
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N3
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I1       3000I2    1000 1000I3                 4000

R1 R2
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 Branch point

Flow rate rang

P1 P2 P3 P4 P5 P6

 
Figure 2. Pipeline network of Case study 1 
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TABLE 4. Related data for Example 1 

 Inventory (m3) umping cost ($/m3) Demand (m3) 

P R1 R2 R1 R2 N1 N2 N3 

P1 9000  12 0 2000 1000 3000 

P2 - 12000 5.5 4 0 2000 2000 

P3 10000  10 0 3000 0 0 

P4 5000  12.5 0 2000 0 3000 

P5 8000  8 0 2000 0 0 

P6 5000 7500 5.5 5 0 0 0 

 

 
TABLE 5. Computational results of Case 1 

Case #Pump runs CPU (s) Con. Var Bin. Var Eqs. Back order (%) Pump cost ($) Stop cost ($) Obj. Fun. ($) 

Our approach 6 24 2047 318 3884 0 182000 6000 188000 

Mostafaei et al. [26] 10 141 2597 399 4486 0 248500 8000 256500 

 

 
TABLE 6. Inventory and pumping cost 

 Inventory (m3) Pumping cost ($/m3) 

P R1 R2 R1 R2 

P1 36000 - 8 - 

P2 25000 18000 7.5 6 

P3 10000 18000 8 5 

P4 42000 - 7 - 

 

Other data related to this example (i.e., the size of old 

batches, the coordinate of refineries, depots and branch 

points, the volume of segments and flow rate limitation) 

can be found in Figure 1. To solve the problem 

formulation, we set the number of new batches to be 

injected into the mainline equal to 4 (i.e., 𝐼𝑛
𝑛𝑒𝑤 =

{I5, I6, I7, I8}). The optimal solution includes nine 

pumping operations and is found in 2730 s of CPU. At 

the optimum, the new batches I5, I6, I7 and I8 convey 

products P3, P2, P4 and P2, respectively. Such product 

sequences inputted in the pipeline lead to an optimal 

cost of $534233. 

 

 

6. CONCLUSION  
 

This paper has presented a new optimization framework 

for the detailed scheduling of tree-like pipelines 

featuring multiple refineries and depots. The proposed 

approach has overcome the drawback of previous 

contributions that only considered a single refinery at 

the origin of the mainline and deterministic data for 

depot requirements. In the first stage, a deterministic 

mixed-integer linear programming (MILP) model has 

been developed, and then the deterministic model has 

been extended to a two-stage stochastic programing 

model. The proposed formulation has been tested with a 

real-case study. The results have shown that the 

proposed approach was capable of solving the detailed 

scheduling of large-scale problems in a quite lower CPU 

time. For Future work will involve extending the 

proposed approach by considering production 

scheduling at refineries, and also the proposed approach 

will be extended to handle mesh structure pipeline 

networks. 
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قال کشتی و خط لوله انت جاده، هن،آراه از قبیل ختلفی های مروش یبه وسیلهنفتی های ، فرآوردهدر زنجیره تامین نفت

 . در ایندآورفراهم میرا مناطق تولید به بازارهای محلی  های ارتباط راه ترینارزان ترین ویکی از امنخطوط لوله  یابند.می

که چند پالایشگاه را به چند ترمینال توزیع با تقاضای غیر  محصولی یک خط لوله درختی چند عملیاتیبندی زمان ،مقاله

و  ،ارائه قطعی (MILP)ریزی عدد صحیح آمیخته برنامه یک مدل ،ابتداگیرد. ی قرار میکند، مورد بررسقطعی وصل می

کردن  حداقلبا  )مراکز توزیع( تامین تقاضای انبارها این مدل، هدف .شودمیپیشنهاد  قطعیای غیرمرحلهدوسپس یک مدل 

ها از که یکی از آنمثال عددی  پیشنهادی با دو مدل و عملکردهای پمپاژ و توقفات است. کارایی شامل هزینهها هزینه کل

 شود.کند، نشان داده میهای واقعی و صنعتی استفاده میداده

doi: 10.5829/ije.2017.30.12c.08 

  


