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A B S T R A C T  
 

 

A parametric formulation for preliminary design of tubed-system tall buildings is presented in which 

some optimality criteria and practical constraints are considered. Here, a minimum compliance 
optimization formulation, developed by other researchers, is applied to a framed-tube structure. The 

tube behavior is modeled as a cantilevered box beam. Independent variable in this problem is thickness 
of the box, and a formulation for its optimal value is proposed. The challenge in this research was 

treatment of the lower bound constraint on thickness in an analytical manner. To deal with this 

constraint, a critical height parameter is introduced, and the design domain is divided into two zones of 
constant thickness and constant curvature. This definition allows for computation of optimal thickness 

distribution along the structure through an analytic dimensionless equation. Most of the previously 

published papers in the field of tall structures are suitable for abstract analyses but not for design. In 
addition, most of them are computer-based. Considering these limitations, the current research presents 

a hand-calculation method for preliminary design, suitable for sensitivity analyses and parametric 

studies. As the presented formulations are dimensionless, they are applicable in any dimensional 
system. Different static loading patterns are considered; including the concentrated, uniform, triangular 

and quadratic forms. A numerical example is presented to demonstrate the ease of the proposed method 

in application, and the analysis results are presented by charts to validate the efficiency of it. 

doi: 10.5829/ije.2017.30.11b.06 
 

 
1. INTRODUCTION1 
 

Nowadays, tall buildings are a suitable solution for 

housing in dense cities in addition to being a symbol of 

technological advancement [1]. High cost of such 

structures demands optimization at any possible level 

[2]. In general, the design process of a tall building 

involves conceptual design and approximate analysis, 

preliminary design, and finally detailed design [3]. 

Some engineers skip the preliminary design step, in 

which a suitable stiffness distribution is calculated, and 

go straight to the final step after the conceptual design 

and finalize the structural configuration using some sort 

of optimization algorithm. However, this way little can 

be improved upon the original design. Consideration of 

the preliminary design step allows for assessment of 

structural performance. Most researchers have presented 

simple models which are suitable for abstract analyses 

but not for design [4-11]. Furthermore, most presented 
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design methods are computer-based. Aldwaik and Adeli 

[2] presented a review of papers on optimization of 

high-rise structures. Almost all of the mentioned papers 

are code-based and numerical, while a hand-calculation 

method, as in the preliminary design step, is a more 

suitable tool for sensitivity analyses and parametric 

studies [12].  

In the research done by Connor and Pouangare [12], 

a framed tube structure is modeled by a string-shear-

panel system with uniform properties along the 

structure. To make the method applicable for structures 

with varying geometric along its height, the structure 

which is assumed made up by some segments and 

transfer-matrix is introduced for each segment and 

finally a transfer matrix for whole structure is obtained. 

However, due to piecewise characteristic of this 

method, parametric study is not simple. Some other 

investigations have been done in this field, but most of 

them are about diagrid systems [13, 14]. Connor and 

Laflamme [15] used a cantilever beam to model the tall 

buildings, and closed-form relations were introduced for 
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optimal shear and bending stiffness distribution along 

the model’s length. Objective of the current research 

effort is to devise this model in an optimization-

framework so to make the structural improvement 

quantifiable. Furthermore, a lower bound on stiffness of 

the structure is observed in an analytical framework. 

Although such constraints have been explored by many 

researchers so far, most of them are numerical [16-18].   

The framed-tube system, Figure 1, is considered 

here, in which axial stress field generated in the closely 

spaced columns located on structure’s perimeter resists 

the applied lateral loads. Behavior of this system can be 

modeled as a cantilevered box-beam [19]. The 

optimization process applied here uses total potential 

energy as the objective function. It will be shown that 

this selection results in constant curvature along the 

structure. In the optimization strategy, thickness of the 

box is calculated with this objective. As to be expected, 

thickness value at high elevations becomes relatively 

small and inapplicable. To deal with this issue, a lower 

bound constraint is added, and the problem is analyzed 

by introducing a parameter called critical height (CH). 

In the optimal state, the points above CH have the same 

thickness of low limit but different curvature values. 

Opposite situation exists for thickness and curvature at 

points lower than CH. Optimum thickness distribution is 

determined with respect to CH, and its closed-form 

formulation is presented. 

 

 

2. LIMITED VOLUME CONSTRAINED 
OPTIMIZATION 
 
Limited volume constrained is the optimization 

framework used here. In this part, the model 

approximating structure’s response is first introduced 

and then the constrained optimization process is applied 

to this model. 

 
2. 1. Modeling       A cantilevered box-beam with 

bending response only is used to model a tall building, 

Figure 2. 

 

 

 
Figure 1. Framed-tube system 

In this model, exterior dimensions are invariant in 

height and remain so throughout the optimization 

process. In this process, the only independent variable is 

thickness (t) of the perimeter panels. For convenience, 

identical thickness is assumed for all panels at each 

elevation. The selected coordinate system has its origin 

placed at the center of the rectangular section located at 

top of the structure with positive z direction pointing 

downward, Figure 3, and the length is . In this paper, 

the structure is modeled using Euler-Bernoulli beam; 

however, considering shear lag effect would probably 

better represent structure’s actual response [20-22], and 

is planned for future research efforts.   

Mathematical model of one-dimensional transverse 

bending about the x axis is utilized in all analyses. 

Moment of inertia can be approximated as: 

0
( ) ( )I I z t z I   (1) 

where, ( )t t z  is thickness of the box, and 

3 2

0 (4 3) 4I b ab   
 is the moment of inertia for a unit 

thickness box, in which 2a and 2b are dimensions in x 

and y directions, respectively. It is shown in Figure 2. 

 
2. 2. Minimum Compliance Formulation       In 

structural optimization problems, one attempts to 

distribute the available construction materials 

throughout the design domain with the objective of 

making the structure as stiff as possible. There is no 

unique measure of stiffness in this process; the so-called 

compliance measure, which minimize external work, 

0
( )u u f dz  , as the objective function [23]. It is 

selected here for one crucial reason; roughly speaking, 

optimization process based on compliance measure 

tends to create a system with almost constant stress 

distribution [23]. 

An equivalent approach is utilization of total potential 

energy as the objective function. For the system under 

consideration, the total potential energy is: 

 0

0 0

22

2
( )

2

EI d uJ t dz f z u dz
dz

     (2) 

 

 

 
Figure 2. Hollow-box-beam model for framed-tube structure 

and its cross section 
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where, J is the total potential energy, E is Young’s 

modulus of elasticity, u denotes the displacement field 

in y-z plane, and f is the induced lateral force.  

Based on Reference [23]:  

( ) 2 ( )t tu J u   (3) 

From Equation (3),  and J  are proportional, so ( )tJ u  

can be selected as the objective function instead of ( )tu , 

and due to the negative sign, the minimization statement 

must be converted to maximization one. That is 

compliance measure which can be replaced by total 

potential energy one. In preceding relations, subscript t 

emphasizes that u is a function of t, so ( )tJ u  can be 

replaced by ( )J t . Therefore, the design problem can be 

stated as follows: 



( )

. .

t
max J t

s t t






 
(4) 

In which, H denotes the design constraints of the 

amount of available material. Hence, for a given 

material’s volume V, t   must satisfy  

0
0
t dz A  (5) 

where, 
0A V p , and p denotes beam’s perimeter, i.e. 

p=4(a+b). Hence, the optimization problem can be 

stated using Lagrangian method as 

0
0

( , ) ( )t J t t dz A     
  L  (6) 

where, 0   is the Lagrangian multiplier. Variation of 

L  with respect to t yields 

20

0
( )

2

EI
u t dz  

 
  

 
L  

(7) 

With optimality condition of 0 L , the following 

relating is reached: 

0

2
u

EI


      

(8) 

where,   denotes the curvature. Equation (8) states that 

for optimum thickness, absolute value of curvature is 

constant along the structure, which is in agreement with 

the general theorem of constant strain energy presented 

in Reference [23]. This theorem states that for the 

optimization problem (4), t
*∊H optimizes the objective 

function if the specific strain energy is constant in the 

design domain. As the specific strain energy and 

curvature are proportional [23], optimal thickness is 

evaluated by enforcing the requirement for the curvature 

to be constant. 

 

2. 3. Optimal Thickness Distribution       Based on 

previous section, optimal thickness is evaluated by 

forcing the curvature to be constant. Under such 

conditions, different loading patterns have been 

investigated; and for each case, optimal thickness 

distribution is obtained.  

As the first step in this process, the governing 

equation and natural boundary conditions (NBC) for 

each case are defined exactly. General form of the 

governing equation, along with NBC, are as follows: 

 
2

2

0

0

( ) 0

( ) |

( ) |

z

z

d
EIu f z

dz

d
EIu S

NBC dz

EIu M






  




  
    

 

(9) 

for which induced lateral load (f) and NBC including 

shear force (S) and bending moment (M) at the free end 

need to be defined in each case. Table 1 lists these 

parameters according to Figure 3. 

By integrating governing differential equation twice 

and taking NBC into account and rearranging the 

relations in terms of the dimensionless parameter 

z z , we have: 

( )maxEIu M m z   (10) 

 
TABLE 1. List of lateral loads, shear forces and bending 

moments at the free end, according to Figure 3 

 F S M 

Case 1 0 Q 0 

Case 2 q  0 0 

Case 3 (1 )q z  0 0 

Case 4 2 2(1 )q z  0 0 

 
 

  

  
Figure 3. Different loading patterns: case 1: concentrated; 

case 2: uniform; case 3: triangular; case 4: quadratic 
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where 
maxM  is maximum moment that happens at the 

base, and we name ( )m z  relative. Table 2 presents these 

two parameters for each case. Clearly, 
max , 0M EI   for 

all [0 1]z  . Figure 4 shows diagrams of ( )m z  that 

( ) 0m z   for all [0 1]z   in each case. 

Therefore, it is concluded from Equation (10) that 

0u   . Hence, by Equation (8) we have: 

u     (11) 

Substituting for I and u   from Equations (1) and (11) 

respectively into Equation (10), and defining new 

parameter 
max 00max M EI  , we have: 

0max (z)t m   (12) 

Thus, considering   as a constant parameter, optimal 

thickness distribution would be: 

(z)0maxt m



  

(13) 

Indeed, this formulation must satisfy constraint (5). It is 

needed to restate this constraint with respect to new 

variable z , as is done in the following.  

1

0
t dz t  (14) 

where: 

0A
t   (15) 

 
 

TABLE 2. Maximum and relative moments 

 maxM  ( )m z  

Case 1 Q  z  

Case 2 2 2q  2z  

Case 3 2 3q  2 3(3 2) (1 2)z z  

Case 4 25 12q  2 4(6 5) (1 5)z z  

 
 

 
Figure 4. Diagram of relative moment for different cases 

This is the limited volume (LV) constraint. t  is defined 

for convenience and is named as average thickness. 

Substituting Equation (13) into constraint (14) dictates 

the value of  , which after substitution in Equation 

(13), the optimal thickness relations are obtained, Table 

3. 

 
 
3. LIMITED VOLUME AND LOWER BOUND 
CONSTRAINED OPTIMIZATION 
 
In order to make the results more applicable, the 

obtained relations for thickness in Table 3 are modified 

considering a lower bound (LB) constraint.  

 
3. 1. New Optimization Problem       Based on Table 

3, for the points near the top of the structure, as 0z   

thickness approaches zero, which is not right. Thus, 

based on practical consideration, LB constraint of 
mint  

on thickness should be defined in the original 

optimization problem in addition to LV one: 

1

0

( )

:
. .

: 0

t

min

max J t

LV t dz t
s t

LB t t





 

   


 

(16) 

Note: 
mint  has an upper bound controlled by LV 

constraint, i.e. 
mint  cannot be larger than average 

thickness ( t ) introduced by Equation (15). In all parts 

of this research, it is assumed that this constraint is 

satisfied. That is, 
mint t . 

From Table 3, clearly, there exists a height named 

primary height (PH), denoted by 
pz  in dimensionless 

relations, such that for [0 ]pz z , LB constraint is 

violated. Referring to Table 3, PH can be calculated by 

substituting 
pz  for z  and 

mint  for t. Doing so and 

introducing a parameter named relative minimum 

thickness (RMT) as: 

min
min

t
t

t
  (17) 

 
 
TABLE 3. Optimal thickness distribution observing LV 

constraint 

 ( )t z  

Case 1 2t z  

Case 2 23t z  

Case 3 2 34 (4 / 3)t z t z  

Case 4 
2 4(10 / 3) (5 / 9)t z t z  
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yields polynomials for which an acceptable root would 

be considered as the PH value. Table 4 presents the 

relevant polynomials for each case. 

 
3. 2. Intervening Variable       There are some 

approaches to deal with the new optimization statement. 

It is recommended to solve a min-max problem for such 

cases [Formulation (16)]. There are many methods to 

solve a min-max problem such as sequential quadratic 

programming [24], which has a numerical aspect. In the 

analytic approach, a Lagrangian function is constructed 

using the objective function and LV constraint while 

ignoring LB constraint. Lagrangian function is then 

minimized with respect to LB constraint [23]. This 

process will yield a relation between the Lagrangian 

multiplier   and variable t through a one-variable 

function ( )  : 

( ) ( , )
t LB
min t  


 L  
(18) 

Finally, owing to convexity of the problem [23], the 

optimum solution is obtained by maximizing (or 

minimizing) ( )   with respect to 0  . 

Consequently, it is essential to find the relation 

between   and t such as Equation (18). However, this 

process is rather complicated for the current problem. 

To deal with this complexity, this research strives to 

construct the problem based on an intervening variable, 

instead of  . Parameter   can be selected for such a 

pupose. Appropriateness of this selection is supported 

by two factors: 1) the problem is greatly simplified 2) 

Since the intervening variable is structure’s curvature, 

the results are more sensible from a structural 

viewpoint. To find the relation between   and t, note 

Equation (13), which states t as a function of two 

variables   and z . Specially, consider case 1. 

Figure 5 shows variation of t with respect to   for 

different values of z ; with marked positions of 

minimum thickness 
mint  and the particular unknown 

c  

the critical curvature. For other cases, the data on the 

ordinate is replaced by ( ) (z)0maxt m  . As (z)m  is 

positive and bounded (based on Figure 4), we would 

have similar schematic diagrams. Considering Figure 5, 

there is a critical height, 
cz . 

Considering  Figure 5,  there  is  a critical height, 
cz  

 
TABLE 4. Polynomials associate with PH 

Case 1 min2 0pz t   

Case 2 
2

min3 0pz t   

Case 3 
3 2

min(4 / 3) 4 0p pz z t     

Case 4 
4 2

min(5 / 9) (10 / 3) 0p pz z t     

located on the chart at intersection of 
mint t  and 

c  . 

At elevations higher than the CH value ( 0 cz z  ) LB 

constraint is violated; hence for this region, uniform 

thicknesses (
mint ) with varying curvature, as computed 

from Equation (12) is considered. We call this region 

constant thickness (CT) zone, formally specified as:  

min

CT (0 ):
(z)

CT min

c 0max
CT

t t

z z
m

t







  




 
(19) 

For heights lower than CH ( 1cz z  ) curvature is kept 

constant at 
c  with varying thickness computed from 

Equation (12). This region is referred to as the constant 

curvature (CC) zone with following specifications: 

(z)
CC( 1):

0max
CC

cc

CC c

t m
z z





 




  
 

 
(20) 

 
3. 3. Modified Optimal Thickness and Curvature 
Distribution       Considering relations (19) and (20), 

optimal thickness formulation while observing LB 

constraint becomes: 

0

( )
(z) 1

CT min c

0max
CC c

c

t t z z

t z
t m z z





  


 
  



 
(21) 

Similarly, relations for curvature are as follows: 

min

(z) 0
( )

1

0max
CT c

CC c c

m z z
tz

z z






 


  

 
   

 
(22) 

In the stated optimization problem, 
c  and 

cz  are 

unknown as yet. 

 

 

 
Figure 5. Variation of t with respect to   for different values 

of z  for case 1 
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Considering Equation (21) and the fact that thickness 

must remain continuous along structure’s height, i.e. 

( ) ( )CT c CC ct z t z , yield: 

( )0max
c c

min

m z
t


 

 
(23) 

Substituting into Equations (21) and (22), results in the 

following relations for thickness and curvature; for 

thickness: 

0

( ) ( )
1

( )

CT min c

CC min c

c

t t z z

t z m z
t t z z

m z

  


 
  



 
(24) 

and for curvature: 

min

( ) 0

( )

( ) 1

0max
CT c

0max
CC c c

min

m z z z
t

z

m z z z
t










  


 
   


 
(25) 

To evaluate the only unknown 
cz , LV constraint must 

be satisfied, so Equation (14) is imposed. By 

substituting the computed thickness value from relation 

(24) into Equation (14), a polynomial with a root 

acceptable as the CH value is obtained. Applying to all 

cases yields the relations presented in Table 5. 

Solving the equations presented in Table 5 while 

observing 0 1cz   and 0 1mint   would yield 
cz , 

which after substitution into (24) and (25), curvature   

and thickness t are obtained. Table 6 contains the values 

of CH for different values of RMT (
mint ). 

 
TABLE 5. Polynomials associate with CH 

Case 1 
2

min min2 0c ct z z t    

Case 2 
3 2

min min2 3 0c ct z z t    

Case 3 
4 3 2

min min min3 (8 4) 12 3 0c c ct z t z z t      

Case 4 
5 4 3 2

min min min4 5 20 30 9 0c c c ct z z t z z t      

 

 

TABLE 6. CH for different values of RMT 

RMT Case 1 Case 2 Case 3 Case 4 

0 0 0 0 0 

0.1 0.0501 0.1837 0.1635 0.1747 

0.2 0.1010 0.2628 0.2367 0.2504 

0.3 0.1535 0.3271 0.2974 0.3123 

0.4 0.2087 0.3855 0.3535 0.3689 

0.5 0.2679 0.4421 0.4087 0.4242 

0.6 0.3333 0.5000 0.4660 0.4810 

0.7 0.4084 0.5625 0.5288 0.5429 

0.8 0.5000 0.6350 0.6029 0.6155 

0.9 0.6268 0.7310 0.7033 0.7132 

1 1.0000 1.0000 1.0000 1.0000 

Structural designers can refer to Tables 6, find the 

critical height and substituting in Equations (24) easily 

determine thickness value. The most prominent merit of 

the presented method in practice, in addition to be 

convenience, is its analytical characteristic; there by 

making the method as a fast and reliable approach in 

design process of tall buildings. 

 
 
4. ILLUSTRATIVE EXAMPLE 
 
This section illustrates method’s application to 

preliminary design of a tube system. Efficiency of the 

proposed method is evaluated by adopting the example 

given by Kwan [4] as the reference point. From this 

example, the structure with uniform stiffness 

distribution subjected to uniform loading is selected as 

the basic model. This structure is redesigned (with 

identical amount of material) using hand-calculation 

approach based on Equations (17) and (24) as well as 

Tables 6 and 2. The models are then analysed using a 

standard program, and the results are graphically 

compared to those of the reference model.  

Structural definition: The reference structure is a 40-

story reinforced concrete framed tube building with 

typical height story of 3m. All columns and beams have 

cross sectional area of 0.8 0.8m m ; and center-to-

center column spacing is 2.5m. Equivalent properties of 

the orthotropic membrane tube model of this structure 

are presented as followings: 

17.5a m  
15b m  

120m  

0.256t m  

20E GPa  

120q kN m  

(26) 

where , ,a b  and t are geometric characteristics, Figure 

2; E is the modulus of elasticity; and q is the uniform 

load intensity.  

Redesign of this structure based on relations 

presented here, requires two more parameters; total 

available material (V), and the minimum allowable 

thickness (
mint ). We have approximately [4(a b)]V t  , 

which can be evaluated using geometric properties 

given in Equation (26), hence: 

33993V m  (27) 

According to relation for equivalent thickness presented 

by Kwan [4], 
ct A s  in which 

cA  is columns’ cross 

sectional area and s is the column spacing, which is 

2.5m here. Supposing cross sectional of 0.5 0.5m m  as 

the accepted minimum for columns and beams, then 

minimum thickness for the equivalent tube model would 

be: 

min 0.1t m  (28) 
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At this point, all basic inputs are prepared and the 

proposed preliminary design process can be illustrated 

through the following five steps. 

Step 1 (RMT): Firstly, it is needed to calculate RMT 

[Equation (17)]. To that end, we need an estimate of  t  

(average thickness). As thickness in the first structure is 

uniformly distributed, It is concluded intuitively that 

0.256t m . However, using Equation (14) and 

substituting t=0.256 [from Equation (26)], the same 

result can be obtained. Therefore, approximately:  

min 0.39t   (29) 

Step 2 (CH): Referring to Table 6, one can determine 

CH. To that end, we select case 2 row and 0.4 

(approximate value instead of 0.39) for RMT. The CH 

relative amount would be:  

0.3855cz   (30) 

To know the absolute amount of CH (
cz ), it is enough 

to multiply the obtained value by 120 , which yields 

46.26 m. Thus, the points above this elevation (

0 46.26z  ) are assigned the minimum thickness 

value, i.e. 0.1 m. 

Step 3 (relative moment): The other quantity which 

must be specified is ( )m z . Based on Table 2 and the 

fact that case 2 is considered, we have:  

2( )m z z  (31) 

Step 4 (optimal thickness): Now, optimal thickness can 

be evaluated using Equation (24) as follows: 

2

2

0.1 0

( )
0.

0.3855

0.3855
0

1 1
( ).3855

CT

CC

t m z

t z z
t z

  


 
  



 
(32) 

To have optimal thickness in terms of z instead of z , it 

is enough to substitute z  for z . Doing so and 

considering 120m , will result in: 

2

46.26

46.2

0.1 0

( )
0.1 1206

46.26

CT

CC

t z

t z z
t z

  


   
   

 

 
(33) 

where all values are in meters. 

Step 5 (making the results practical): According to 

Equation (33), t(z) is a continuously varying parameter, 

the solid curve in Figure 6.  

However, it is not practical and further modification 

is required. In order to handle this issue, we can suppose 

that thickness would remain constant for every 5-levels, 

shown with dashed lines in Figure 6. The only 

constraint that must be observed while computing the 

equivalent thickness over a given 5-level span is to keep 

the material volume unchanged by selecting the average 

thickness over that span, e.g. two filled areas in the first 

region in Figure 6 are the same. All that remains is to 

calculate the dimensions of columns in accordance to 

their equivalent thickness value. This is done here using 

the relation 
ct A s , Table 7. 

Since the proposed method is based on bending 

deformation, it is expected that normal stresses due to 

bending would decrease in the proposed model, as 

compared to the reference model. Outputs from analyses 

using ETABS 9.7.4 [25] show that the maximum axial 

stress in perimeter columns decreases by 47 percent. 

Hence, it validates the optimization process to some 

extent. In order to get a better understanding of 

enhancements, some new measures are introduced here, 

and the results are presented through charts in Figure 7. 

For instance, consider the first chart; data on the 

abscissa shows the average axial stress in the 

compressed columns and the ordinate denotes the story 

number. 

Similar diagrams are presented as web average 

stress: the average axial stress of compressed columns 

of the web panels, flange average stress: the average 

axial stress of compressed columns of the flange panels, 

and maximum stress: the maximum axial stress of 

compressed columns.    

From diagrams in Figure 7, it can be deduced that in 

addition to decrease in magnitude of normal stresses in 

the proposed structure, as compared to the reference 

structure, stress dispersion has been decreased as well. 

 

 

 
Figure 6. Schematic design diagram of example 

 

 

TABLE 7. Design information of example 

Region (m) 
Optimal 

thickness 
(m) 

Theoretical values 

of column 
dimension (m)  

Practical values 

for dimension of 
columns (m)  

0-45  0.1000  0.5000  0.5  

45-60  0.1299  0.5699  0.55  

60-75   0.2138  0.7311  0.75  

75-90   0.3189  0.8929  0.9  

90-105   0.4451  1.0549  1  

105-120   0.5923  1.2169  1.2   
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This characteristic is due to imposition uniformity 

condition on curvature in the CC zone (1-25 stories 

here). 

For a qualitative assessment of improvements to the 

new structure, two parameters are presented in each 

chart  ;  1)   stress   decrease:   percentage   decrease  in  

euclidean norm of (40-dimensional) the stress field, and 

2) standard deviation decrease: percentage decrease in 

standard deviation of stresses as related to levels 45m 

through 120m (CC zone). Note that the stress values 

include average, web average, flange average and 

maximum stresses. These diagrams confirm 

improvements in the structure designed based on the 

proposed method as compared to the reference structure, 

in which the material is uniformly distributed along its 

height. 
 

 

 

 

 

 
Figure 7. Stress distribution along the height of basic and 

proposed structures 

5. SUMMARY AND CONCLUSIONS 
 

A simple procedure for preliminary design of framed-

tube systems of tall buildings has been presented. To 

takes the practical constraints into account, the 

optimization problem was constructed in terms of some 

new parameters, including critical curvature and critical 

height. This approach contributes to derivation of a 

nondimensional formulation for optimal thickness 

distribution, applicable in any consistent unit systems. 

Different static loading patterns have been considered, 

and the results related to all patterns are presented in 

tables, for reference to the design process. The proposed 

method was validated by redesigning a framed-tube 

structure, keeping the total amount of material constant. 

Stress analysis of the reference and optimized structures 

show a more uniformly distributed stress field with 

lower stress norm for the optimized structure.  

Obviously, there is no guarantee that the proposed 

methodology would lessen shear stresses. Nonetheless, 

since in tall-enough buildings, the dominant 

deformation is due to bending, hence importance of 

shear stresses reduces as building’s design height is 

increased.  

Since tube systems tend to act like thin-walled 

beams, shear lag phenomenon may occur in a particular 

region, leading to large values of shear deformations 

which ultimately complicate normal stress distribution 

in that region. As a future research topic, it would be 

valuable to account for shear lag phenomenon in the 

optimization process in order to further improve on 

proper distribution of the stress fields.  
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 سازی بهینه معیارهای  بعضی گرفتن نظر در با بلند، های سازه در ای لوله سیستمهای طراحی جهت پارامتریک فرمولبندی یک

 سیستم یک بر است، شده ارائه محققین  بعضی توسط قبلاً که نرمی، سازی مینیمم مساله. است شده ارائه کاربردی، قیود و

 فرمولبندی این در مستقل متغییر. شد خواهد مدل قوطی مقطع با کنسول یک صورت به سازه رفتار. شود می اعمال ای لوله

 مقید مساله حل تحقیق این در رو پیش چالش. شد خواهد ارائه  آن بهینه مقدار و است شده انتخاب معادل قوطی ضخامت

 بحرانی معرفی ارتفاع نام به پارامتری قید، این با برخورد در. است بوده تحلیلی، رویکرد یک با ضخامت، حداقل قید به

 پارامترها این از استفاده .کند می یکنواخت تقسیم انحنا و یکنواخت  ضخامت   ناحیه دو به را طراحی محدوده که است شده

بیشتر مقالات . کرد خواهد فراهم بعد بی و تحلیلی فرمولبندی یک قالب در را سازه ارتفاع در بهینه ضخامت محاسبه امکان

های بلند برای تحلیل مناسب هستند نه طراحی. به علاوه بیشتر آنها مبنای کامپیوتری دارند. با در نظر  گذشته در زمینه سازه

گردد که تحلیل حساسیت و مطالعه  روش دستی جهت طراحی اولیه ارایه میها در این تحقیق یک  گرفتن این محدودیت

بعد هستند، استفاده از آنها در هر سیستم ابعادی  های ارایه شده بی کند. از آنجا که فرمول پارامتریک را نیز میسر می

 قرار دو مدنظر درجه و ثلثیم یکنواخت، متمرکز، بارگذاری شامل  مختلفی استاتیکی بارگذاری پذیر است. الگوهای امکان

 نتایج روش، سنجی صحت برای و است شده ارائه عددی مثال یک شده، پیشنهاد روش  سادگی دادن نشان جهت. اند گرفته

 .شد خواهد ارائه نمودار چند توسط تحلیل
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