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A B S T R A C T  
 

 

This paper presents a multi-objective simulated annealing algorithm for the mixed-model assembly 

line balancing with stochastic processing times. Since, the stochastic task times may have effects on 

the bottlenecks of a system, maximizing the weighted line efficiency (equivalent to the minimizing the 
number of station), minimizing the weighted smoothness index and maximizing the system reliability 

are considered. After solving an example in detail, the performance of the proposed algorithm is 

examined on a set of test problems. The experimental results show the new approach performs well. 
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1. INTRODUCTION1 
 

An assembly line is a production line that unfinished 

products move continuously through a sequence of 

stations that these stations are linked together by a 

material handling system. 

Line balancing is one of the most important aspects 

of the assembly systems which is defined how tasks 

should be assigned to the stations subject to precedence 

constraints.  

The first scientific article on the assembly line 

balancing problem (ALBP) was published by Salveson 

[1]. Then, many studies have been investigated with 

different situations, constraints, objective(s) and solving 

methods. There are several good surveys and 

taxonomies on the ALBP such as in literatures [2-12]. 

There are several classifications of ALBP. 

According to the number of product models that will be 

assembled on the line, it is divided into single, mixed 

and multi models.  

In the single model, only one type of product, in the 

mixed-model several models of one type of product and 
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in multi-model different product types in batches are 

assembled. 

There are two famous objective functions for solving 

ALBP. One of them is minimization of the number of 

workstations for the given cycle time (Type-I) and 

another type is minimization of the cycle time for the 

given number of workstations (Type-II). 

According to the number of objective function(s), 

we can categorize them to single-objective (i.e., [13] 

and [14]) and multi-objective (i.e., [15-24]). It is 

interesting that, recently, multi-objective optimization 

has attracted the research attention in comparison with 

single-objective problems [25]. 

By reviewing the articles that have published for 

assembly line balancing, it is clear that there are several 

exact, heuristic and meta heuristic algorithms for 

solving mixed model assembly line balancing problems. 

Exact methods can get optimal solution in small-sized 

problems. Due to the NP-hard class of the ALBP [26], 

many researchers tried to solve these problems to gain 

optimum or near optimum solution in reasonable 

computational time. So, many heuristic and meta 

heuristic algorithms proposed for ALBP. 
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Table 1 shows several articles that used exact, 

heuristic and meta heuristic algorithms for solving 

mixed-model assembly line balancing problems.  

According to the nature of task times, ALBP is 

classified into two classes: deterministic and stochastic. 

Most of the researches in the field of Assembly line 

balancing assumed that the task times are deterministic 

[27], but in a realistic manufacturing environment, the 

task time may be random due to worker fatigue, low 

skill levels, job dissatisfaction, poorly maintained 

equipment, defects in raw materials, etc. [28]. Hence, 

verifying stochastic task time in assembly line balancing 

will be necessary. There are several papers that 

investigated stochastic task times for assembly line 

balancing. For example, Tiacci [29] presented an event 

and object-oriented simulator for assembly lines. His 

tool, developed in Java, was capable to simulate mixed 

model assembly lines, with stochastic task times, 

parallel stations, fixed scheduling sequences, and 

buffers within workstations. Also, Cakir et al. [25] 

proposed an algorithm, based on simulated annealing 

for multi-objective optimization of a single-model 

stochastic assembly line balancing problem with parallel 

stations. The objectives of their paper were (1) 

minimization of the smoothness index and (2) 

minimization of the design cost.  

A good measure of assembly line balancing in 

stochastic condition is system reliability. So, there are 

some papers in this field such as literatures [30-33]. 

Reliability can be used as a good index when there is 

uncertainty or probabilistic parameters for system. One 

of these uncertainties, probabilistic or feasible 

parameters may be processing times when human 

involve in assembly line. The reliability of a system 

with stochastic task time can be defined as a probability 

that there is no bottleneck in a system. 

To the best of our knowledge and literature review, 

there is no paper that investigated stochastic mixed 

model assembly line balancing problem according to 

system reliability, weighted line efficiency and 

weighted smoothness index, simultaneously. So, this 

field can be a good area for developing and in this paper 

we focus on this gap.  

 

 

 
TABLE 1. Exact, heuristic and meta heuristics for solving 

mixed-model ALBP 

Exact Branch and Bound [34] 

Heuristics Heuristic algorithm [28, 35] 

Meta 

Heuristic 

Simulated Annealing [16] 

Genetic Algorithm (GA) [36, 37] 

Ant Colony Optimization (ACO) [17, 18] 

Tabu Search (TS) [38] 

Particle Swarm Optimization (PSO) [19] 

For this purpose, we propose an SA algorithm for 

solving mixed model assembly line balancing with 

stochastic processing time that minimizes weighted 

smoothness index and maximizes system reliability and 

weighted line efficiency. The rest of this paper is 

structured as follows. Section 2 provides some basic 

concepts about the standard simulated annealing 

algorithm and weighted sum method for solving multi-

objective mathematical models. Problem definition and 

the proposed simulated annealing algorithm are 

presented in Section 3. Numerical example and 

numerical experiments are given in Sections 4 and 5. 

Finally, Section 6 is devoted to conclusions and 

recommendations for future research. 

 

 

2. BASIC CONCEPTS 
 
In this section, we introduce the SA algorithm and 

weighted sum method for solving multi-objective 

problems. 

 

2. 1. The Standard Simulated Annealing 
Algorithm             The Simulated Annealing algorithm 

is a random search optimization technique that got its 

existence from the physical annealing of solid metal. 
As Simulated Annealing starts, an initial solution is 

generated and used as the first current solution. A 

control parameter (T), is specified analogous to the 

annealing temperature. This temperature is 

systematically decreased according to a cooling rate. As 

the temperature drops, neighboring solutions to the 

current solution are found. If the objective function 

value is superior to that of the current solution, the 

neighboring solution becomes the new current solution. 

If the neighboring solution provides an objective 

function value inferior to that of the current solution, the 

neighboring solution may still become the current 

solution if a certain acceptance criterion is met. A 

distinctive feature of Simulated Annealing is that 

inferior solutions are sometimes accepted as the current 

solution to prevent getting trapped in local optima. 

Through the occasional acceptance of inferior solutions 

which meet the acceptance criteria, the search moves to 

a different location on the continuum of feasible 

solutions in an effort to reach the global optimum. The 

process of finding neighboring solutions and accepting 

these as current solutions if acceptance criteria are met 

is repeated according to the cooling pattern until some 

stopping criteria is met [39]. 

 

2. 2. Weighted Sum Method            This method is 

one of the most widely used methods for solving multi-

objective problems. It composes the set of objectives 

into a single objective by multiplying each objective 

with a user supplied weight that this weight depends on 

the relative importance of each objective. The structure 

http://www.sciencedirect.com/science/article/pii/S0925527312001090#s0010
http://www.sciencedirect.com/science/article/pii/S0925527312001090#s0070
http://www.sciencedirect.com/science/article/pii/S0925527312001090#s0095
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of this method is given below [40]: 
𝑀𝑖𝑛  𝐹(𝑋) = ∑ 𝑤𝑚𝑓𝑚

𝑀
𝑚=1 (𝑋)  

 𝑠𝑢𝑏ject to:   𝐺(𝑋) = [𝑔1(𝑋), 𝑔2(𝑋), … , 𝑔𝐽(𝑋)] ≥ 0    

 𝐻(𝑋) = [ℎ1(𝑋), ℎ2(𝑋), … , ℎ𝐾(𝑋)] = 0  

 𝑥𝑖
(𝐿)

≤ 𝑥𝑖 ≤ 𝑥𝑖
(𝑈)

 , 𝑖 = 1,2, … , 𝑁 

(1) 

where, the objectives are normalized and wm∈[0, 1] is 

the weight of the m
th

 objective function. 

It is usual practice to choose weights such that ∑ 𝑊𝑚
𝑀
𝑖=1 =

1. 

 

3. PROBLEM DEFINITION 
 

In this section the problem assumptions and the 

proposed algorithm for mixed model assembly line 

balancing problem with stochastic processing time for 

maximizing the weighted line efficiency (minimizing 

the number of stations), minimizing the smoothness 

index and maximizing the system reliability are 

introduced. 

 

3. 1. Problem Assumptions        The assumptions of 

this problem are given as follows: 
1. The required time to do Task j is stochastic, and it has 

a Normal distribution with mean tj and standard 

deviation j. 

2. Precedence diagrams of different product models are 

known, and a task cannot be performed until all its 

predecessors have been completed 

3. Common tasks among different product models exist. 

A task completion time can be different from one model 

to another. 

4. Parallel stations and work-in-process inventories are 

not allowed. 

5. Tasks must be processed only once in each cycle and 

each task can be assigned to only one station. 

6. Stations are arranged in a simple straight assembly 

line. 

7. The maximum cycle time is given. 

8. All line workers are paid the same hourly rate and 

each station is manned by one worker. 

9. Demand rate is deterministic. 

 

3. 2. The Proposed SA Algorithm       In the proposed 

SA algorithm, the temperature of each iteration is 

decreased by using the following relation until the final 

temperature is reached  

TC+1= α. TC (2) 

where, α, TC and TC+1 are cooling rate, current 

temperature and next temperature, simultaneously. 

Initial solution generation, neighborhood move and 

structure of building a feasible solution in the algorithm 

are given as follows. 

 

3. 2. 1. Initial Solution Generation        Each solution 

in proposed algorithm is a string of integer numbers. 

The initial solution of proposed algorithm is shown in a 

list that is named priority list (PL) and the length of this 

list is as equal as the number of tasks. The position and 

the value of the position of this list are important. At the 

first time, this list generates randomly. 
For example if there are 6 tasks in an assembly line, an 

initial and random priority list can be shown with PL= 

{2, 1, 4, 5, 3, 6}. It means that Task 2 has the highest 

priority value and Task 6 has the lowest priority value. 

For creating a feasible solution, the assignable tasks that 

satisfy the precedence constraints are assigned to the 

station according to their priority values. Then, the set 

of assignable tasks is updated. Also, when the current 

station is loaded maximally, it is closed and the next 

station is opened. This process continues until all tasks 

are assigned to the stations. 

 

3. 2. 2. Neighborhood Move       In the proposed 

algorithm, a neighbor solution of priority list is 

generated by interchanging 2 or 3 tasks randomly with a 

probability of 0.5 which is shown in Figure 1. If the 

generate random value is less than or equal to 0.5, 

interchanging 2 tasks will be selected, otherwise, 

interchanging 3 tasks method will be happened.  
 
3. 2. 3. Building a Feasible Solution        In the 

procedure of building a feasible solution, the stations 

have been considered successively. Before the 

presentation of the procedure of building a feasible 

solution and calculating the objective functions, it is 

necessary to introduce the following notations: 
i, h, p, r: Task indices 

j: Station index 

m: Product model 

M: Set of product models 

P(i): Set of immediate predecessors of Task i 

tim: Operation time of Task i for model m 

t
f
im: Finish time of Task i for model m 

NS: Number of stations 

NM: Number of models 

NT: Number of tasks 

SAT: Set of assignable tasks 

mWLNS: The station load including unavoidable idle 

times on the station for all m∈M 

TLNS: The set of tasks which are assigned to the station 

C: Maximum cycle time 

Ct: Trial cycle time 

Cmin: Minimum cycle time 

 
 
 

 
Figure 1. Neighborhood generation 
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The Procedure of building a solution is as follows: 

1. Set NS = 1, mWLNS=0 for all m∈M. 

2. Determine SAT (SAT = {i | (all p∈P (i) have already 

been assigned or P(i) = {Ø}) and Task i has not been 

assigned}). If SAT= {Ø}, then go to Step 6. 

3. Sort the tasks in SAT in increasing order of priority 

value of tasks in PL. 

4. Assign the first Task h in SAT for which; 

4.1. If thm+mWLNS ≤ Ct and thm+t
f
rm≤ Ct (t

f
rm=max {t

f
pm| 

p∈P(h) have already been assigned to the station}) for 

all m∈M, then assign Task h to the station; 

TLNS=TLNS+{h}, and set t
f
hm=max{(thm+mWLNS), (thm + 

t
f
rm)} for all m∈M. Set mWLNS=t

f
hml for all m∈M and go 

to Step 2; otherwise go to Step 5. 

5. If none of these tasks in SAT could be assigned at the 

station, then open a new station. If TLNS≠{Ø} then 

NS=NS+1, mWLNS = 0 for all m∈M, and go to Step 2. 

6. Stop. 

The trial cycle time (Ct) starts from minimum feasible 

cycle time in the above procedure. It is as follows: 

Cmin=max[19]  i=1, 2,…, NT and  m=1,2, …, NM} 

After creating a feasible solution with this trial cycle 

time, the objective function according to Section 3.2.4 is 

calculated. Then the trial cycle time is increased by one 

unit and the above procedure is repeated until Ct≤C.  

 

3. 2. 4. Objective Function         The objectives of the 

proposed algorithm for mixed model assembly line 

balancing with stochastic task time for the given 

maximum cycle time are as follows: 
1. Maximization of the weighted line efficiency. 

It is equivalent to minimize the number of stations or 

minimizing the line length or the number of operators. 

Considering the mixed-model nature of the problem, the 

weighted line efficiency (WLE) is calculated as follows 

for a given line balance [17]: 

WLE=(
∑ qmmϵM (∑ tim)iϵI

C.NS
).100 (3) 

where, qm is the overall proportion of the number of 

units of model m. qm is computed by the following 

equation where Dm denotes the demand, over the 

planning horizon, for model m. 

qm =
Dm

∑ DmmϵM
  (4) 

2. Minimizing the weighted smoothness index.  

This index permits decreasing the workload difference 

between stations where WLmax is the maximum station 

time.  

WSI = √
∑ qm.(∑ (mWLj−WLmax)2)jϵJmϵM

NS
  (5) 

3. Maximizing the reliability of system.  

In this system, the reliability of each station means the 

probability that the station is not a bottleneck according 

to stochastic task time. Thus, reliability of j
th

 

workstation (Rj) with trial cycle time Ct can be defined 

as follows: 

Rj = P(∑ ∑  NM
m=1 qm.timj ≤ Ct)NT

i=1 =

P(
(∑ ∑  NM

m=1 qm.timj)−E(∑ ∑  NM
m=1 qm.timj)

NT
i=1

NT
i=1

√∑ ∑  NM
m=1 qm.

2 var(timj)
NT
i=1

  

≤
Ct−E(∑ ∑  NM

m=1 qm.timj)
NT
i=1

√∑ ∑  NM
m=1 qm.

2 var(timj)
NT
i=1

) =  

P(Z ≤
Ct−(∑ ∑  NM

m=1 qm.μimj)
NT
i=1

√∑ ∑  NM
m=1 qm.

2 var(timj)
NT
i=1

)  

(6) 

Since we have an arrangement of N stations in series, 

the reliability of the assembly line (RAL) can be 

expressed as: 

RAL = ∏ Rj
N
j=1   (7) 

According to the weighted sum method, the objective 

function of the proposed approach is as follow: 

Minimize E = W1(
WLE0

WLE
) + W2(

WSI

WSI0
) + W3(

RAL0

RAL
) (8) 

where, WLE0, WSI0 and RAL0 are the objective function 

values obtained from the initial solution and W1, W2 and 

W3 are the weights of objectives in the weighted sum 

method. In this paper, the weight of each objective 

function is 1.3. 

 
 

3. 3. Simple Lower Bound          In this section, we 

propose a simple lower bound on the minimal number 

of stations for mixed model stochastic assembly line 

balancing. This lower bound is as follows: 

LB = ⌈
∑ ∑ qmtim

NT
i=1

NM
m=1

Ct
⌉   (9) 

(⌈x⌉ denotes the smallest integer not being smaller than 

x). 

 

3. 4. Parameter Settings           In the meta heuristic 

algorithms, choosing the best combination of the 

parameters can intensify the search process and prevent 

premature convergence.  
In this paper, the Taguchi (1986) method is used for 

the best parameter selections.  

Three levels are selected for each parameter of the 

SA algorithm. They are shown in Table 2. 

The Taguchi method uses orthogonal arrays for 

decreasing the number of experiments for parameter 

settings. These arrays are presented in Table 3. 
 

 

 

TABLE 2. Factors and their levels 

Factor 
Initial 

temperature 

Final 

temperature 

Length of the 

Markov chain 
Cooling rate 

level 1 2 3 1 2 3 1 2 3 1 2 3 

value 50 100 150 0.5 1 2 5 10 n* 0.9 0.95 0.99 

n*: Number of tasks 
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TABLE 3. The orthogonal arrays for the proposed approach 

Test 
Initial 

Temperature 

Final 

Temperature 

Length 0f 

the Markov 

Chain 

Cooling 

Rate 

1 1 1 1 1 

2 1 2 2 2 

3 1 3 3 3 

4 2 1 2 3 

5 2 2 3 1 

6 2 3 1 2 

7 3 1 3 2 

8 3 2 1 3 

9 3 3 2 1 

 

 

It shows nine tests are necessary to select the best value 

for each parameter. 

Each test is run four times, and the average of the 

objective function is obtained to estimate the (SN) ratio. 

In the Taguchi method, the S/N ratio is as follows: 

𝑆𝑁 = −10log (
1

𝑛
∑ (𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)2)𝑛

𝑖=1   (10) 

Each level which has the maximum SN ratio is the best 

one. 

According to Figure 2, the best level of each 

parameter is reported in Table 4. 

 

 

4. NUMERICAL EXAMPLE 
 
We illustrate the proposed algorithm by using a nine-

task and two-model example problem. Expected task 

times and their variances are generated randomly. 

 

 
Figure 2. The mean SN ratio plot for the selected levels of 

each factor 
 

TABLE 4. Factors and their levels 

Factor 
Initial 

Temperature 

Final 

Temperature 

Length of the 

Markov 

Chain 

Cooling 

Rate 

level 3 3 3 3 

value 150 2 n* 0.99 

The required data such as Expected task time (μ(i)) and 

variance of task time ( i
2
) of this example are given in 

Table 5. The maximum cycle time of this problem is 9. 

The overall proportion of the number of units of 

model A and B is o.5. So, qA=qB=50%. The initial 

random solution (priority list) constructed as: PL = {1, 

2, 3, 4, 5, 6, 7, 8, 9}. The procedure of creating the 

initial line balance is shown in Table 6. The assignment 

of tasks to the stations and the reliability of each station 

are presented in Table 7. It shows there are seven 

stations in system with initial trial cycle time=3. The 

reliability of station 5 is lower than the others. It can 

show the importance of this station because it has this 

ability that will be a bottleneck. The objective function 

values of WLE, WSI, RLA and E of the initial line 

balance are 59.524%, 1.711, 0.389 and 1, respectively. 

In the next step, a new neighbor solution is 

generated by interchanging 2 or 3 tasks randomly with a 

probability of 0.5. These steps are repeated until the 

final temperature is met. Then, the trial cycle time is 

increased by one unit and the above procedure is 

repeated until Ct≤9. 

In this problem, according to several preliminary 

experiments we selected initial temperature, final 

temperature and cooling rate as 100, 1 and 0.95, 

respectively. 

We run this algorithm 5 times with PC 2.2 GHz 

CPU and 1 GB of RAM. The best and the average 

results of these iterations are presented in Table 8.  

The best function value in 5 iterations with different 

initial random solution for this problem is 0.509. The 

number of stations is 5 and the RLA, WSI and WLE are 

0.100, 0.949 and 83.333, respectively.  
 

 

5. NUMERICAL EXPERIMENT 
 
In order to assess the effectiveness of the proposed 

algorithm, a set of standard test problems (P9, P14, P20, 

P25, P30, P39, P47 and P65) are solved. 
 

 

TABLE 5. Data of the example problem 

Task 
Immediate 

Predecessors 

Model A Model B 

μ(i) i
2 μ(i) i

2 

1 __ 2 0.5 0 0 

2 __ 3 0.8 1 0.3 

3 __ 0 0 1 0.3 

4 1 3 0.8 0 0 

5 2 1 0.3 3 0.8 

6 2,3 1 0.3 1 0.3 

7 4,5 2 0.5 2 0.5 

8 5 0 0 3 0.8 

9 6 1 0.3 1 0.3 
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TABLE 6. Building the initial line balance 

Step1 Step2 Step3 Step4 Step5 Step6 

NS=1; AWL1=0; 

BWL1=0. 
SAT={1,2,3} PL={1,2,3} 

Select Task 1, P(1) ={Ø}; 2+0≤3;, 0+0≤3; TL1= TL1+{1}; 

tf
1A=2, tf

1B=0, AWL1=2, BWL1=0 
  

 SAT={2,3,4} PL={2,3,4} Select Task 2, P(2) ={Ø}; 2+3>3; go to step 5 
Task2 could not be 

selected 
 

NS=2, AWL2=0; 

BWL2=0 
SAT={2,3,4} PL={2,3,4} 

Select Task 2, P(2) ={Ø}; 3+0≤3; 1+0≤3; 

TL2= TL2+{2}; tf
2A=3, tf

2B=1, AWL2=3, BWL2=1 
  

 SAT={3,4,5} PL={3,4,5} 
Select Task 3, P(3) ={Ø}; 0+3≤3; 1+1≤3; 

TL2= TL2+{3}; tf
3A=3, tf

3B=2, AWL2=3, BWL2=2 
  

 SAT={4,5,6} PL={4,5,6} Select Task 4, P(4) ={1}; 3+3>3; go to step 5 
Task4 could not be 

selected 
 

NS=3; AWL3=0; 

BWL3=0. 
SAT={4,5,6} PL={4,5,6} 

Select Task 4, P(4) ={1}; 0+3≤3; 0+0≤3; 

TL3= TL3+{4}; tf
4A=3, tf

4B=0, AWL3=3, BWL3=0 
  

 SAT={5,6} PL={5,6} Select task 5, P(5) ={2}; 1+3>3; go to step 5 
Task5 could not be 

selected 
 

NS=4, AWL4=0; 

BWL4=0 
SAT={5,6} PL={5,6} 

Select Task 5, P(5) ={2}; 1+0≤3;, 3+0≤3; TL4= TL4+{5}; 

tf
5A=1, tf

5B=3, AWL4=1, BWL4=3 
  

 SAT={6,7,8} PL={6,7,8} Select Task 6, P(6) ={2,3}; 3+3>3; go to step 5 
Task6 could not be 

selected 
 

NS=5; AWL5=0; 

BWL5=0. 
SAT={6,7,8} PL={6,7,8} 

Select Task 6, P(6) ={2,3}; 1+0≤3; 1+0≤3; TL5= TL5+{6}; 

tf
6A=1, tf

6B=1, AWL5=1, BWL5=1 
  

 SAT={7,8,9} PL={7,8,9} 
Select Task 7, P(6) ={4,5}; 2+1≤3; 2+1≤3; TL5= TL5+{7}; 

tf
7A=3, tf

7B=3, AWL5=3, BWL5=3 
  

NS=6; AWL6=0; 

BWL6=0. 
SAT={8,9} PL={8,9} Select Task 8, P(8) ={5}; 3+3>3; go to step 5 

Task8 could not be 
selected 

 

 SAT={8,9} PL={8,9} 
Select Task 8, P(8) ={5}; 0+0≤3; 3+0≤3; TL6= TL6+{8}; 

tf
8A=0, tf

8B=3, AWL6=0, BWL6=3 
  

 SAT={9} PL={9} Select Task 9, P(9) ={6}; 1+3>3; go to step 5 
Task9 could not be 

selected 
 

NS=7; AWL7=0; 

BWL7=0. 
SAT={9} PL={9} 

Select Task 9, P(9) ={6}; 1+0≤3; 1+0≤3; TL7= TL7+{9}; 

tf
9A=1, tf

9B=1, AWL7=1, BWL7=1 
  

 SAT={Ø}    Stop 

 
 

TABLE 7. The reliability of each station 

Station 1 2 3 4 5 6 7 

Tasks 1 2,3 4 5 6,7 8 9 

∑ ∑  𝑵𝑴
𝒎=𝟏 𝒒𝒎.𝝁𝒊𝒎𝒋

𝑵𝑻
𝒊=𝟏   1 2.5 1.5 2 3 1.5 1 

∑ ∑  𝑵𝑴
𝒎=𝟏 𝒒𝒎.

𝟐 𝒗𝒂𝒓(𝒕𝒊𝒎𝒋)𝑵𝑻
𝒊=𝟏    0.125 0.35 0.2 0.275 0.4 0.2 0.15 

RLj 1.0000 0.801 0.9996 0.9717 0.5 0.9996 1.0000 

 

 

The details of these problems are illustrated in 

Appendix. The parameters of the proposed algorithm 

are as follows: 

T0=100; T0=1; r=0.95 and the length of Markov 

chain is as equal as the number of tasks. Each problem 

is solved five times with initial random solution and the  

 

 

best and average solutions for each trial cycle times 

are reported. Also, the lower bounds of the number of 

stations for each trial cycle times are calculated. These 

results are shown at Tables 8 and 9 and it is possible to 

compare the performance of the proposed algorithm 

with the LB.  
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TABLE 8. Comparison results for the small-sized test problems. 

 Trial cycle time LB 
Best Average Elapsed 

Time(s) E NS RLA WSI WLE E RLA WSI WLE 

P9 

3 5 0.509 5 0.100 0.949 83.333 0.554 0.154 0.949 83.333 

2.78 

4 4 0.715 4 0.249 1.275 78.125 0.718 0.243 1.313 78.125 

5 3 1.000 4 0.389 1.711 59.524 1.000 0.389 1.711 59.524 

6 3 1.000 4 0.389 1.711 59.524 1.000 0.389 1.711 59.524 

7 2 0.851 2 0.479 1.118 89.286 0.851 0.479 1.118 89.286 

8 2 1.000 2 0.389 1.711 59.524 1.000 0.389 1.711 59.524 

9 2 1.000 2 0.389 1.711 59.524 1.000 0.389 1.711 59.524 

P14 

8 7 0.749 10 0.364 3.375 66.700 0.831 0.357 3.763 61.849 

10.88 

9 6 0.674 8 0.343 3.311 74.111 0.744 0.422 3.345 68.182 

10 6 0.616 7 0.538 3.104 76.229 0.695 0.471 3.387 76.229 

11 5 0.677 7 0.705 3.633 69.299 0.685 0.775 3.528 69.299 

12 5 0.630 6 0.864 3.485 74.111 0.670 0.788 3.604 74.111 

13 5 0.649 6 0.958 3.516 68.410 0.698 0.875 3.713 68.410 

14 4 0.684 5 0.669 4.020 76.229 0.712 0.668 4.020 76.229 

15 4 0.702 5 0.836 4.190 71.147 0.717 0.850 4.054 71.147 

16 4 0.698 5 0.949 4.020 66.700 0.740 0.959 4.174 66.700 

P20 

12 8 0.816 10 0.638 3.476 76.000 0.892 0.690 3.596 74.618 

21.03 

13 8 0.724 9 0.811 3.242 77.949 0.810 0.835 3.289 76.390 

14 7 0.730 9 0.925 3.525 72.381 0.831 0.942 3.752 72.381 

15 7 0.760 8 0.886 4.099 76.000 0.879 0.913 4.185 70.933 

16 6 0.844 9 0.929 4.752 63.333 0.933 0.910 4.657 66.500 

17 6 0.877 8 0.911 5.532 67.059 0.984 0.914 5.406 67.059 

P25 

20 11 0.904 18 0.999 9.741 58.278 0.921 0.999 9.783 57.664 

37.87 

21 10 0.918 17 0.900 9.430 58.768 0.933 0.949 9.701 57.462 

22 10 0.886 15 0.962 9.656 63.576 0.936 0.971 10.448 60.397 

23 10 0.908 14 0.888 10.009 65.155 0.949 0.941 10.529 60.160 

24 9 0.884 13 0.914 9.717 67.244 0.929 0.949 10.248 61.736 

25 9 0.925 13 0.927 10.693 64.554 0.953 0.974 10.787 59.267 

26 9 0.924 14 0.998 10.227 57.637 0.944 0.989 10.546 58.642 

27 8 0.935 14 0.998 10.218 55.503 0.979 0.986 11.202 56.357 

 

 

 

The above table shown the proposed algorithm can be 

as an effective algorithm because the initial objective 

value (E) was 1 and it decreased the duration of running 

algorithm. Furthermore, the weighted line efficiency 

and the reliability of system were increased and the 

weighted smoothness index was decreased, 

simultaneously. For example, the initial values of WLE, 

WSI and RLA for each P65 are given as follows: 

Also, the number of stations found by SA algorithm is 

compared to LB given in Equation (10).  

As it can be seen, the proposed SA algorithm performs 

well throughout on the different problems. Figure 3 

shows a comparison between the lower bound and the 

obtained number of stations by the proposed algorithm. 

This Figure shows the structure of the problem 

(predecessors, task times, …) has important effect on 

the obtained results.  

So, there is no regular procedure for number of 

stations and cycle time. However, by increasing LB, NS 

increases, too. 
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TABLE 9. Computational results for the large-sized test problems 

 Trial cycle time LB 
Best Average Elapsed 

Time(s) E NS RLA WSI WLE E RLA WSI WLE 

P30 

12 12 0.667 16 0.293 3.903 72.969 0.745 0.281 4.130 71.252 

50.02 

13 11 0.656 15 0.384 3.603 71.846 0.705 0.404 4.279 70.948 

14 11 0.631 14 0.472 3.951 71.480 0.679 0.416 4.031 72.579 

15 10 0.619 13 0.639 4.126 71.846 0.664 0.567 4.187 73.044 

16 9 0.644 11 0.264 3.701 79.602 0.675 0.324 3.858 78.276 

17 9 0.621 11 0.476 4.023 74.920 0.680 0.547 4.452 73.671 

18 8 0.582 11 0.866 3.704 70.758 0.633 0.773 4.132 73.588 

19 8 0.604 10 0.836 4.226 73.737 0.659 0.771 4.568 75.375 

20 8 0.635 10 0.967 4.557 70.050 0.653 0.719 4.432 74.720 

P39 

13 13 0.657 16 0.113 3.978 76.779 0.736 0.168 4.111 75.093 

103.75 

14 12 0.600 15 0.311 3.414 76.048 0.680 0.341 3.985 73.308 

15 11 0.686 14 0.142 4.580 76.048 0.750 0.217 4.742 75.034 

16 10 0.671 13 0.192 4.634 76.779 0.759 0.352 4.921 71.441 

17 10 0.660 12 0.213 4.619 78.284 0.739 0.371 4.669 75.234 

18 9 0.635 11 0.169 4.242 80.657 0.715 0.208 4.526 80.657 

19 9 0.603 11 0.604 3.574 76.412 0.719 0.502 4.810 76.412 

20 8 0.645 10 0.481 4.797 79.850 0.723 0.432 5.001 79.850 

21 8 0.598 9 0.324 4.236 84.497 0.692 0.256 4.455 84.497 

22 8 0.677 9 0.428 5.279 80.657 0.759 0.375 5.449 80.657 

P47 

23 18 0.801 26 0.535 9.514 67.475 0.867 0.568 9.756 65.511 

158.67 

24 17 0.716 25 0.786 8.702 67.250 0.785 0.810 9.225 65.181 

25 17 0.722 24 0.861 9.219 67.250 0.760 0.904 9.426 68.420 

26 16 0.685 22 0.968 8.921 70.542 0.793 0.857 9.695 65.578 

27 15 0.718 22 0.891 9.325 67.929 0.782 0.843 9.836 69.223 

28 15 0.728 21 0.937 9.675 68.622 0.790 0.868 10.140 68.685 

29 14 0.731 20 0.985 10.309 69.569 0.778 0.935 10.321 69.569 

30 14 0.750 19 0.776 10.202 70.790 0.785 0.880 10.259 69.374 

31 14 0.753 18 0.821 10.704 72.312 0.797 0.907 10.786 70.104 

32 13 0.742 18 0.942 10.556 70.052 0.787 0.936 10.644 70.139 

33 13 0.737 17 0.919 10.579 71.925 0.788 0.910 10.731 71.126 

34 12 0.739 16 0.985 11.133 74.173 0.802 0.909 11.295 72.428 

35 12 0.724 15 0.857 10.481 76.857 0.785 0.905 10.969 73.975 

P65 

249 10 0.896 13 0.999 74.316 75.779 0.960 0.999 74.954 75.779 

448.76 

250 10 0.901 13 0.999 75.561 75.475 0.966 0.999 76.172 75.475 

251 10 0.927 13 1.000 82.768 75.175 0.968 1.000 76.694 75.175 

252 10 0.920 13 1.000 80.392 74.876 0.971 1.000 77.075 74.876 

253 10 0.922 13 0.999 80.521 74.580 0.983 1.000 79.469 74.580 

254 10 0.906 13 1.000 75.478 74.287 0.978 1.000 77.852 74.287 

255 10 0.911 13 1.000 76.789 73.996 0.981 0.999 78.164 73.996 

256 10 0.855 12 0.999 66.925 79.849 0.936 0.978 69.899 78.620 

257 10 0.913 13 1.000 76.474 73.420 0.976 0.991 76.864 74.643 

258 10 0.908 13 1.000 74.641 73.135 0.984 0.988 76.976 73.135 

259 10 0.943 12 0.981 71.982 78.924 0.990 0.956 77.727 75.281 

260 10 0.885 12 0.958 70.250 78.620 0.980 0.987 77.727 74.992 
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TABLE 10. Comparison between the initial and the best 

objective functions for P65 

WL

E0 

RL

A0 

W

SI0 

W

LE 

RL

A 

W

SI 

WLE/

WLE0 

RLA/

RLA0 

WSI/

WSI0 

70.

36 

0.9

98 

97.

94 

79.

84 

0.9

99 

66.

92 
↑ ↑ ↓ 

 
 

 
Figure 3. Comparison between the lower bound and the 

obtained number of stations 
 

 

6. CONCLUSION 

 
In this paper, we presented a multi-objective simulated 

annealing algorithm for mixed-model assembly line 

balancing with stochastic processing time to maximize 

the weighted line efficiency (minimizing number of 

stations), minimizing the weighted smoothness index 

and maximizing the reliability of system. In this 

problem maximum cycle time is given. An illustrative 

example problem is solved by using the proposed 

algorithm, and numerical experiments are conducted to 

demonstrate the efficiency of the proposed approach. 

The results show that the proposed approach obtains 

good solutions within a short computational time for 

every test problem because the best result of the 

objective value (E) in the initial solution was 1 and it 

decreased in the duration of the proposed algorithm. For 

further researches the development of this condition for 

a given number of stations and also using the other meta 

heuristics may be good subjects. 
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8. APPENDIX  
 
The details of task times and variances for each problem 

are presented in Tables A1, A2, A3, A4, A5, A6 and 

A7.  

 

 

TABLE A1. Problem P14 

Task 
Immediate 

predecessor(s) 

Model A qA=0.42 Model B qB=0.58 
Task 

Immediate 

predecessor(s) 

Model A qA=0.42 Model BqB=0.58 

μ(i) i
2 μ(i) i

2 μ(i) i
2 μ(i) i

2 

1 
--- 0 0 2 0.5 8 4,5 0 0 2 0.5 

2 
--- 8 4 8 4 9 5 3 1.5 2 0.5 

3 1 7 3 7 3 10 6 3 1.5 2 0.5 

4 3 7 3 5 2 11 5,6 6 2.5 6 2.5 

5 3 2 0.5 2 0.5 12 8 3 1.5 3 1.5 

6 3 6 2.5 0 0 13 7, 10, 11 5 2 5 2 

7 2,3 4 2 0 0 14 9, 12, 13 4 2 6 2.5 

 

 

TABLE A2. Problem P20 

Task 
Immediate 

predecessor(s) 

Model A qA=0.4 Model B qB=0.6 
Task 

Immediate 

predecessor(s) 

Model A qA=0.4 Model B qB=0.6 

μ(i) i
2 μ(i) i

2 μ(i) i
2 μ(i) i

2 

1 
____ 4 1 0 0 11 8 3 0.7 4 1 

2 
____ 5 2 4 1 12 9 8 1 7 4 

3 
____ 0 0 2 0.6 13 10 2 0.2 0 0 

4 1 2 1 0 0 14 11 11 4 10 2 

5 1,2 4 0.3 5 1 15 11,12 6 1 7 1 

6 2,3 3 0.1 4 0.8 16 13,14 10 5 9 5 

7 4 5 2 0 0 17 15 12 2 0 0 

8 5 5 1 5 1 18 15 0 0 9 2 

9 6 7 0.5 8 0.7 19 16,17,18 4 1 4 1 

10 7 6 2 0 0 20 19 5 1 6 3 
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TABLE A3. Problem P25 

Task 
Immediate 

predecessor(s) 

Model A qA=0.4 Model B qB=0.6 
Task 

Immediate 

predecessor(s) 

Model A qA=0.4 Model B qB=0.6 

μ(i) i
2 μ(i) i

2 μ(i) i
2 μ(i) i

2 

1 ___ 0 0 18 3 14 9 7 1 0 0 

2 ___ 10 4 19 2 15 12,13 17 3 14 2 

3 1 15 5 10 1 16 10,13 18 5 11 1 

4 3 12 3 10 1 17 16 4 1 0 0 

5 3 8 2 3 2 18 16 9 2 6 2 

6 3 9 7 0 0 19 14,18 10 3 5 1 

7 3 20 5 0 0 20 7,18 0 0 9 2 

8 4,5 0 0 2 0.5 21 17 12 2 2 0.3 

9 5 15 3 9 1 22 21 18 4 11 1 

10 2,6 7 2 12 3 23 15,19,21 12 1 5 1 

11 5,6 4 1 10 4 24 20,22,23 10 1 9 1 

12 8,9 11 2 10 4 25 24 7 2 0 0 

13 11 9 2 12 2       

 

TABLE A4. Problem P30 

Task 
Immediate 

predecessor(s) 

Model A qA=0.5 Model B qB=0.5 
Task 

Immediate 

predecessor(s) 

Model A qA=0.5 Model B qB=0.5 

μ(i) i
2 μ(i) i

2 μ(i) i
2 μ(i) i

2 

1 
___ 9.5 3.5 9.5 3.5 16 3 1.4 0.5 1.4 0.5 

2 
___ 1.3 0.5 1.3 0.5 17 3 7.8 3.5 7.8 3 

3 
___ 4.8 2 4.8 2 18 17 2.9 1 2.9 1 

4 1 3.3 2 3.3 2 19 18 1.6 0.5 1.6 0.5 

5 1 1.5 0.5 1.7 0.5 20 14,16 7 3 7 3 

6 5 4.5 2 4.1 2 21 20 8.7 4 8.7 4 

7 4, 6 3.6 2 3.6 2 22 15,21 3.9 2 4.1 2 

8 7 0 0 2 1 23 22 6.4 3 6.4 3 

9 8 12 5 12 5 24 10,20 2.8 1 2.7 1 

10 
___ 0 0 8 3 25 24 8.5 3 8.5 3 

11 2 2.5 1 2.5 1.5 26 9,25 6.7 3 6.7 3 

12 2 4.3 2 4.3 2 27 23,26 1.9 1 1.9 0.5 

13 12 6.5 3 0 0 28 27 9.9 4 9.9 4 

14 13 1.7 0.5 1.7 0.5 29 27 4.6 2.2 0 0 

15 14 7 3 7 3 30 29 4 2 4.2 2 

 

TABLE A5. Problem P39 

Task 
Immediate 

predecessor(s) 

Model A qA=0.45 Model B qB=0.55 
Task 

Immediate 

predecessor(s) 

Model A qA=0.45 Model B qB=0.55 

μ(i) i
2 μ(i) i

2 μ(i) i
2 μ(i) i

2 

1 
___ 2 0.6 2 0.8 21 5,18 3 1 3 1.5 

2 1 2 0.4 2 1 22 20 8 2.5 8 2.5 

3 
___ 2 0.4 2 0.9 23 

___ 5 1 5 2 

4 
___ 2 0.3 2 0.5 24 22 7 3 7 3.5 

5 
___ 2 0.4 2 0.3 25 24 4 1 4 2.4 

6 2 0 0 11 4 26 25 6 3.4 6 3.4 

7 2 0 0 0 0 27 26,23,21 5 2.5 5 1.8 

8 6,7 9 2.8 12 3 28 25 0 0 0 0 

9 
___ 2 1 2 1 29 27 1 0.5 1 0.7 

10 3,9 10 3 10 3 30 28,29 3 1 3 3.2 

11 3 3 1 0 0 31 30 3 1.8 3 1.5 

12 8 11 2.5 11 2.3 32 31 0 0 0 0 

13 3 4 1.5 4 1.4 33 24 4 1 4 1 

14 
___ 0 0 4 2.3 34 22 2 0.3 2 0.6 

15 2 9 3 9 3.5 35 32,33,34 2 0.5 2 0.5 

16 15,14,13 13 4 13 3.8 36 35 1 0.7 1 0.4 

17 4,11,16 6 2 6 1.9 37 34 1 0.5 1 0.4 

18 17 7 3 7 3.5 38 36,37 1 0.9 1 0.6 

19 
___ 3 1.2 3 1.4 39 38 1 0.2 1 0.3 

20 10,19 8 1.5 7 2.5       
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TABLE A6. Problem P47 

Task 
Immediate 

predecessor(s) 

Model A qA=0.45 Model B qB=0.55 
Task 

Immediate 

predecessor(s) 

Model A qA=0.45 Model B qB=0.55 

μ(i) i
2 μ(i) i

2 μ(i) i
2 μ(i) i

2 

1 
____ 23 2 2 0.6 25 24 6 2 11 2 

2 6 20 3 5 1 26 25 9 1 7 3 

3 6 2 0.2 9 2 27 6 7 3 8 1 

4 6 6 1 7 0.3 28 20,21 4 1 14 4 

5 
____ 14 2 11 4 29 23 3 0.4 19 6 

6 1 22 1 23 5 30 28 2 0.1 11 1 

7 6 1 0.1 2 0.1 31 23,27 12 2 15 0.5 

8 5,6 7 1 6 2 32 31 13 3 4 0.1 

9 6 4 2 8 4 33 34 1 0.4 3 1 

10 12 8 1 7 1 34 
____ 5 2 2 0.4 

11 6 12 4 11 3 35 34 4 3 8 0.2 

12 16 9 2 14 5 36 6,33,35 13 6 6 1 

13 16 7 1 18 6 37 7 18 5 19 0.5 

14 16 3 1 3 0.1 38 37 20 8 15 1 

15 6 11 3 1 0.3 39 6 8 0.8 3 0.4 

16 15 20 6 6 2 40 7,41 11 5 7 0.3 

17 7,9 2 0.8 4 1 41 
____ 17 8 1 0.1 

18 17 9 3 5 0.5 42 
____ 3 0.4 8 3 

19 6 7 1 11 3 43 7,36 9 5 9 2 

20 17 4 1 9 1 44 36,42 7 3 10 2 

21 17 3 0.5 4 0.6 45 44 17 3 20 5 

22 17 7 0.2 6 2 46 45 14 4 3 0.3 

23 28 11 3 2 0.4 47 44 11 5 3 0.1 

24 23 5 2 1 0.1       

 
 

 

TABLE A7. Problem P65 

Task 
Immediate 

predecessor(s) 

Model A qA=0.45 Model B qB=0.55 
Task 

Immediate 

predecessor(s) 

Model A qA=0.45 Model B qB=0.55 

μ(i) i
2 μ(i) i

2 μ(i) i
2 μ(i) i

2 

1 
___ 35 6 26 3 34 7,35 41 7 39 12 

2 3 14 2 15 4 35 23 21 5 63 7 

3 4 1 0.2 54 8 36 8 33 7 28 3 

4 5 18 3 1 0.2 37 24,36 147 30 103 20 

5 6 36 5 33 5 38 10,37 43 12 12 3 

6 7 29 4 26 9 39 11,38 15 6 24 12 

7 1 159 10 61 12 40 25,39 27 9 1 0.1 

8 1 70 8 5 1 41 13,40 4 1 5 0.4 

9 8 24 5 16 3 42 26,41 25 5 80 5 

10 9 99 9 40 7 43 15,42 22 4 18 9 

11 10 56 5 56 7 44 27,43 3 0.4 7 3 

12 11 51 4 47 3 45 17,44 44 1 35 8 

13 12 94 10 132 18 46 18,28 26 5 34 5 

14 13 29 9 6 1 47 30 2 0.1 19 4 

15 14 39 12 1 0.2 48 31 41 8 44 12 

16 15 15 8 16 6 49 46 9 3 3 0.4 

17 16 11 3 2 0.3 50 49 8 2 46 3 

18 17 74 15 58 2 51 28,50 20 5 13 2 

19 18 34 12 14 8 52 47,62 35 7 13 4 

20 21 19 2 19 9 53 48,63 14 3 5 0.8 

21 31 14 5 14 6 54 33 38 7 93 9 

22 6 12 1 24 3 55 35 11 3 23 3 

23 1 19 5 61 7 56 37 56 9 7 1 

24 9 38 7 76 12 57 40,64 23 3 98 8 

25 12 89 9 43 11 58 42 52 8 64 4 

26 14 66 8 45 5 59 44 16 1 2 0.6 

27 16 27 3 6 1 60 50 10 0.3 24 3 

28 19 189 17 249 25 61 29,62 98 31 66 12 

29 20,30 2 0.3 48 7 62 
___ 3 0.1 11 9 

30 21,31 21 6 33 5 63 
___ 117 25 15 5 

31 2,4 6 0.8 5 1 64 
___ 54 7 85 4 

32 5,31,33 18 3 12 7 65 62 35 4 26 3 

33 22,34 13 8 53 4       
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 هچكيد
 

 
های ترکیبی با زمان های مدل ی یک الگوریتم انجماد تدریجی چندهدفه برای بالانس خطوط مونتاژاین مقاله به ارائه

های سیستم تاثیرگذار باشد، حداقل های تصادفی ممکن  است روی گلوگاهپردازد. از آنجا که زمانپردازش تصادفی می

ها )معادل با ماکزیمم سازی کارایی موزون خط، حداقل سازی شاخص هموارسازی موزون و ماکزیمم تعداد ایستگاه سازی

باشد در این تحقیق مورد مطالعه قرار گرفته است. پس از حل یک مسئله با جزییات، عملکرد سازی قابلیت اطمینان می

ی عملکرد خوب ر گرفته است که نتایج آزمایشات نشان دهندهای از مسائل مورد ارزیابی قراالگوریتم به کمک مجموعه

 الگوریتم پیشنهادی است.
doi: 10.5829/idosi.ije.2017.30.03c.11 

 

 

 

 




