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industrial and real data.

In the oil supply chain, the refined petroleum products are transported by various transportation modes,
such as rail, road, vessel and pipeline. The latter provides one of the safest and cheapest ways to
connect production areas to local markets. This paper addresses the operational scheduling of a multi-
product tree-like pipeline connecting several refineries to multiple distribution centers under demand
uncertainty. A new deterministic mixed-integer linear programming (MILP) model is first presented,
and then a two-stage stochastic model is proposed. The aim of this model is to meet depot
requirements at the minimum total cost including pumping and stoppages costs. The efficiency and
utility of the proposed model is shown by two numerical examples, which one of them uses the
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1. INTRODUCTION

Nowadays, operations of a supply chain and logistics
are among the most important activities in companies
[1]. Transportation is an important supply chain driver
because products are rarely produced and consumed in
the same location [2]. Multi-product pipeline conveying
a variety of petroleum products are the most common
means of transportation in the oil industry to transfer the
products from refineries to depots. Transportation
planning of petroleum products via pipelines is one of
the most challenging management problems in the oil
industry and can increase the annual profit in several
millions of dollars. Multi-product pipelines stay full
with product at any time. Consequently when some
products enter inside a pipeline, the same volume
should leave that line. Some product sequences are
forbidden inside the pipelines; for instance, gas and oil
should never be adjacent to gasoline. Pipeline structures
vary from straight to treelike and mesh structures. This

*Corresponding Author’s Email: tavakoli@ut.ac.ir (R. Tavakkoli-
Moghaddam)

paper is concerned with a tree-like pipeline system that
must distribute a number of petroleum products from
multiple refineries to several depots. Finding the best
sequence of product injections at refineries, which
product removals at depots and the length of pumping
operations for multi-product ducts to satisfy product
demands requested by distribution centers on time at the
minimum total cost, is the most important element of
pipeline scheduling problem. Several operational
constraints should also be considered. These include
keeping the inventory level of depots at the acceptable
range and maintaining the flow rate in different
segments at the feasible range.

In succeeding vyears, two types of popular
approaches based on time representation of the planning
horizon have been studied in the operational planning of
pipeline networks, namely discrete and continuous time
mixed-integer linear programming (MILP) approaches.
In discrete approaches, both pipeline segments and time
horizon are apportioned into slots of equal size, while
continuous approaches relax such assumptions. Using
these tools, oil products distribution scheduling
problems have been addressed from rather simpler
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structure including a single refinery and single
distribution center Relvas et al. [3] and Cafaro and
Cerda [4], or single refinery with multiple destinations
Hane and Ratliff [5] and Rejowski and pinto [6] and
Cafaro and Cerda [7] Mostafaei and Ghaffari Hadigheh
[8], or multiple refineries and distribution centers,
Cafaro and Cerda [9] Mostafaei et al. [10, 11] to more
complex cases with branching configuration Castro and
Grossman [12] and Cafaro and Cerda [13] and Herran et
al. [14] Desouza Filho et al. [15] and Boschetto et al.
[16]and Mostafaei et al. [17] and bidirectional pipeline
systems connecting a refinery to a harbor [18, 19].

All paper mentioned above have focused on the
aggregate planning providing the optimal sequence of
batch injections during a known planning horizon. None
of them focuses on determining the optimal sequences
of stripping operations at receiving terminals to generate
a detailed delivery schedule and to get savings in pump
operating and maintenance costs. Cafaro et al. [20, 21]
used hierarchical decomposition approaches for detailed
scheduling of straight of pipeline networks. Mostafaei et
al. [22-25]developed monolithic MILP frameworks for
detailed scheduling of straights pipeline that achieve
better solution with respect to decomposition
approaches.

Mostafaei et al. [26] presented an MILP model for
detailed scheduling of tree-like pipeline connecting a
single refinery to multiple depots. The model is based
on a continuous time representation in both volume and
time scales. Given product demands at depots, the
proposed model determines both input and output
operations of the pipeline in a single step. However, the
model can only be applied to tree-like pipeline with a
single refinery and with deterministic product demands
at depots. The contribution of this paper is as follows.
Firstly, a generalization of the model presented by
Mostafaei et al. [26] from a unique refinery at the origin
of the pipeline to multiple refineries with dual purpose
stations is developed. Secondly, contrarily to the
previous studies considering product demands at
pipeline depot as deterministic data, the proposed
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approach uses stochastic datum for a product
requirement.

The rest of this paper is organized as follows.
Section 2 gives a concise description of the problem
under study. Section 3 presents the model assumptions.
Section 4 presents the deterministic MILP model for a
tree-like scheduling problem. Section 5 proposes a
stochastic counterpart of the MILP model. Section 6
gives two case studies to show the validation of the
proposed model. The paper ends with the conclusions.

2. PROBLEM STATEMENT

This paper addresses the scheduling of a tree-like
pipeline network with a mainline (pipeline no), several
secondary lines, multiple refineries, depots and dual
purpose stations. Figure 1 depicts a tree-like pipeline
network with two refineries, two secondary lines (i.e.,
pipeline n; and ny). A dual purpose node composes of
refinery R, and depot N,. The refineries inject refined
petroleum products into the pipeline while depots
receive them. The dual purpose station performs both
injecting and receiving operations. We use terms
“secondary line” or “branching line” for pipelines that
are emerged from the mainline. In Figure 1, the first
secondary line leaves the mainline at point 3000 m?
while the second one branches at point 15000 m®. The
volume of a product is regarded as a batch, in which
each batch only conveys one product and can be at most
adjacent to two products. For example, in Figure 1,
batch I3 in the mainline (i.e., yellow rectangle) conveys
product P; and touches two batch I, and 14 conveying
products P, and P, respectively. Note that each pipeline
is divided into segments, in which each segment ends
with a depot or branch point. The mainline composes of
five segments, in which the segments of the pipeline
network and their volume are specified by left and right
arrows.

The existence batches inside the pipeline n at the start
time of the time horizon are given by old batches (j0!d).

Rz S1lna
Secondary line
n2 (pipeline n2)

&,,,=3000 == —=>
nr /| _ ﬁ é‘ Main lineno
Secondary line nl 13 3000 2000 2000 W) Depot (N3 ) |(pipeline n0)
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Figure 1. Tree-like pipeline
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The set of old batches of pipeline ny, n; and n, is
156" = {1, 13, L}, 11 = {1, 13} and 193! = {1, },
respectively. The set of new batches, which enter in to
pipeline n during the scheduling horizon, is new batches
(Ix¢%). In this paper, the number of new batches to be
injected into the mainline is known beforehand. For
instance, if we assume that two new batches Is and lg are
injected into the mainline of Figure 1 during the
planning horizon, we have I0§W{Is,I¢}, N5V {l,, 15, 16}
and 125W{I,, 15, 1,15, I¢}. Set I, = IRV U 184 is the set
of batches to move in pipeline n during planning
horizon. The set of batches that can be injected from
refinery r into mainline during planning horizon is given
by I..

In Figure 1, refinery Ry can only inject batches Iy, Is
and lg and so I.; = {I,, 15, s} whereas refinery R, can
increase the size of batch I, Is,..., and so I, =
{I,,15,1,,15 ,Is}. The set I3 is set of batches that can be
received by depot s, (depot s on pipeline n). For
example, in Figure 1, depot s1,,, = N1 can only receive
product from batch 15 and batches 14, Is and lg that will
pass from the output facility of this depot in the future;
however, batch I, can never be transferred to depot Ny,
and so we have I33 = {I;,1,,I5 , Is}.

3. MATHEMATICAL MODEL

To develop a mathematical tool based on an MILP
framework, the following assumptions are to be
considered.

o A tree-like pipeline with a single mainline and
several branch lines only emerged from the
mainline is considered. Flow in all pipelines
(mainline ant its branches) is unidirectional.

o Several refineries can be considered on the
mainline; however, there is no refinery on branch
point and branch line.

e All pipeline segment stay full of product at any
time.

e Sequence, content and coordinate of old batches in
each segment are known.

e Maximum and minimum flow rates in pipeline
segments are given.

e Because of vast product contamination, some
products can never touch each other inside the
pipeline.

e At each pumping operation, an active depot can
receive material from a single batch.

e Demand for each product is random variable
(&p,sn) With a continuous uniform distribution
(Ep,s,n n [ap,s,n' bp,s,n])-

This section presents the proposed MILP
formulation for the short term scheduling of a tree-like

pipeline system with several refineries and depots. The
base model is the mathematical formulation of
Mostafaei et al. [26] with the following differences: (1)
our approach considers a tree-like pipeline network with
several refineries and even dual purpose nodes whereas
their approach deals with a single refinery at the origin
of the mainline and (2) our approach considers product
demands at depots as stochastic variables whereas their
approach treats product demand as a deterministic
datum. The sets, parameters and continuous and binary
variables are all defined from Tables 1 to 3.

3. 1. Sequencing Pumping Runs The start time
of pumping run k will be equal to the start time of
pumping run k — 1 plus the length of run k — 1.

3. 2. Location of Batch i €] in Mainline and
Branch Lines Continuous variable LPV; , ,, is
the upper coordination of batch i, which is equal to the
total volume between the origin of pipeline n to the end
of batch i. In Figure 2, the upper coordinate of batch I,
in the mainline is 5000+2000=7000 m®. Note that
LPV; n — SPV ,, is the lower coordinate of batch i.

LPVijn = % SP

Vielp,keK,neN @)
i>i

i'k,n’

3. 3. Main line feeding operation By Equation (3),
only a single batch i € I,. can be injected from refinery r
during each pumping operation and the coordinates of
this batch satisfy Equations (4) and (5). The volume
injected from refinery r will always be between
[IPV,5i8, IPV5].

TABLE 1. List of sets and indices

Sets Description

K Set of pumping operations indexed by k,k =0, 1, ..., |[K|

N Set of pipelines indexed by n,n’,n" = 0,1, ..., |N|

R Set of refineries indexed by 7" = 1, ..., |R|

I Set of all product batches indexed by i,i',j = 1, ..., ]|
S Set of depots on pipeline n indexed by s, s’,s"”

Set of batches that can receive material from refinery r (I,
cl

19! Set of old batches inside pipeline n (124 c I)

I Set of new batches of pipeline n (I;¢V < I)

I, Set of batches to be moved in pipeline n (I, = I3'4 U I2'4)
I3 Set of batches that can be diverted into depot s, (I;; c I)

P Set of oil products indexed by p, p’
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TABLE 2. List of parameters
Parameters Description
Rmax The length of schedule horizon (h)
Ch,, Pumping cost of product p at refinery r ($/m°)
Backorder cost of product p in the depot s,, t
CBpsn

vrrmin / Urrmax

($/m?)
Min / max injection rate at refinery r (m*h)

Min / max batch injected size in mainline in each

Upper coordinate of batch i € I, at the end of

LPVijen pumping run k (m®)

SPVikn Size of batch i € I, at the end of pumping run k (m®)
stopped volume of segment s,,at the end of pumping

SVs,k,n

run k(m?®)

Binary variables

1if batch i € I, is injected from refinery r to the

Aire main line during run k

Uipn 1 if secondary line n receives batch i during run k
Xiskn 1ifbatch i € I is diverted to depot s, during run k
Vip 1if batch i transports product p

€skn 1 if segment s,,is active during run k

Zin 1 if some portion of batch i exists in branching line n

max max
[PVmax /1 py/ run ()
; Min / max batch size transferred to branch line
min max
[RV™ IRV nin each run (m%
max min  Min/ max batch size transferred to depot s,, in
DPVG™/DPVn™  gach run (m®)
vSMAX /psmin Min/max flow rate in segment s,
P Volumetric coordination of refinery r from the
r origin of mainline (m?)
- Volumetric coordination of secondary line n
n from the origin of mainline (m?)
z Volumetric coordinate of depot s,, from the
sn origin of pipeline n (m)
PV, Volume of pipeline n (m®)
reft Inventory of product p in refinery r during
pr planning horizon (m?)
Touch Boolean matrix of possible sequences between
P! products p and p’ (m3)
Demand,, Demand of product p of depot s,, (m°)
ISPV, Size of old batch i in the pipeline n at time stf
iwn (m3)
VSEG;, The volume of segment s,, (M°)
TABLE 3. List of variables
Continuous Description
Variables
STy Start time of composite pumping run k (h)
LR Activity length of refinery r though composite
Tk pumping run k (h)
Ly Length of composite pumping run k (h)
Backy s, Unsatisfied demand of product p in depot s,, (m®)
1PV, Size of batch i € I, injected into the mainline from
Lk the refinery r during composite pumping run k (m®)
Size of batch i € I, conveying product p injected
PPV, ke from the refinery r to mainline during composite
pumping run k (m®).
IRV, Volume of batch i € I,, transferred to branching line
bhn n during run k (m®)
DPV. Size of batch i € I; diverted to depot s,, during
Lskn composite pumping run k (m°%)
PDPV. Size of batch i € I covering product p diverted to
ip,skn

depot s,, during run k (m®)

The activity duration of all active refineries is of the
same value and determined the length of a pumping
operation, as imposed by Equation (8).

> A <1, Vk el reR

iElr I,r,k (3)

LPVi,k—l,nO Zaf‘ii,r,k’ Viel, keKreR (4)

LPV: 1.0 = SPY 1.0 < O +(PVo =& )(1‘ Airk ) ©)
Viel; keK,reR

min max

Ark™Vrno = PVirk <4irk!PVeno ©)
Vi e Ir,keK,reR

TPV TPV

M e <R < "7 vkeK,reR (7)

VI, ' VI,
LRy | < Ly, vreRkekK (8)
3. 4. Batch Feature Constraints It should be noted

that each batch i € I,, contains only one product p, Equation
(9). If batch i contains product p then the size of the
continuous variable PPV;,,, will be equal to IPV;,,;
otherwise, it will be equal to zero, Equations (10) and (11).
The volume of product p added to the main line from refinery
r during the scheduling should be equal or smaller
than reft, ,.

péP Yi.p =1, Viel (9)
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péP PPVi,p,r,k = IPVi,r,k‘ Viel,,peP,reR (10)
2PPY ok <KLV i VielpePireR (11)
k>1

> > PPV <reft, ,,VreR,peP
kek icly  hprk =D (12)

3. 5. Operation of Unloading the Main Line and
Branch Lines The binary variable x; ;s ,, is equal
to 1 if batchi € I7 is sent to depot s, during the
execution of pumping k. A portion of batch i € I, can
be received by depot s, only if the coordinates of the
batch satisfy Equations (13) and (14). When x; 55, =
1, depot s,, will receive a positive portion of batch i €
I, as imposed by Equation (15). If batchi e I}
contains product p the value of the continuous variable
PDPV; , s k nWill be equal to DPV;, ,; otherwise, it is
equal to zero, as imposed by Equations (16) and (17).

LPVi k—1n 2 7s,nXis k,n-

) (13)
Viels,keK,SeS,neN
LPV: o = SPY o < 75 + PV —rsyn).(l—xilsykyn),
(14)
Vielg,keK,SeSn,neN
min max
Xi,s,k,nDPVS,n s D|:)Vi,s,k,n = >(i,s,k,nDPVS,n ! (15)
Vielg,keK,SeSn,neN
%PDPVi,p,s,k,n =DPViskn’
(16)
Vielg,keK,SeSn,neN
max
X PPV, b sk <|K|DPVgT Yips
17)
Viel?,SeSn,neN
3. 6. Branch Lines Feeding Operation The

binary variable u;,, = 1 shows that batch i € I,, in
pumping k is transferring to the branch line n. A portion
of batch i in mainline can be received by branch line
n only if the coordinates of the batch satisfy Equations
(18) and (19). By Equation, (20), whenu;,, =1,
branch line n will receive a proportion of batch i € I,,.

LPVi k—1,n0 Z %nYik n a8)

Vieln,keK,neN,n;tnO

LPVi,k,nO _SPVi,k,nO < Op +(Pvn0 —O'n)(l—ui’k’n),
(19)
Viely keK,neN,n=n0
min max
IRV, " u; < IRV; <IRV, U ,
i,k,n ik,n i,k,n (20)
Viely keK,neN,n=n0

3. 7. Mass Balance Constraints The continuous
variable SPV;, , is the volume of batch i at the end of
pumping k in pipeline n. Volume of batch i at the end of
pumping k in the main line and branch lines is shown by
Equations (21) and (22).

SPV; = SPV; + > IPV; —
i,k,n0 i,k—=1,n0 " 2R i,r.k

SE%:I’]O DPVis,k,no ~ ,2p 'RVik,n: (21)

Vielno,keK,k >1

SPVikn = SPVik—tn T IRV kn = % DPVigyn:
SESn (22)

Vieln,keK,neN,n:&nO

In the main line and branch lines, the injected volume is
always equal to the output volume, Equations (23) and
(24).

X IRV, n= 2 X DPV

iEln KN SGSn iGln iskn’ (23)

Vk e K,ne N,n=n0

2 2 IPV: = X > DPV;
iely reR irk seSoi€lpg i,s,k,n0
(24)
+ Z 2 IRV vk e K
neN,n=n0ielp B

3. 8. Forbidden Sequences For quality reasons
some products should not touch together inside the
pipeline. For example in real pipelines, a batch of
gasoline (premium, regular, etc.) should never be
adjacent to a batch of gas oil. If Touchp_pr = 1, product

p and p’ can touch together inside the pipeline,
otherwise their sequence is forbidden. This restriction
are controlled by:

Yi.p HVin » <Touch ., +1,
p " Ji+lp p.p (25)
Viel,p,p'eP
Zin+Z g <Xzjn-y;, - Vi, » +Touch , P +3,
J p p p.p (26)

Vie Irr]]ew,i’e In(i zi’), p,p €P,n=n0



1875 M. Taherkhani et al. / [JE TRANSACTIONS C: Aspects Vol. 30, No. 12, (December 2017) 1870-1878

where z;,, is a binary variable denoting the existence of
batch i’ € I, in secondary line n and satisfies the
following eq z;, < Yy uipn < |Klzin, Vie€E®™,ne
N,,n # n0.

3. 9. Constraints Satisfied Demand In a
deterministic mode, the demand of depots is the known

parameter Demand,,, ,, and should be satisfied on time.
This unsatisfied demand (Back,,) will result in
backorder costs.

Y, X PDPV. > Demand

> - Back
kek iel§ i,p,s,k,n

s,\n,p s,n,p’

@7)
VpeP,SeSn,neN,keK

3. 10. Identifying Active and Ideal Segments
The binary variable e, ,, determines the status (active or

idle) of segments € s, during pumping run k and its
value satisfy the following equations:

sgzsn & ko,n = 0, vneN 28)
ie% Airk =6siknor  VkeK (29)
rl
iez|r5, ¥i,s,k,n =Gk, o
Vs = last(Sp). k e K,ne N
) X A <e <
75 1 n0<0r<rg o i€l i,rk = "sk,n0
5, Ak oLk 31)
751 n0SOr <rg g i€lr i,rk T Fs-1k,n
Vs eSng.keK
2 Xiskno <€skno <
ielyg
1+ Y x _ 5 s 2 Y “
ielso i,s,k,n0 76 006 <7sy1 o i€y irk (32)
Vs e SnO* ke K
e = 3 u
s.kin ik,n’
|€|n (33)

vn =n0,k € K,s = first(S)

iezls i skn < kn
n (34)
vk e K,seS§,,neN

€s,k,n0 = ; ZI Yik,n’
lelp (35)
vYn=n0,keK,seS

3. 11. Flow Rate Constraints is Mainline and
Branch Lines Segments During any pumping
run k € K, the flow rate at each active segment s € s,
should belong to feasible range [vsfin, vsMax].
Equations (36) and (37) control the flow rate limitation
on mainline and its branch, respectively.
min
Livsg (=) < L X DPVigynot

$28i.|S
Ieln

ST IPV,,-3 X

<o i i <
75,n05% Ieln Ielr rsvo _Hr

IRV, < Lkvsg”a;, (36)
i )
Vs e Sno,k e K

min max
Lkvssn —(A-egyn) s Z 2 DPVi gy n SLevss
stielrsl n

(37)
Vs e Sy keK,neN,n#n0

3. 12. Stoppages Volume Continuous variable
SV n i1s the stoppage volume of segment s of pipeline
n during pumping run k. If e;,_,, = 1 and ey, = 0,
the stopped volume of the segment s, will be the
volume of segment s, (VSEG,,), otherwise it will be
zero.

SVs,k,n 2 VSEGS,I‘] (es,k—l,n - es,k,n )’
(38)
vkeK,ne N,seSn

3. 13. Problem Objective Function The problem
purpose is to minimize the total tree-like pipeline
operating costs including (a) the product pumping cost,
(b) backorder demand and (c) pipeline stoppage cost.

minz = %;%%Cpp,rplvi,r, okt

%%%Cbs,n, p-Backs y p + %%%cs.svs,kyn

4.STOCHASTIC COUNTERPART

Now in this section, we extend the model for the case
demand for each product is random variable &,,, N
[ap sn bpsn]- The objective function can be written as a
two-stage stochastic model shown below:
Min z_g = Yyex ZiEIT ZpEP Yrer Cpp,r-PIVi,r,p,k +
+Xn Xk Xs €5 SVspn + Zp Ys2nE (Q(Ap,s,n' fp,s,n))
s.t.

Equations (1) — (26), (28) — (38)
where, Q(A,5n,&psn)is the optimal cost if depot s,
receives A, sn = Ykex 2iet PDPVipskn  Units  of
product p while demand is random variable &, 5, N
[ap s bp,sn]- SO, We have:
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Q(Apsm Epsn) =minY, cb,BRy,
s.t.
BaCks,n,p S gp,s,n
BaCks,n,p 2 gp,s,n - Ap,s,n
Cleary the optimal value for Q(A,sn &psn)

is max {fp,s,n = Apsms O}.
Since &y cn N [apsns by snls there are three cases:

(
Min z_g = 4
{

Cases 1 and 3 are not economical ones since Case 1
seeks for the optimal cost in a lower level demand and
Case 3 just leads to an infeasible solution in most cases.
So, Case 2 is being tackled in the two-stage stochastic
model. Note that the stochastic counterpart of the
deterministic model is a mixed-integer quadratic
programming (MIQP) model.

5. RESULTS AND DISCUSSION

In this section, two case studies are solved. The first one
is a simple structure and uses the deterministic data for
the demand while the second one uses the industrial
data and demands are random variables with a
continuous uniform. All MILP models are implemented
on GAMS 24.1.2 / CPLEX using an Intel i7-4790K (4.0
GHz) processor and 8 GB of RAM. Note that the
stochastic counterpart of the proposed deterministic
model was solved using GAMS 24.1.2 / BARON.

5. 1. Case Study 1 This example, which is a small
tree network with deterministic demands, deals with a
tree-like pipeline network for transporting six products
from two refineries to three depots and is a variant of a
case study introduced recently by Mostafaei et al. [26].
Note that depot N, is considered as a dual purpose node.
Maximum and minimum batch sizes injected/diverted to
each pipeline/depot though any pumping run, depot and

,i %> [80,200]
[ 13

[FPV,im pp1,ma®] =[1000,4000]

&, 4 =3000
1 =3000

[DPVF.DPVS¥] =[1000,4000]

® Branch point
C—=> Flow rate rang

ZkEK Zielr ZpEP ZreR Cpp,r' PIVi,r,p,k + Zn Zk Zs CS. SVs,k,n + ZkEK Ziel ZpeP Zs Zn Cbp,s,n

ZkEK Zielr ZpEP ZreR Cpp,r- PIVi,r,p,k + Zn Zk Zs CS. SVs,k,n + ZkeK Ziel ZpeP Zs Zn Cbp,s,n
ZkeK ZiEIY ZpEP ZTER Cpp,r' PIVi,r,p,k + Zn Zk Zs cs. SVs,k,nl

E (Q (Ap'fp)) = Apsn < Apsn
( @psn=Apsn)®

< <
2(bpsn—apsn) Apsn < Apsn < bpsn
i (bp,s,n_lp,s,n)z

b <A
2(bp,sn—ap,sn) p.sn p,sn

0,
So, the objective function is given by:

(apsn—PDPV._ . )2

i,p,s,kn C
, ase 1
2 (bp,s,n _ap,s,n)
(bpsn—PDPV, . ° Case 2
z(bp,s,n_ap,s,n) ’ Case 3

branch point volume coordinates and flow rate range at
segments, are shown in Figure 2. Product inventories
and pumping cost at refinery and product demands for
next 5 days at depots are given in Table 4. Unit
ba30korder cost is $200/m* and unit stoppage cost is $1/
m”.

Table 5 shows computational results of Case study
1. Compared to the previous work [26], the proposed
approach finds the optimal solution in a lower CPU time
due to a lower number of pumping operations, having a
major impact on the problem size in term of the number
of variables and equations.

5. 2. Case Study 2 This example is a real-world
problem of the oil pipeline industry, which a variant of
the real world case study introduced by Mostafaei et al.
[24] that incorporates a dual purpose node on the
mainline. The pipeline structure is depicted in Figure 1.
The pump rate at refineries should be kept between 300
and 800 m®h. The length of planning horizon is
Rmax = 192 h. The maximum injection volume into
each pipeline is 15000 m* while the minimum one is
500 m®. The minimum delivery to each depot is also 500
m®. The inventory of products at refinery and also
pumping cost of each product are all listed in Table 6.
Unit flow stoppage cost is 1.0 $/m>. Demand for each
product at pipeline depots is random variable (&, 5,)
with a continuous uniform distribution in [3000; 10000],
given in m’.

o2 =2000

s> [20,100] @ Fnz =9000

d“%‘l => [40,200] —> [20,150] d"‘% 2
4000

&,,1 =5000

Figure 2. Pipeline network of Case study 1
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TABLE 4. Related data for Example 1

Inventory (m®)

umping cost ($/m?)

Demand (m®)

P R1 R, Ry R, Ny N; N3
P1 9000 12 0 2000 1000 3000
P2 - 12000 55 4 0 2000 2000
P3 10000 10 0 3000 0 0
P4 5000 12.5 0 2000 0 3000
P5 8000 8 0 2000 0 0
P6 5000 7500 55 5 0 0 0

TABLE 5. Computational results of Case 1

Case #Pumpruns CPU(s)  Con.Var Bin. Var Back order (%) Pumpcost($)  Stopcost ($)  Obj. Fun. ($)
Our approach 6 24 2047 318 3884 0 182000 6000 188000
Mostafaei et al. [26] 10 141 2597 399 4486 0 248500 8000 256500

TABLE 6. Inventory and pumping cost

Inventory (m®) Pumping cost ($/m°)

P Ry R, R1 Rz
P1 36000 - 8 -
P2 25000 18000 75 6
P3 10000 18000 8 5
P4 42000 - 7 -

Other data related to this example (i.e., the size of old
batches, the coordinate of refineries, depots and branch
points, the volume of segments and flow rate limitation)
can be found in Figure 1. To solve the problem
formulation, we set the number of new batches to be
injected into the mainline equal to 4 (i.e., I}®V =
{15,16,17,18}). The optimal solution includes nine
pumping operations and is found in 2730 s of CPU. At
the optimum, the new batches Is, 16, 17 and 18 convey
products Ps, P,, P4 and P,, respectively. Such product
sequences inputted in the pipeline lead to an optimal
cost of $534233.

6. CONCLUSION

This paper has presented a new optimization framework
for the detailed scheduling of tree-like pipelines
featuring multiple refineries and depots. The proposed
approach has overcome the drawback of previous
contributions that only considered a single refinery at
the origin of the mainline and deterministic data for
depot requirements. In the first stage, a deterministic
mixed-integer linear programming (MILP) model has
been developed, and then the deterministic model has
been extended to a two-stage stochastic programing
model. The proposed formulation has been tested with a
real-case study. The results have shown that the

proposed approach was capable of solving the detailed
scheduling of large-scale problems in a quite lower CPU
time. For Future work will involve extending the
proposed approach by considering production
scheduling at refineries, and also the proposed approach
will be extended to handle mesh structure pipeline
networks.
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