International Journal of Engineering

Journal Homepage: www.ije.ir

Mixed-model Assembly Line Balancing with Reliability

P. Samouei*a, V. Khodakarami ${ }^{\text {a }}$, P. Fattahi ${ }^{\text {b }}$
${ }^{a}$ Department of Industrial Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran
${ }^{\text {b }}$ Department of Industrial Engineering, Alzahra University, Tehran, Iran

PAPER INFO

Paper history:
Received 21 June 2016
Received in revised form 14 January 2017
Accepted 02 February 2017

Keywords:
Assembly Line Balancing
Reliability
Mixed-model
Stochastic Processing Time
Line Efficiency
$A B S T R A C T$

This paper presents a multi-objective simulated annealing algorithm for the mixed-model assembly line balancing with stochastic processing times. Since, the stochastic task times may have effects on the bottlenecks of a system, maximizing the weighted line efficiency (equivalent to the minimizing the number of station), minimizing the weighted smoothness index and maximizing the system reliability are considered. After solving an example in detail, the performance of the proposed algorithm is examined on a set of test problems. The experimental results show the new approach performs well.

1. INTRODUCTION

An assembly line is a production line that unfinished products move continuously through a sequence of stations that these stations are linked together by a material handling system.

Line balancing is one of the most important aspects of the assembly systems which is defined how tasks should be assigned to the stations subject to precedence constraints.

The first scientific article on the assembly line balancing problem (ALBP) was published by Salveson [1]. Then, many studies have been investigated with different situations, constraints, objective(s) and solving methods. There are several good surveys and taxonomies on the ALBP such as in literatures [2-12].

There are several classifications of ALBP. According to the number of product models that will be assembled on the line, it is divided into single, mixed and multi models.

In the single model, only one type of product, in the mixed-model several models of one type of product and

[^0]in multi-model different product types in batches are assembled.

There are two famous objective functions for solving ALBP. One of them is minimization of the number of workstations for the given cycle time (Type-I) and another type is minimization of the cycle time for the given number of workstations (Type-II).

According to the number of objective function(s), we can categorize them to single-objective (i.e., [13] and [14]) and multi-objective (i.e., [15-24]). It is interesting that, recently, multi-objective optimization has attracted the research attention in comparison with single-objective problems [25].

By reviewing the articles that have published for assembly line balancing, it is clear that there are several exact, heuristic and meta heuristic algorithms for solving mixed model assembly line balancing problems. Exact methods can get optimal solution in small-sized problems. Due to the NP-hard class of the ALBP [26], many researchers tried to solve these problems to gain optimum or near optimum solution in reasonable computational time. So, many heuristic and meta heuristic algorithms proposed for ALBP.

Table 1 shows several articles that used exact, heuristic and meta heuristic algorithms for solving mixed-model assembly line balancing problems.

According to the nature of task times, ALBP is classified into two classes: deterministic and stochastic. Most of the researches in the field of Assembly line balancing assumed that the task times are deterministic [27], but in a realistic manufacturing environment, the task time may be random due to worker fatigue, low skill levels, job dissatisfaction, poorly maintained equipment, defects in raw materials, etc. [28]. Hence, verifying stochastic task time in assembly line balancing will be necessary. There are several papers that investigated stochastic task times for assembly line balancing. For example, Tiacci [29] presented an event and object-oriented simulator for assembly lines. His tool, developed in Java, was capable to simulate mixed model assembly lines, with stochastic task times, parallel stations, fixed scheduling sequences, and buffers within workstations. Also, Cakir et al. [25] proposed an algorithm, based on simulated annealing for multi-objective optimization of a single-model stochastic assembly line balancing problem with parallel stations. The objectives of their paper were (1) minimization of the smoothness index and (2) minimization of the design cost.

A good measure of assembly line balancing in stochastic condition is system reliability. So, there are some papers in this field such as literatures [30-33]. Reliability can be used as a good index when there is uncertainty or probabilistic parameters for system. One of these uncertainties, probabilistic or feasible parameters may be processing times when human involve in assembly line. The reliability of a system with stochastic task time can be defined as a probability that there is no bottleneck in a system.

To the best of our knowledge and literature review, there is no paper that investigated stochastic mixed model assembly line balancing problem according to system reliability, weighted line efficiency and weighted smoothness index, simultaneously. So, this field can be a good area for developing and in this paper we focus on this gap.

TABLE 1. Exact, heuristic and meta heuristics for solving mixed-model ALBP

Exact	Branch and Bound	$[34]$
Heuristics	Heuristic algorithm	$[28,35]$
	Simulated Annealing	$[16]$
Meta	Genetic Algorithm (GA)	$[36,37]$
Heuristic	Ant Colony Optimization (ACO)	$[17,18]$
	Tabu Search (TS)	$[38]$
	Particle Swarm Optimization (PSO)	$[19]$

For this purpose, we propose an SA algorithm for solving mixed model assembly line balancing with stochastic processing time that minimizes weighted smoothness index and maximizes system reliability and weighted line efficiency. The rest of this paper is structured as follows. Section 2 provides some basic concepts about the standard simulated annealing algorithm and weighted sum method for solving multiobjective mathematical models. Problem definition and the proposed simulated annealing algorithm are presented in Section 3. Numerical example and numerical experiments are given in Sections 4 and 5. Finally, Section 6 is devoted to conclusions and recommendations for future research.

2. BASIC CONCEPTS

In this section, we introduce the SA algorithm and weighted sum method for solving multi-objective problems.

2. 1. The Standard Simulated Annealing Algorithm The Simulated Annealing algorithm

 is a random search optimization technique that got its existence from the physical annealing of solid metal.As Simulated Annealing starts, an initial solution is generated and used as the first current solution. A control parameter (T), is specified analogous to the annealing temperature. This temperature is systematically decreased according to a cooling rate. As the temperature drops, neighboring solutions to the current solution are found. If the objective function value is superior to that of the current solution, the neighboring solution becomes the new current solution. If the neighboring solution provides an objective function value inferior to that of the current solution, the neighboring solution may still become the current solution if a certain acceptance criterion is met. A distinctive feature of Simulated Annealing is that inferior solutions are sometimes accepted as the current solution to prevent getting trapped in local optima. Through the occasional acceptance of inferior solutions which meet the acceptance criteria, the search moves to a different location on the continuum of feasible solutions in an effort to reach the global optimum. The process of finding neighboring solutions and accepting these as current solutions if acceptance criteria are met is repeated according to the cooling pattern until some stopping criteria is met [39].

2. 2. Weighted Sum Method This method is

 one of the most widely used methods for solving multiobjective problems. It composes the set of objectives into a single objective by multiplying each objective with a user supplied weight that this weight depends on the relative importance of each objective. The structureof this method is given below [40]:
$\operatorname{Min} F(X)=\sum_{m=1}^{M} w_{m} f_{m}(X)$
subject to: $G(X)=\left[g_{1}(X), g_{2}(X), \ldots, g_{J}(X)\right] \geq 0$
$H(X)=\left[h_{1}(X), h_{2}(X), \ldots, h_{K}(X)\right]=0$
$x_{i}^{(L)} \leq x_{i} \leq x_{i}^{(U)}, i=1,2, \ldots, N$
where, the objectives are normalized and $\mathrm{w}_{\mathrm{m}} \in[0,1]$ is the weight of the $m^{\text {th }}$ objective function.
It is usual practice to choose weights such that $\sum_{i=1}^{M} W_{m}=$ 1.

3. PROBLEM DEFINITION

In this section the problem assumptions and the proposed algorithm for mixed model assembly line balancing problem with stochastic processing time for maximizing the weighted line efficiency (minimizing the number of stations), minimizing the smoothness index and maximizing the system reliability are introduced.

3. 1. Problem Assumptions

The assumptions of this problem are given as follows:

1. The required time to do Task j is stochastic, and it has
a Normal distribution with mean t_{j} and standard deviation σ_{j}
2. Precedence diagrams of different product models are known, and a task cannot be performed until all its predecessors have been completed
3. Common tasks among different product models exist. A task completion time can be different from one model to another.
4. Parallel stations and work-in-process inventories are not allowed.
5. Tasks must be processed only once in each cycle and each task can be assigned to only one station.
6. Stations are arranged in a simple straight assembly line.
7. The maximum cycle time is given.
8. All line workers are paid the same hourly rate and each station is manned by one worker.
9. Demand rate is deterministic.
10. 2. The Proposed SA Algorithm In the proposed SA algorithm, the temperature of each iteration is decreased by using the following relation until the final temperature is reached

$$
\begin{equation*}
T_{C+1}=\alpha . T_{C} \tag{2}
\end{equation*}
$$

where, $\alpha, \mathrm{T}_{\mathrm{C}}$ and $\mathrm{T}_{\mathrm{C}+1}$ are cooling rate, current temperature and next temperature, simultaneously.
Initial solution generation, neighborhood move and structure of building a feasible solution in the algorithm are given as follows.
3. 2. 1. Initial Solution Generation Each solution in proposed algorithm is a string of integer numbers.

The initial solution of proposed algorithm is shown in a list that is named priority list ($P L$) and the length of this list is as equal as the number of tasks. The position and the value of the position of this list are important. At the first time, this list generates randomly.
For example if there are 6 tasks in an assembly line, an initial and random priority list can be shown with $\mathrm{PL}=$ $\{2,1,4,5,3,6\}$. It means that Task 2 has the highest priority value and Task 6 has the lowest priority value.
For creating a feasible solution, the assignable tasks that satisfy the precedence constraints are assigned to the station according to their priority values. Then, the set of assignable tasks is updated. Also, when the current station is loaded maximally, it is closed and the next station is opened. This process continues until all tasks are assigned to the stations.
3. 2. 2. Neighborhood Move In the proposed algorithm, a neighbor solution of priority list is generated by interchanging 2 or 3 tasks randomly with a probability of 0.5 which is shown in Figure 1. If the generate random value is less than or equal to 0.5 , interchanging 2 tasks will be selected, otherwise, interchanging 3 tasks method will be happened.
3. 2. 3. Building a Feasible Solution In the procedure of building a feasible solution, the stations have been considered successively. Before the presentation of the procedure of building a feasible solution and calculating the objective functions, it is necessary to introduce the following notations:
i, h, p, r : Task indices
j : Station index
m : Product model
M : Set of product models
$P(i)$: Set of immediate predecessors of Task i
$t_{i m}$: Operation time of Task i for model m
$t_{i m}^{f}$: Finish time of Task i for model m
$N S$: Number of stations
$N M$: Number of models
$N T$: Number of tasks
SAT: Set of assignable tasks
${ }_{m} W L_{N S}$: The station load including unavoidable idle times on the station for all $m \in M$
$T L_{N S}$: The set of tasks which are assigned to the station
C : Maximum cycle time
$C_{t}:$ Trial cycle time
$C_{m i n}$: Minimum cycle time

The Procedure of building a solution is as follows:

1. Set $\mathrm{NS}=1,{ }_{\mathrm{m}} \mathrm{WL}_{\mathrm{NS}}=0$ for all $\mathrm{m} \in \mathrm{M}$.
2. Determine SAT (SAT $=\{i \mid$ (all $p \in P$ (i) have already been assigned or $\mathrm{P}(\mathrm{i})=\{\varnothing\})$ and Task i has not been assigned $\}$). If SAT $=\{\emptyset\}$, then go to Step 6.
3. Sort the tasks in SAT in increasing order of priority value of tasks in PL.
4. Assign the first Task h in SAT for which;
4.1. If $\mathrm{t}_{\mathrm{hm}}+{ }_{\mathrm{m}} \mathrm{WL}_{\mathrm{NS}} \leq \mathrm{C}_{\mathrm{t}}$ and $\mathrm{t}_{\mathrm{hm}}+\mathrm{t}^{\mathrm{f}}{ }_{\mathrm{rm}} \leq \mathrm{C}_{\mathrm{t}}\left(\mathrm{t}_{\mathrm{rm}}^{\mathrm{f}}=\max \left\{\mathrm{t}_{\mathrm{pm}}^{\mathrm{f}} \mid\right.\right.$ $\mathrm{p} \in \mathrm{P}(\mathrm{h})$ have already been assigned to the station $\}$) for all $m \in M$, then assign Task h to the station; $\mathrm{TL}_{\mathrm{NS}}=\mathrm{TL}_{\mathrm{NS}}+\{\mathrm{h}\}$, and set $\mathrm{t}_{\mathrm{hm}}^{\mathrm{f}}=\max \left\{\left(\mathrm{t}_{\mathrm{hm}}+_{\mathrm{m}} \mathrm{WL}_{\mathrm{NS}}\right),\left(\mathrm{t}_{\mathrm{hm}}+\right.\right.$ $\left.\left.\mathrm{t}_{\mathrm{rm}}^{\mathrm{f}}\right)\right\}$ for all $\mathrm{m} \in \mathrm{M}$. Set ${ }_{\mathrm{m}} \mathrm{WL}_{\mathrm{NS}}=\mathrm{t}^{\mathrm{f}}{ }_{\text {hml }}$ for all $\mathrm{m} \in \mathrm{M}$ and go to Step 2; otherwise go to Step 5.
5. If none of these tasks in SAT could be assigned at the station, then open a new station. If $\mathrm{TL}_{\mathrm{NS}} \neq\{\varnothing\}$ then $\mathrm{NS}=\mathrm{NS}+1,{ }_{\mathrm{m}} \mathrm{WL}_{\mathrm{NS}}=0$ for all $\mathrm{m} \in \mathrm{M}$, and go to Step 2 . 6. Stop.

The trial cycle time $\left(\mathrm{C}_{\mathrm{t}}\right)$ starts from minimum feasible cycle time in the above procedure. It is as follows: $\mathrm{C}_{\text {min }}=\max [19] \mathrm{i}=1,2, \ldots, \mathrm{NT}$ and $\left.\mathrm{m}=1,2, \ldots, \mathrm{NM}\right\}$
After creating a feasible solution with this trial cycle time, the objective function according to Section 3.2.4 is calculated. Then the trial cycle time is increased by one unit and the above procedure is repeated until $C_{t} \leq C$.
3. 2. 4. Objective Function The objectives of the proposed algorithm for mixed model assembly line balancing with stochastic task time for the given maximum cycle time are as follows:

1. Maximization of the weighted line efficiency.

It is equivalent to minimize the number of stations or minimizing the line length or the number of operators.
Considering the mixed-model nature of the problem, the weighted line efficiency ($W L E$) is calculated as follows for a given line balance [17]:
WLE $=\left(\frac{\sum_{\text {mem }} \mathrm{q}_{\mathrm{m}}\left(\sum_{\text {ief }} \mathrm{t}_{\text {im }}\right)}{\text { C.NS }}\right) .100$
where, q_{m} is the overall proportion of the number of units of model $\mathrm{m} . q_{m}$ is computed by the following equation where D_{m} denotes the demand, over the planning horizon, for model m.
$\mathrm{q}_{\mathrm{m}}=\frac{\mathrm{D}_{\mathrm{m}}}{\sum_{\mathrm{m} \in \mathrm{M}} \mathrm{D}_{\mathrm{m}}}$
2. Minimizing the weighted smoothness index.

This index permits decreasing the workload difference between stations where $W L_{\text {max }}$ is the maximum station time.
WSI $=\sqrt{\frac{\sum_{\text {meM }} \mathrm{q}_{\mathrm{m}} \cdot\left(\sum_{\mathrm{j} \epsilon}\left(\mathrm{m} \mathrm{WL}_{\mathrm{j}}-\mathrm{WL}_{\text {max }}\right)^{2}\right)}{\mathrm{NS}}}$
3. Maximizing the reliability of system.

In this system, the reliability of each station means the probability that the station is not a bottleneck according to stochastic task time. Thus, reliability of $j^{t h}$
workstation $\left(R_{j}\right)$ with trial cycle time C_{t} can be defined as follows:

$$
\begin{align*}
& \mathrm{R}_{\mathrm{j}}=\mathrm{P}\left(\sum_{\mathrm{i}=1}^{\mathrm{NT}} \sum_{\mathrm{m}=1}^{\mathrm{NM}} \mathrm{q}_{\mathrm{m}}, \mathrm{t}_{\mathrm{imj}} \leq \mathrm{C}_{\mathrm{t}}\right)= \\
& P\left(\frac{\left(\sum_{i=1}^{N T} \sum_{\mathrm{m}=1}^{\mathrm{NM}} \mathrm{q}_{\mathrm{m}} \cdot \mathrm{t}_{\mathrm{imj}}\right)-\mathrm{E}\left(\sum_{\mathrm{i}=1}^{\mathrm{NT}} \sum_{\mathrm{m}=1}^{\mathrm{NM}} \mathrm{q}_{\mathrm{m}} . \mathrm{t}_{\mathrm{imj}}\right)}{\sqrt{\sum_{\mathrm{i}=1}^{\mathrm{NT}} \sum_{\mathrm{m}=1}^{\mathrm{NM} \mathrm{q}_{\mathrm{m}}^{2} \operatorname{var}\left(\mathrm{t}_{\mathrm{imj}}\right)}}}\right. \\
& \left.\leq \frac{\mathrm{C}_{\mathrm{t}}-\mathrm{E}\left(\sum_{\mathrm{i}=1}^{\mathrm{NT}} \sum_{\mathrm{m}=1}^{\mathrm{NM}} \mathrm{q}_{\mathrm{m}} . \mathrm{t}_{\mathrm{imj}}\right)}{\sqrt{\sum_{\mathrm{i}=1}^{\mathrm{NT}} \sum_{\mathrm{m}=1}^{\mathrm{NM}} \mathrm{q}_{\mathrm{m} . \operatorname{var}\left(\mathrm{t}_{\mathrm{imj}}\right)}^{2}}}\right)= \tag{6}\\
& P\left(Z \leq \frac{C_{t}-\left(\sum_{i=1}^{N T} \sum_{m=1}^{N M} q_{m}, \mu_{i m j}\right)}{\sqrt{\sum_{i=1}^{N T} \sum_{m=1}^{N M} q_{m}^{2} \cdot \operatorname{var}\left(t_{i m j}\right)}}\right)
\end{align*}
$$

Since we have an arrangement of N stations in series, the reliability of the assembly line $\left(R_{A L}\right)$ can be expressed as:
$\mathrm{R}_{\mathrm{AL}}=\prod_{\mathrm{j}=1}^{\mathrm{N}} \mathrm{R}_{\mathrm{j}}$
According to the weighted sum method, the objective function of the proposed approach is as follow:
Minimize $E=W_{1}\left(\frac{\text { WLEO }}{W L E}\right)+W_{2}\left(\frac{W S I}{W S I 0}\right)+W_{3}\left(\frac{R_{A L O}}{R_{A L}}\right)$
where, $\mathrm{WLE}_{0}, \mathrm{WSI}_{0}$ and $\mathrm{R}_{\mathrm{ALO}}$ are the objective function values obtained from the initial solution and $\mathrm{W}_{1}, \mathrm{~W}_{2}$ and W_{3} are the weights of objectives in the weighted sum method. In this paper, the weight of each objective function is 1.3.

3. 3. Simple Lower Bound In this section, we

 propose a simple lower bound on the minimal number of stations for mixed model stochastic assembly line balancing. This lower bound is as follows:$L B=\left\lceil\frac{\sum_{\mathrm{m}=1}^{\mathrm{NM}} \sum_{i=1}^{\mathrm{NT}} \mathrm{q}_{\mathrm{m}} \mathrm{t}_{\mathrm{im}}}{\mathrm{C}_{\mathrm{t}}}\right\rceil$
($[\mathrm{x}]$ denotes the smallest integer not being smaller than x).

3. 4. Parameter Settings In the meta heuristic

 algorithms, choosing the best combination of the parameters can intensify the search process and prevent premature convergence.In this paper, the Taguchi (1986) method is used for the best parameter selections.

Three levels are selected for each parameter of the SA algorithm. They are shown in Table 2.

The Taguchi method uses orthogonal arrays for decreasing the number of experiments for parameter settings. These arrays are presented in Table 3.

TABLE 2. Factors and their levels

Factor	Initial temperature			Final temperature			Length of the Markov chain				Cooling rate	
level	1	2	3	1	2	3	1	2	3	1	2	3
value	50	100	150	0.5	1	2	5	10	n*	0.9	0.95	0.99
n *: Number of tasks												

TABLE 3. The orthogonal arrays for the proposed approach

Test	Initial Temperature	Final Temperature	Length 0f the Markov Chain	Cooling Rate
1	1	1	1	1
2	1	2	2	2
3	1	3	3	3
4	2	1	2	3
5	2	2	3	1
6	2	3	1	2
7	3	1	3	2
8	3	2	1	3
9	3	3	2	1

It shows nine tests are necessary to select the best value for each parameter.

Each test is run four times, and the average of the objective function is obtained to estimate the (SN) ratio. In the Taguchi method, the S / N ratio is as follows:
$S N=-10 \log \left(\frac{1}{n} \sum_{i=1}^{n}(\text { objective function })^{2}\right)$
Each level which has the maximum SN ratio is the best one.

According to Figure 2, the best level of each parameter is reported in Table 4.

4. NUMERICAL EXAMPLE

We illustrate the proposed algorithm by using a ninetask and two-model example problem. Expected task times and their variances are generated randomly.

Figure 2. The mean SN ratio plot for the selected levels of each factor

TABLE 4. Factors and their levels

Factor	Initial Temperature	Final Temperature	Length of the Markov Chain	Cooling Rate
level	3	3	3	3
value	150	2	n^{*}	0.99

The required data such as Expected task time ($\mu(\mathrm{i})$) and variance of task time $\left(\sigma_{i}^{2}\right)$ of this example are given in Table 5 . The maximum cycle time of this problem is 9 .

The overall proportion of the number of units of model A and B is o.5. So, $\mathrm{q}_{\mathrm{A}}=\mathrm{q}_{\mathrm{B}}=50 \%$. The initial random solution (priority list) constructed as: $\mathrm{PL}=\{1$, $2,3,4,5,6,7,8,9\}$. The procedure of creating the initial line balance is shown in Table 6. The assignment of tasks to the stations and the reliability of each station are presented in Table 7. It shows there are seven stations in system with initial trial cycle time=3. The reliability of station 5 is lower than the others. It can show the importance of this station because it has this ability that will be a bottleneck. The objective function values of WLE, WSI, RLA and E of the initial line balance are $59.524 \%, 1.711,0.389$ and 1, respectively.

In the next step, a new neighbor solution is generated by interchanging 2 or 3 tasks randomly with a probability of 0.5 . These steps are repeated until the final temperature is met. Then, the trial cycle time is increased by one unit and the above procedure is repeated until $\mathrm{C}_{\mathrm{t}} \leq 9$.

In this problem, according to several preliminary experiments we selected initial temperature, final temperature and cooling rate as 100,1 and 0.95 , respectively.

We run this algorithm 5 times with PC 2.2 GHz CPU and 1 GB of RAM. The best and the average results of these iterations are presented in Table 8.

The best function value in 5 iterations with different initial random solution for this problem is 0.509 . The number of stations is 5 and the RLA, WSI and WLE are $0.100,0.949$ and 83.333 , respectively.

5. NUMERICAL EXPERIMENT

In order to assess the effectiveness of the proposed algorithm, a set of standard test problems (P9, P14, P20, P25, P30, P39, P47 and P65) are solved.

TABLE 5. Data of the example problem

TABLE 5. Data of the example problem					
Task	Immediate	Model A		Model B	
		$\mu(\mathrm{i})$	$\sigma_{\mathrm{i}}{ }^{2}$	$\mu(\mathrm{i})$	$\sigma_{\mathrm{i}}{ }^{2}$
1	-	2	0.5	0	0
2	-	3	0.8	1	0.3
3	-	0	0	1	0.3
4	1	3	0.8	0	0
5	2	1	0.3	3	0.8
6	2,3	1	0.3	1	0.3
7	4,5	2	0.5	2	0.5
8	5	0	0	3	0.8
9	6	1	0.3	1	0.3

TABLE 6. Building the initial line balance

Step1	Step2	Step3	Step4	Step5	Step6
$\begin{gathered} \mathrm{NS}=1 ;{ }_{\mathrm{A}} \mathrm{WL}_{1}=0 ; \\ { }_{\mathrm{B}} \mathrm{WL}_{1}=0 . \end{gathered}$	SAT $=\{1,2,3\}$	$P L=\{1,2,3\}$	Select Task 1, $\mathrm{P}(1)=\{\emptyset\} ; 2+0 \leq 3 ;, 0+0 \leq 3 ; \mathrm{TL}_{1}=\mathrm{TL}_{1}+\{1\}$; $\mathrm{t}_{1 \mathrm{~A}}^{\mathrm{f}}=2, \mathrm{t}^{\mathrm{f}}{ }_{1 \mathrm{~B}}=0,{ }_{\mathrm{A}} \mathrm{WL}_{1}=2,{ }_{\mathrm{B}} \mathrm{WL}_{1}=0$		
	SAT $=\{2,3,4\}$	$P L=\{2,3,4\}$	Select Task 2, $\mathrm{P}(2)=\{\emptyset\} ; 2+3>3$; go to step 5	Task2 could not be selected	
$\begin{gathered} \mathrm{NS}=2,{ }_{\mathrm{A}} \mathrm{WL}_{2}=0 ; \\ { }_{\mathrm{B}} \mathrm{WL}_{2}=0 \end{gathered}$	SAT $=\{2,3,4\}$	$P L=\{2,3,4\}$	Select Task 2, $P(2)=\{\emptyset\} ; 3+0 \leq 3 ; 1+0 \leq 3$; $\mathrm{TL}_{2}=\mathrm{TL}_{2}+\{2\} ; \mathrm{t}_{2 \mathrm{~A}}^{\mathrm{f}}=3, \mathrm{t}^{\mathrm{f}}{ }_{2 \mathrm{~B}}=1,{ }_{\mathrm{A}} \mathrm{WL}_{2}=3,{ }_{\mathrm{B}} \mathrm{WL}_{2}=1$		
	SAT $=\{3,4,5\}$	$P L=\{3,4,5\}$	Select Task 3, $P(3)=\{\emptyset\} ; 0+3 \leq 3 ; 1+1 \leq 3$; $\mathrm{TL}_{2}=\mathrm{TL}_{2}+\{3\} ; \mathrm{t}_{3 \mathrm{~A}}^{\mathrm{f}}=3, \mathrm{t}_{3 \mathrm{~B}}^{\mathrm{f}}=2,{ }_{\mathrm{A}} \mathrm{WL}_{2}=3,{ }_{\mathrm{B}} \mathrm{WL}_{2}=2$		
	SAT $=\{4,5,6\}$	$P L=\{4,5,6\}$	Select Task 4, $\mathrm{P}(4)=\{1\} ; 3+3>3$; go to step 5	Task4 could not be selected	
$\begin{gathered} \mathrm{NS}=3 ;{ }_{\mathrm{A}} \mathrm{WL}_{3}=0 ; \\ { }_{\mathrm{B}} \mathrm{WL}_{3}=0 . \end{gathered}$	SAT $=\{4,5,6\}$	$P L=\{4,5,6\}$	Select Task 4, $\mathrm{P}(4)=\{1\} ; 0+3 \leq 3 ; 0+0 \leq 3$; $\mathrm{TL}_{3}=\mathrm{TL}_{3}+\{4\} ; \mathrm{t}_{4 \mathrm{~A}}=3, \mathrm{t}_{4 \mathrm{~B}}^{\mathrm{f}}=0,{ }_{\mathrm{A}} \mathrm{WL}_{3}=3,{ }_{\mathrm{B}} \mathrm{WL}_{3}=0$		
	SAT $=\{5,6\}$	$P L=\{5,6\}$	Select task 5, P(5) =\{2\};1+3>3; go to step 5	Task5 could not be selected	
$\begin{gathered} \mathrm{NS}=4,{ }_{A} \mathrm{WL}_{4}=0 ; \\ { }_{\mathrm{B}} \mathrm{WL}_{4}=0 \end{gathered}$	SAT $=\{5,6\}$	$P L=\{5,6\}$	Select Task 5, $\mathrm{P}(5)=\{2\} ; 1+0 \leq 3 ;, 3+0 \leq 3 ; \mathrm{TL}_{4}=\mathrm{TL}_{4}+\{5\}$; $\mathrm{t}_{5 \mathrm{~A}}^{\mathrm{f}}=1, \mathrm{t}_{5 \mathrm{~B}}^{\mathrm{f}}=3,{ }_{\mathrm{A}} \mathrm{WL}_{4}=1,{ }_{\mathrm{B}} \mathrm{WL}_{4}=3$		
	SAT $=\{6,7,8\}$	$P L=\{6,7,8\}$	Select Task 6, $\mathrm{P}(6)=\{2,3\} ; 3+3>3$; go to step 5	Task6 could not be selected	
$\begin{gathered} \mathrm{NS}=5 ;{ }_{\mathrm{A}} \mathrm{WL}_{5}=0 ; \\ { }_{\mathrm{B}} \mathrm{BL}_{5}=0 . \end{gathered}$	SAT $=\{6,7,8\}$	$P L=\{6,7,8\}$	Select Task 6, $\mathrm{P}(6)=\{2,3\} ; 1+0 \leq 3 ; 1+0 \leq 3 ; \mathrm{TL}_{5}=\mathrm{TL}_{5}+\{6\}$; $\mathrm{t}_{6 \mathrm{~A}}^{\mathrm{f}}=1, \mathrm{t}_{6 \mathrm{~B}}^{\mathrm{f}}=1,{ }_{\mathrm{A}} \mathrm{WL}_{5}=1,{ }_{\mathrm{B}} \mathrm{WL}_{5}=1$		
	SAT $=\{7,8,9\}$	$P L=\{7,8,9\}$	Select Task 7, $\mathrm{P}(6)=\{4,5\} ; 2+1 \leq 3 ; 2+1 \leq 3 ; \mathrm{TL}_{5}=\mathrm{TL}_{5}+\{7\}$; $\mathrm{t}_{7 \mathrm{~A}}^{\mathrm{f}}=3, \mathrm{t}^{\mathrm{f}}{ }_{7 \mathrm{~B}}=3,{ }_{\mathrm{A}} \mathrm{WL}_{5}=3,{ }_{\mathrm{B}} \mathrm{WL}_{5}=3$		
$\begin{gathered} \mathrm{NS}=6 ;{ }_{\mathrm{A}} \mathrm{WL}_{6}=0 ; \\ { }_{\mathrm{B}} \mathrm{WL}_{6}=0 . \end{gathered}$	SAT $=\{8,9\}$	$P L=\{8,9\}$	Select Task 8, $\mathrm{P}(8)=\{5\} ; 3+3>3$; go to step 5	Task8 could not be selected	
	SAT $=\{8,9\}$	$\mathrm{PL}=\{8,9\}$	Select Task 8, $\mathrm{P}(8)=\{5\} ; 0+0 \leq 3 ; 3+0 \leq 3 ; \mathrm{TL}_{6}=\mathrm{TL}_{6}+\{8\}$; $\mathrm{t}_{8 \mathrm{~A}}^{\mathrm{f}}=0, \mathrm{t}_{8 \mathrm{~B}}^{\mathrm{f}}=3,{ }_{\mathrm{A}} \mathrm{WL}_{6}=0,{ }_{\mathrm{B}} W \mathrm{~L}_{6}=3$		
	SAT $=\{9\}$	PL= $=9$ \}	Select Task 9, $\mathrm{P}(9)=\{6\} ; 1+3>3$; go to step 5	Task9 could not be selected	
$\begin{gathered} \mathrm{NS}=7 ;{ }_{\mathrm{A}} \mathrm{WL}_{7}=0 ; \\ { }_{\mathrm{B}} \mathrm{WL}_{7}=0 . \end{gathered}$	SAT $=\{9\}$	PL= $=9$ \}	Select Task 9, $\mathrm{P}(9)=\{6\} ; 1+0 \leq 3 ; 1+0 \leq 3 ; \mathrm{TL}_{7}=\mathrm{TL}_{7}+\{9\}$; $\mathrm{t}_{9 \mathrm{~A}}^{\mathrm{f}}=1, \mathrm{t}_{9 \mathrm{~B}}^{\mathrm{f}}=1,{ }_{\mathrm{A}} \mathrm{WL}_{7}=1,{ }_{\mathrm{B}} \mathrm{WL}_{7}=1$		
	$\mathrm{SAT}=\{\emptyset\}$				Stop

TABLE 7. The reliability of each station

Station	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
Tasks	1	2,3	4	5	6,7	8	9
$\sum_{i=\mathbf{1}}^{N T} \sum_{\boldsymbol{m}=\mathbf{1}}^{N M} \boldsymbol{q}_{\boldsymbol{m} .} \boldsymbol{\mu}_{\boldsymbol{i m j} \boldsymbol{m}}$	1	2.5	1.5	2	3	1.5	1
$\sum_{i=\mathbf{1}}^{N T} \sum_{\boldsymbol{m}=\mathbf{1}}^{N M} \boldsymbol{q}_{\boldsymbol{m} .}^{\boldsymbol{v a n}} \boldsymbol{\operatorname { v a r }}\left(\boldsymbol{t}_{\boldsymbol{i m j} \boldsymbol{j}}\right)$	0.125	0.35	0.2	0.275	0.4	0.2	0.15
$\mathbf{R L}_{\mathbf{j}}$	1.0000	0.801	0.9996	0.9717	0.5	0.9996	1.0000

The details of these problems are illustrated in Appendix. The parameters of the proposed algorithm are as follows:
$\mathrm{T} 0=100 ; \mathrm{T} 0=1 ; \mathrm{r}=0.95$ and the length of Markov chain is as equal as the number of tasks. Each problem is solved five times with initial random solution and the
best and average solutions for each trial cycle times are reported. Also, the lower bounds of the number of stations for each trial cycle times are calculated. These results are shown at Tables 8 and 9 and it is possible to compare the performance of the proposed algorithm with the LB.

TABLE 8. Comparison results for the small-sized test problems.

The above table shown the proposed algorithm can be as an effective algorithm because the initial objective value (E) was 1 and it decreased the duration of running algorithm. Furthermore, the weighted line efficiency and the reliability of system were increased and the weighted smoothness index was decreased, simultaneously. For example, the initial values of WLE, WSI and RLA for each P65 are given as follows:
Also, the number of stations found by SA algorithm is compared to LB given in Equation (10).

As it can be seen, the proposed SA algorithm performs well throughout on the different problems. Figure 3 shows a comparison between the lower bound and the obtained number of stations by the proposed algorithm. This Figure shows the structure of the problem (predecessors, task times, ...) has important effect on the obtained results.

So, there is no regular procedure for number of stations and cycle time. However, by increasing LB, NS increases, too.

TABLE 9. Computational results for the large-sized test problems

TABLE 10. Comparison between the initial and the best objective functions for P65

WL	RL	W	W	RL	W	WLE/	RLA/	WSI/
E0	A0	SI0	LE	A	SI	WLE0	RLA0	WSI0
70.	0.9	97.	79.	0.9	66.	\uparrow		
36	98	94	84	99	92	\uparrow	\downarrow	

Figure 3. Comparison between the lower bound and the obtained number of stations

6. CONCLUSION

In this paper, we presented a multi-objective simulated annealing algorithm for mixed-model assembly line balancing with stochastic processing time to maximize the weighted line efficiency (minimizing number of stations), minimizing the weighted smoothness index and maximizing the reliability of system. In this problem maximum cycle time is given. An illustrative example problem is solved by using the proposed algorithm, and numerical experiments are conducted to demonstrate the efficiency of the proposed approach. The results show that the proposed approach obtains good solutions within a short computational time for every test problem because the best result of the objective value (E) in the initial solution was 1 and it decreased in the duration of the proposed algorithm. For further researches the development of this condition for a given number of stations and also using the other meta heuristics may be good subjects.

7. REFERENCES

1. Salveson, M.E., "The assembly line balancing problem", Journal of Industrial Engineering, Vol. 6, No. 3, (1955), 1825.
2. Baybars, I., "A survey of exact algorithms for the simple assembly line balancing problem", Management Science, Vol. 32, No. 8, (1986), 909-932.
3. Ghosh, S. and Gagnon, R.J., "A comprehensive literature review and analysis of the design, balancing and scheduling of assembly systems", The International Journal of Production Research, Vol. 27, No. 4, (1989), 637-670.
4. Amen, M., "Heuristic methods for cost-oriented assembly line balancing: A survey", International Journal of Production Economics, Vol. 68, No. 1, (2000), 1-14.
5. Amen, M., "Cost-oriented assembly line balancing: Model formulations, solution difficulty, upper and lower bounds", European Journal of Operational Research, Vol. 168, No. 3, (2006), 747-770.
6. Boysen, N., Fliedner, M. and Scholl, A., "A classification of assembly line balancing problems", European Journal of Operational Research, Vol. 183, No. 2, (2007), 674-693.
7. Boysen, N., Fliedner, M. and Scholl, A., "Assembly line balancing: Which model to use when?", International Journal of Production Economics, Vol. 111, No. 2, (2008), 509-528.
8. Becker, C. and Scholl, A., "A survey on problems and methods in generalized assembly line balancing", European Journal of Operational Research, Vol. 168, No. 3, (2006), 694-715.
9. Hu, S.J., Ko, J., Weyand, L., ElMaraghy, H., Lien, T., Koren, Y., Bley, H., Chryssolouris, G., Nasr, N. and Shpitalni, M., "Assembly system design and operations for product variety", CIRP Annals-Manufacturing Technology, Vol. 60, No. 2, (2011), 715-733.
10. Scholl, A. and Becker, C., "State-of-the-art exact and heuristic solution procedures for simple assembly line balancing", European Journal of Operational Research, Vol. 168, No. 3, (2006), 666-693.
11. Battaïa, O. and Dolgui, A., "A taxonomy of line balancing problems and their solutionapproaches", International Journal of Production Economics, Vol. 142, No. 2, (2013), 259-277.
12. Sivasankaran, P. and Shahabudeen, P., "Literature review of assembly line balancing problems", The International Journal of Advanced Manufacturing Technology, Vol. 73, No. 9-12, (2014), 1665-1694.
13. Erel, E. and Gokcen, H., "Shortest-route formulation of mixedmodel assembly line balancing problem", European Journal of Operational Research, Vol. 116, No. 1, (1999), 194-204.
14. Karabat1, S. and Sayın, S., "Assembly line balancing in a mixedmodel sequencing environment with synchronous transfers", European Journal of Operational Research, Vol. 149, No. 2, (2003), 417-429.
15. Kara, Y., Özgüven, C., Seçme, N.Y. and Chang, C.-T., "Multiobjective approaches to balance mixed-model assembly lines for model mixes having precedence conflicts and duplicable common tasks", The International Journal of Advanced Manufacturing Technology, Vol. 52, No. 5-8, (2011), 725-737.
16. Özcan, U. and Toklu, B., "Balancing of mixed-model two-sided assembly lines", Computers \& Industrial Engineering, Vol. 57, No. 1, (2009), 217-227.
17. Simaria, A.S. and Vilarinho, P.M., "2-antbal: An ant colony optimisation algorithm for balancing two-sided assembly lines", Computers \& Industrial Engineering, Vol. 56, No. 2, (2009), 489-506.
18. Yagmahan, B., "Mixed-model assembly line balancing using a multi-objective ant colony optimization approach", Expert Systems with Applications, Vol. 38, No. 10, (2011), $12453-$ 12461.
19. Chutima, P. and Chimklai, P., "Multi-objective two-sided mixed-model assembly line balancing using particle swarm optimisation with negative knowledge", Computers \& Industrial Engineering, Vol. 62, No. 1, (2012), 39-55.
20. Manavizadeh, N., Hosseini, N.-s., Rabbani, M. and Jolai, F., "A simulated annealing algorithm for a mixed model assembly uline balancing type-i problem considering human efficiency and just-in-time approach", Computers \& Industrial Engineering, Vol. 64, No. 2, (2013), 669-685.
21. Kalayci, C.B., Hancilar, A., Gungor, A. and Gupta, S.M., "Multi-objective fuzzy disassembly line balancing using a
hybrid discrete artificial bee colony algorithm", Journal of Manufacturing Systems, Vol. 37, (2015), 672-682.
22. Zacharia, P.T. and Nearchou, A.C., "A population-based algorithm for the bi-objective assembly line worker assignment and balancing problem", Engineering Applications of Artificial Intelligence, Vol. 49, (2016), 1-9.
23. Zhao, X., Hsu, C.-Y., Chang, P.-C. and Li, L., "A genetic algorithm for the multi-objective optimization of mixed-model assembly line based on the mental workload", Engineering Applications of Artificial Intelligence, Vol. 47, (2016), 140146.
24. Fattahi, P., Samoei, P. and Zandieh, M., "Simultaneous multiskilled worker assignment and mixed-model two-sided assembly line balancing", International Journal of EngineeringTransactions B: Applications, Vol. 29, No. 2, (2016), 211.
25. Cakir, B., Altiparmak, F. and Dengiz, B., "Multi-objective optimization of a stochastic assembly line balancing: A hybrid simulated annealing algorithm", Computers \& Industrial Engineering, Vol. 60, No. 3, (2011), 376-384.
26. Gutjahr, A.L. and Nemhauser, G.L., "An algorithm for the line balancing problem", Management science, Vol. 11, No. 2, (1964), 308-315.
27. Hamta, N., Ghomi, S.F., Jolai, F. and Shirazi, M.A., "A hybrid pso algorithm for a multi-objective assembly line balancing problem with flexible operation times, sequence-dependent setup times and learning effect", International Journal of Production Economics, Vol. 141, No. 1, (2013), 99-111.
28. Shin, D., "An efficient heuristic for solving stochastic assembly line balancing problems", Computers \& Industrial Engineering, Vol. 18, No. 3, (1990), 285-295.
29. Tiacci, L., "Event and object oriented simulation to fast evaluate operational objectives of mixed model assembly lines problems", Simulation Modelling Practice and Theory, Vol. 24, (2012), 35-48.
30. Suhail, A., "Reliability and optimization considerations in a conveyor-paced assembly line system", The International Journal of Production Research, Vol. 21, No. 5, (1983), 627640.
31. Li, J., Alden, J.M. and Rabaey, J.R., "Approximating feeder line reliability statistics with partial data collection in assembly systems", Computers \& Industrial Engineering, Vol. 48, No. 2, (2005), 181-203.
32. Iyer, S. and Srihari, K., "Assembly reliability assessment and life estimation for a stacked area array device", Microelectronics Reliability, Vol. 50, No. 7, (2010), 978-985.
33. Debdip, K. and Dilip, R., "Designing of an assembly line based on reliability approach", An International Journal of Optimization and Control: Theories \& Applications (IJOCTA), Vol. 1, No. 1, (2011), 45-52.
34. Bukchin, Y. and Rabinowitch, I., "A branch-and-bound based solution approach for the mixed-model assembly line-balancing problem for minimizing stations and task duplication costs", European Journal of Operational Research, Vol. 174, No. 1, (2006), 492-508.
35. Jin, M. and Wu, S.D., "A new heuristic method for mixed model assembly line balancing problem", Computers \& Industrial Engineering, Vol. 44, No. 1, (2003), 159-169.
36. Simaria, A.S. and Vilarinho, P.M., "A genetic algorithm based approach to the mixed-model assembly line balancing problem of type II", Computers \& Industrial Engineering, Vol. 47, No. 4, (2004), 391-407.
37. Rabbani, M., Kazemi, S.M. and Manavizadeh, N., "Mixed model u-line balancing type-1 problem: A new approach", Journal of Manufacturing Systems, Vol. 31, No. 2, (2012), 131-138.
38. Bock, S., "Supporting offshoring and nearshoring decisions for mass customization manufacturing processes", European Journal of Operational Research, Vol. 184, No. 2, (2008), 490-508.
39. McMullen, P.R. and Frazier, G., "Using simulated annealing to solve a multiobjective assembly line balancing problem with parallel workstations", International Journal of Production Research, Vol. 36, No. 10, (1998), 2717-2741.
40. Deb, K., "Multi-objective optimization using evolutionary algorithms. John wiley\& sons", Inc., New York, NY, (2001).

8. APPENDIX

The details of task times and variances for each problem are presented in Tables A1, A2, A3, A4, A5, A6 and A7.

TABLE A1. Problem P14

Task	Immediate predecessor(s)	Model A q $\mathrm{A}=0.42$		Model B q ${ }_{\mathrm{B}}=0.58$		Task	Immediate predecessor(s)	Model A q ${ }_{\text {A }}=0.42$		Model $\mathrm{Bq}_{\mathrm{B}}=0.58$	
		$\mu(\mathbf{i})$	Ji^{2}	$\mu(\mathbf{i})$	$\sigma_{i}{ }^{2}$			$\mu(\mathbf{i})$	$\sigma_{i}{ }^{2}$	$\mu(\mathrm{i})$	$\sigma_{i}{ }^{2}$
1	--	0	0	2	0.5	8	4,5	0	0	2	0.5
2	---	8	4	8	4	9	5	3	1.5	2	0.5
3	1	7	3	7	3	10	6	3	1.5	2	0.5
4	3	7	3	5	2	11	5,6	6	2.5	6	2.5
5	3	2	0.5	2	0.5	12	8	3	1.5	3	1.5
6	3	6	2.5	0	0	13	7,10, 11	5	2	5	2
7	2,3	4	2	0	0	14	9, 12, 13	4	2	6	2.5

TABLE A2. Problem P20

Task	Immediate predecessor(s)	Model A q ${ }_{\text {A }}=0.4$		Model B $\mathrm{q}_{\mathrm{B}}=0.6$		Task	Immediate predecessor(s)	Model A q ${ }_{\text {A }}=0.4$		Model B $\mathrm{q}_{\mathrm{B}}=0.6$	
		$\mu(\mathbf{i})$	$\boldsymbol{\sigma}_{\mathrm{i}}{ }^{2}$	$\mu(\mathrm{i})$	$\sigma_{i}{ }^{2}$			$\mu(\mathrm{i})$	$\boldsymbol{\sigma}_{\mathrm{i}}{ }^{2}$	$\mu(\mathbf{i})$	$\boldsymbol{\sigma}_{\mathrm{i}}{ }^{2}$
1	-	4		0	0	11	8	3	0.7	4	1
2	-	5	2	4	1	12	9	8	1	7	4
3	-	0	0	2	0.6	13	10	2	0.2	0	0
4	1	2	1	0	0	14	11	11	4	10	2
5	1,2	4	0.3	5	1	15	11,12	6	1	7	1
6	2,3	3	0.1	4	0.8	16	13,14	10	5	9	5
7	4	5	2	0	0	17	15	12	2	0	0
8	5	5	1	5	1	18	15	0	0	9	2
9	6	7	0.5	8	0.7	19	16,17,18	4	1	4	1
10	7	6	2	0	0	20	19	5	1	6	3

TABLE A3. Problem P25

Task	Immediate predecessor(s)	Model A q ${ }_{\text {A }}=0.4$		Model B $\mathrm{q}_{\mathrm{B}}=0.6$		Task	Immediate predecessor(s)	Model A $\mathrm{q}_{\mathrm{A}}=0.4$		Model B $\mathrm{q}_{\mathrm{B}}=0.6$	
		$\mu(\mathbf{i})$	$\sigma_{i}{ }^{2}$	$\mu(\mathrm{i})$	$\sigma_{i}{ }^{2}$			$\mu(\mathbf{i})$	$\sigma_{i}{ }^{2}$	$\mu(\mathrm{i})$	$\sigma_{i}{ }^{2}$
1	-	0	0	18	3	14	9	7	1	0	0
2	-	10	4	19	2	15	12,13	17	3	14	2
3	1	15	5	10	1	16	10,13	18	5	11	1
4	3	12	3	10	1	17	16	4	1	0	0
5	3	8	2	3	2	18	16	9	2	6	2
6	3	9	7	0	0	19	14,18	10	3	5	1
7	3	20	5	0	0	20	7,18	0	0	9	2
8	4,5	0	0	2	0.5	21	17	12	2	2	0.3
9	5	15	3	9	1	22	21	18	4	11	1
10	2,6	7	2	12	3	23	15,19,21	12	1	5	1
11	5,6	4	1	10	4	24	20,22,23	10	1	9	1
12	8,9	11	2	10	4	25	24	7	2	0	0
13	11	9	2	12	2						

TABLE A4. Problem P30

Task	Immediate predecessor(s)	Model A $\mathrm{q}_{\mathrm{A}}=0.5$		Model B $\mathrm{q}_{\mathrm{B}}=0.5$		Task	Immediate predecessor(s)	Model A $\mathrm{q}_{\mathrm{A}}=0.5$		Model B $\mathrm{q}_{\mathrm{B}}=0.5$	
		$\boldsymbol{\mu}(\mathbf{i})$	$\sigma_{\text {i }}{ }^{2}$	$\boldsymbol{\mu}(\mathbf{i})$	бit 2			$\mu(\mathbf{i})$	$\sigma_{\mathrm{i}}{ }^{2}$	$\boldsymbol{\mu}(\mathbf{i})$	$\sigma_{\mathrm{i}}{ }^{2}$
1	-	9.5	3.5	9.5	3.5	16	3	1.4	0.5	1.4	0.5
2	-	1.3	0.5	1.3	0.5	17	3	7.8	3.5	7.8	3
3	-	4.8	2	4.8	2	18	17	2.9	1	2.9	1
4	1	3.3	2	3.3	2	19	18	1.6	0.5	1.6	0.5
5	1	1.5	0.5	1.7	0.5	20	14,16	7	3	7	3
6	5	4.5	2	4.1	2	21	20	8.7	4	8.7	4
7	4, 6	3.6	2	3.6	2	22	15,21	3.9	2	4.1	2
8	7	0	0	2	1	23	22	6.4	3	6.4	3
9	8	12	5	12	5	24	10,20	2.8	1	2.7	1
10	-	0	0	8	3	25	24	8.5	3	8.5	3
11	2	2.5	1	2.5	1.5	26	9,25	6.7	3	6.7	3
12	2	4.3	2	4.3	2	27	23,26	1.9	1	1.9	0.5
13	12	6.5	3	0	0	28	27	9.9	4	9.9	4
14	13	1.7	0.5	1.7	0.5	29	27	4.6	2.2	0	0
15	14	7	3	7	3	30	29	4	2	4.2	2

TABLE A5. Problem P39

Task	Immediate predecessor(s)	Model A q ${ }_{\text {A }}=0.45$		Model B $\mathrm{q}_{\mathrm{B}}=0.55$		Task	Immediate predecessor(s)	Model A $\mathrm{q}_{\mathrm{A}}=0.45$		Model B $\mathrm{q}_{\mathrm{B}}=0.55$	
		$\boldsymbol{\mu}$ (i)	$\boldsymbol{\sigma}_{\mathrm{i}}{ }^{2}$	$\mu(\mathrm{i})$	$\boldsymbol{\sigma}_{\mathrm{i}}{ }^{2}$			$\mu(\mathbf{i})$	Oil 2	$\mu(\mathrm{i})$	$\sigma_{\mathrm{i}}{ }^{2}$
1	-	2	0.6	2	0.8	21	5,18	3	1	3	1.5
2	1	2	0.4	2	1	22	20	8	2.5	8	2.5
3	-	2	0.4	2	0.9	23	-	5	1	5	2
4	-	2	0.3	2	0.5	24	22	7	3	7	3.5
5	-	2	0.4	2	0.3	25	24	4	1	4	2.4
6	2	0	0	11	4	26	25	6	3.4	6	3.4
7	2	0	0	0	0	27	26,23,21	5	2.5	5	1.8
8	6,7	9	2.8	12	3	28	25	0	0	0	0
9	-	2	1	2	1	29	27	1	0.5	1	0.7
10	3,9	10	3	10	3	30	28,29	3	1	3	3.2
11	3	3	1	0	0	31	30	3	1.8	3	1.5
12	8	11	2.5	11	2.3	32	31	0	0	0	0
13	3	4	1.5	4	1.4	33	24	4	1	4	1
14	-	0	0	4	2.3	34	22	2	0.3	2	0.6
15	2	9	3	9	3.5	35	32,33,34	2	0.5	2	0.5
16	15,14,13	13	4	13	3.8	36	35	1	0.7	1	0.4
17	4,11,16	6	2	6	1.9	37	34	1	0.5	1	0.4
18	17	7	3	7	3.5	38	36,37	1	0.9	1	0.6
19	-	3	1.2	3	1.4	39	38	1	0.2	1	0.3
20	10,19	8	1.5	7	2.5						

TABLE A6. Problem P47

Task	Immediate predecessor(s)	Model A q ${ }_{\mathrm{A}}=0.45$		Model B $\mathrm{q}_{\mathrm{B}}=0.55$		Task	Immediate predecessor(s)	Model A q ${ }_{\text {A }}=0.45$		Model B $\mathrm{q}_{\mathrm{B}}=0.55$	
		$\mu(\mathbf{i})$	$\sigma_{i}{ }^{2}$	$\mu(\mathbf{i})$	бit 2			$\mu(\mathrm{i})$	$\sigma_{i}{ }^{2}$	$\mu(\mathrm{i})$	$\sigma_{i}{ }^{2}$
1	-	23	2	2	0.6	25	24	6	2	11	2
2	6	20	3	5	1	26	25	9	1	7	3
3	6	2	0.2	9	2	27	6	7	3	8	1
4	6	6	1	7	0.3	28	20,21	4	1	14	4
5	-	14	2	11	4	29	23	3	0.4	19	6
6	1	22	1	23	5	30	28	2	0.1	11	1
7	6	1	0.1	2	0.1	31	23,27	12	2	15	0.5
8	5,6	7	1	6	2	32	31	13	3	4	0.1
9	6	4	2	8	4	33	34	1	0.4	3	1
10	12	8	1	7	1	34	-	5	2	2	0.4
11	6	12	4	11	3	35	34	4	3	8	0.2
12	16	9	2	14	5	36	6,33,35	13	6	6	1
13	16	7	1	18	6	37	7	18	5	19	0.5
14	16	3	1	3	0.1	38	37	20	8	15	1
15	6	11	3	1	0.3	39	6	8	0.8	3	0.4
16	15	20	6	6	2	40	7,41	11	5	7	0.3
17	7,9	2	0.8	4	1	41	-	17	8	1	0.1
18	17	9	3	5	0.5	42	-	3	0.4	8	3
19	6	7	1	11	3	43	7,36	9	5	9	2
20	17	4	1	9	1	44	36,42	7	3	10	2
21	17	3	0.5	4	0.6	45	44	17	3	20	5
22	17	7	0.2	6	2	46	45	14	4	3	0.3
23	28	11	3	2	0.4	47	44	11	5	3	0.1
24	23	5	2	1	0.1						

TABLE A7. Problem P65

Task	Immediate predecessor(s)	Model A q ${ }_{\text {A }}=0.45$		Model B $\mathrm{q}_{\mathrm{B}}=0.55$		Task	$\begin{gathered} \text { Immediate } \\ \text { predecessor(s) } \end{gathered}$	Model A $\mathrm{q}_{\mathrm{A}}=0.45$		Model B $\mathrm{q}_{\mathrm{B}}=0.55$	
		$\mu(\mathbf{i})$	$\boldsymbol{\sigma}_{\mathrm{i}}{ }^{2}$	$\boldsymbol{\mu}(\mathrm{i})$	$\boldsymbol{\sigma i}^{2}$			$\mu(\mathbf{i})$	$\boldsymbol{\sigma}_{\mathrm{i}}{ }^{2}$	$\boldsymbol{\mu}(\mathrm{i})$	$\mathrm{\sigma}_{\mathrm{i}}{ }^{2}$
1	-	35	6	26	3	34	7,35	41	7	39	12
2	3	14	2	15	4	35	23	21	5	63	7
3	4	1	0.2	54	8	36	8	33	7	28	3
4	5	18	3	1	0.2	37	24,36	147	30	103	20
5	6	36	5	33	5	38	10,37	43	12	12	3
6	7	29	4	26	9	39	11,38	15	6	24	12
7	1	159	10	61	12	40	25,39	27	9	1	0.1
8	1	70	8	5	1	41	13,40	4	1	5	0.4
9	8	24	5	16	3	42	26,41	25	5	80	5
10	9	99	9	40	7	43	15,42	22	4	18	9
11	10	56	5	56	7	44	27,43	3	0.4	7	3
12	11	51	4	47	3	45	17,44	44	1	35	8
13	12	94	10	132	18	46	18,28	26	5	34	5
14	13	29	9	6	1	47	30	2	0.1	19	4
15	14	39	12	1	0.2	48	31	41	8	44	12
16	15	15	8	16	6	49	46	9	3	3	0.4
17	16	11	3	2	0.3	50	49	8	2	46	3
18	17	74	15	58	2	51	28,50	20	5	13	2
19	18	34	12	14	8	52	47,62	35	7	13	4
20	21	19	2	19	9	53	48,63	14	3	5	0.8
21	31	14	5	14	6	54	33	38	7	93	9
22	6	12	1	24	3	55	35	11	3	23	3
23	1	19	5	61	7	56	37	56	9	7	1
24	9	38	7	76	12	57	40,64	23	3	98	8
25	12	89	9	43	11	58	42	52	8	64	4
26	14	66	8	45	5	59	44	16	1	2	0.6
27	16	27	3	6	1	60	50	10	0.3	24	3
28	19	189	17	249	25	61	29,62	98	31	66	12
29	20,30	2	0.3	48	7	62	-	3	0.1	11	9
30	21,31	21	6	33	5	63	-	117	25	15	5
31	2,4	6	0.8	5	1	64	-	54	7	85	4
32	5,31,33	18	3	12	7	65	62	35	4	26	3
33	22,34	13	8	53	4						

Mixed-model Assembly Line Balancing with Reliability

P. Samoueia ${ }^{\text {a }}$, V. Khodakarami ${ }^{\text {a }}$, P. Fattahi ${ }^{\text {b }}$
${ }^{a}$ Department of Industrial Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran
${ }^{b}$ Department of Industrial Engineering, Alzahra University, Tehran, Iran

PAPER INFO

Paper history:
Received 21 June 2016
Received in revised form 14 January 2017
Accepted 02 February 2017

Keywords:
Assembly Line Balancing
Reliability
Mixed-model
Stochastic Processing Time
Line Efficiency

اين مقاله به ارائهى يكى الگُريتم انجماد تدريجى چندهدفه براى بالانس خطوط مونتاز مدلهاى تركيبى با زمان هاى
پردازش تصادفى مى يردازد. از آنجا كه زمانهاى تصادفى ممكن است روى گلو گاههاى سيستم تاثير گذار باشد، حداقل

سازى قابليت اطمينان مى باشد در اين تحقيق مورد مطالعه قرار گرفته است. پس از حل يكى مسئله با جزييات، عملكرد

الگوريتم پيشنهادى است.
doi: 10.5829/idosi.ije.2017.30.03c.11

[^0]: *Corresponding Author’s Email: p.samouei@basu.ac.ir (P. Samouei)

