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A B S T R A C T  
 

 

This paper considers a scheduling problem of a set of independent jobs on unrelated parallel machines 

(UPMs) that minimizes the maximum completion time (i.e., makespan or 𝐶𝑚𝑎𝑥), maximum earliness 

(𝐸𝑚𝑎𝑥), and maximum tardiness (𝑇𝑚𝑎𝑥) simultaneously. Jobs have non-identical due dates, sequence-

dependent setup times and machine-dependent processing times. A multi-objective mixed-integer 
linear programming (MILP) is considered and then solved with the ε-constraint method in small-sized 

problems. The results are compared with those obtained by meta-heuristic algorithms. Furthermore, an 

effective hybrid multi-objective teaching–learning based optimization (HMOTLBO) algorithm is 
proposed, whose performance is compared with a non-dominated sorting genetic algorithm (NSGA-II) 

for test problems generated at random. The results show that the proposed HMOTLBO outperforms the 

NSGA-II in terms of different metrics. 

doi: 10.5829/idosi.ije.2017.30.02b.09 
 

 
1. INTRODUCTION1 
 

This paper considers a parallel machines scheduling 

problem in which different machines perform the same 

function with different processing velocity, namely 

unrelated parallel machines (UPMs). In this study, each 

job has machine-dependent processing time, sequence-

dependent setup time and due date.  

In order to improve the performance of the 

production systems, we consider both manufacturer 

concerns, such as waiting time and WIP inventory and 

customer concerns, such as assuring on time receipt. For 

this purposes, a multi-objective problem to minimize 

makespan (i.e., Cmax), maximum tardiness (i.e., 𝑇𝑚𝑎𝑥) 

and maximum earliness (i.e., 𝐸𝑚𝑎𝑥) is considered 

simultaneously. To make the problem applicable in real 

environment, it is sequence-dependent setup time [1]. 

Tavakkoli-Moghaddam et al. [2] presented a 

mathematical model for the UPMs scheduling problem, 
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which minimizes the total earliness/tardiness penalties. 

They proposed a GA algorithm. Tavakkoli-Moghaddam 

et al. [3] presented the UPMs scheduling problem to 

minimize the total completion time and number of tardy 

jobs. They proposed a two-level mixed-integer 

programming (MIP) model for their problem. 

Tavakkoli-Moghaddam and Mehdizade [2] showed an 

integer linear programming (ILP) model for an identical 

PMs scheduling problem with family setups in order to 

minimize the total weighted flow time. They proposed a 

genetic algorithm (GA) to obtain good and near-optimal 

solutions. Tavakkoli-Moghaddam and Aramon-

Bajestani [4] proposed lower and upper bounds for a 

UPMs scheduling problem to minimize the total 

weighted tardiness.  

Torabi et al. [5] proposed a novel multi-objective 

model for a UPMs problem under uncertain processing 

times and due dates and proposed multi-objective 

particle swarm optimization (MOPSO) in order to find a 

Pareto frontier, in such a way that the total weighted 

flow time, total machine load variation and total 

weighted tardiness should be minimized. Lin and Ying 
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[6] considered a UPMs scheduling problem with job 

sequence-dependent setup times and proposed a hybrid 

artificial bee colony algorithm in order to minimize the 

makespan. Rodriguez et al. [7] considered the UPMs 

scheduling problem that minimizes the total weighted 

completion time and proposed an iterated greedy meta-

heuristic algorithm using destruction and construction 

phases in order to obtain a number of solutions. 

Bozorgirad and Logendran [8] addressed a UPMs 

scheduling problem with sequence-dependent group 

setup times that minimizes the total weighted 

completion time and total weighted tardiness and 

proposed tabu search to solve this problem. Lin et al. [9] 

considered a UPMs scheduling problem that minimizes 

the makespan, total weighted completion time and total 

weighted tardiness, and compared the performance of 

various heuristics. Nogueira et al. [10] considered a 

UPMs scheduling problem with machine and job 

sequence-dependent setup times and idle times that 

minimizes the total earliness/tardiness penalties. They 

proposed three different heuristics contained simple 

GRASP, path relinking and iterated local search.  

Gharehgozli et al. [11] showed a new fuzzy mixed-

integer goal programming (MIGP) model for a PMs 

scheduling problem with sequence-dependent setup 

times and release dates to minimize the total weighted 

flow time and the total weighted tardiness. Kayvanfar et 

al. [12] considered a PMs system with controllable 

processing times of jobs to minimize the makespan and 

total weighted tardiness/earliness penalties. 

Tavakkoli-Moghaddam et al. [3] and [13] presented 

a novel, two-level MIP model for a UPMs scheduling 

problem with sequence-dependent setup times, non-

identical due dates, ready times and precedence 

relations to minimize the number of tardy jobs and the 

total completion time.Gao [14] considered a multi-

objective parallel machines scheduling problem to 

minimize the maximum completion time (i.e., 

makespan) and total earliness/tardiness penalties and 

proposed an artificial immune algorithm for solving this 

problem. Chyuand Shang [15] considered a bi-objective 

UPMs scheduling problem with job-sequence setup 

times and machine-dependent setup times to minimize 

the total weighted flow time and total weighted 

tardiness. They proposed a Pareto evolutionary 

algorithm to solve their problem. Lin and Lin [16] 

considered a UPMs scheduling problem to minimize the 

makespan and total weighted tardiness, and presented 

heuristic and tabu search algorithms to solve their 

problem. Salehi Mir and Rezaeian [17] considered a 

UPMs scheduling problem with sequence-dependent 

setup time, release dates, deteriorating jobs and learning 

effects to minimize the total machine load. They 

proposed the hybrid PSO-GA. Joo and Kim [18] 

presented a UPMs scheduling problem with sequence 

and machine-dependent setup times to minimize the 

total completion time. Additionally, they proposed a 

hybrid genetic algorithm with three dispatching rules.  

A great number of meta-heuristic algorithms (i.e., 

ABC, PSO and DE) have been proposed in the last few 

decades. However, a teaching–learning based 

optimization (TLBO) algorithm is one of them proposed 

by Roa et al. [19]. In this paper, we hybridized this 

algorithm with hill climbing search for a new multi-

objective UPMs scheduling problem. Furthermore, the 

ε-constraint method is used to solve this problem in 

small-sized problems and the results obtained by the 

hybrid multi-objective TLBO algorithm are compared 

with the results obtained by the non-dominated sorting 

genetic algorithm (NSGA-II). 

 

 

2. PROBLEM FORMULATION  
 

This paper presents the scheduling problem of a set of 𝑁 

independent jobs on 𝑀 unrelated parallel machines to 

minimizethe makespan, maximum tardiness and 

maximum earliness simultaneously. It is assumed that 

each job can be processed by only one machine and 

each machine can process at most one job at a time. No 

job preemptions are allowed and each job becomes 

available at time zero. Jobs have sequence-dependent 

setup times with the same priority. The mentioned 

model is modified from the models presented in [3] and 

[13] as follow: 

Notations: 
𝑁 Number of jobs 

𝑀 Number of machines 

𝑖 Job indices (𝑖 = 1, … , 𝑁) 

𝑚 Machine indices (𝑚 = 1, … , 𝑀) 

𝐾𝑚 Number of positions on machine 𝑚, 𝐾𝑚 ≤ 𝑁 

𝑘 Position indices (𝑘 = 1, … , 𝐾𝑚) 

𝑑𝑖 Due date of job𝑖 
𝑝𝑖𝑚 Processing time of job 𝑖 on machine𝑚 

𝑠𝑖𝑗𝑚 Setup time to switch from job 𝑖 to job j on 

 machine 𝑚 

𝑥𝑖𝑘𝑚 Equals 1, if job 𝑖  is scheduled in the kth  

 position on machine 𝑚; and 0, otherwise 

𝑐𝑖 Completion time job 𝑖 
𝑡𝑖 Tardiness job𝑖,𝑡𝑖 = max (0, 𝑐𝑖 − 𝑑𝑖) 

𝑒𝑖 Earliness job𝑖,𝑒𝑖 = max (0, 𝑑𝑖 − 𝑐𝑖) 

𝑇𝑚𝑎𝑥   Maximum tardiness 

𝐸𝑚𝑎𝑥 Maximum earliness 

𝐶𝑚𝑎𝑥  Makespan 

According to the above-mentioned assumptions and 

notations; the problem can be modelled by: 

Min 𝑍1 = 𝑇𝑚𝑎𝑥  (1) 

Min 𝑍2 = 𝐸𝑚𝑎𝑥  (2) 

Min 𝑍2 = 𝐶𝑚𝑎𝑥 (3) 

http://link.springer.com/search?facet-author=%22Chiuh-Cheng+Chyu%22
http://www.sciencedirect.com/science/article/pii/S0305054815001203
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s.t.  

∑ ∑ 𝑥𝑖𝑘𝑚 = 1;      ∀𝑖
𝐾𝑚
𝑘=1

𝑀
𝑚=1   (4) 

∑ 𝑥𝑖𝑘𝑚 ≤ 1;       ∀𝑚, 𝑘 𝑁
𝑖=1   (5) 

∑ 𝑥𝑖𝑘𝑚
𝑁
𝑖=1 − ∑ 𝑥𝑗𝑘−1𝑚

𝑁
𝑗=1 ≤ 0;  ∀𝑘 ≥ 2, 𝑚  (6) 

𝑐𝑖 ≥ 𝑝𝑖𝑚 ∗ 𝑥𝑖1𝑚;       ∀𝑚, 𝑖   (7) 

𝑐𝑖 = ∑ ∑ ∑ 𝑥𝑗𝑘−1𝑚 × 𝑥𝑖𝑘𝑚 × (𝑁
𝑗=1
𝑗≠𝑖

𝐾𝑚
𝑘=2

𝑀
𝑚=1 𝑐𝑗 + 𝑠𝑗𝑖𝑚) 

+ ∑ ∑ 𝑝𝑖𝑚 × 𝑥𝑖𝑘𝑚 ;  
𝐾𝑚
𝑘=1 ∀𝑀

𝑚=1 𝑖  

(8) 

𝑡𝑖 ≥ 𝑐𝑖 − 𝑑𝑖 ;         ∀ 𝑖 (9) 

𝑒𝑖 ≥ 𝑑𝑖 − 𝑐𝑖  ;      ∀𝑖 (10) 

𝑇𝑚𝑎𝑥 ≥ 𝑡𝑖  ;           ∀𝑖  (11) 

𝐸𝑚𝑎𝑥 ≥ 𝑒𝑖  ;         ∀ 𝑖  (12) 

𝐶𝑚𝑎𝑥 ≥ 𝑐𝑖   ;        ∀ 𝑖  (13) 

𝑥𝑖𝑘𝑚 = 0  𝑜𝑟 1;       ∀ 𝑚, 𝑘, 𝑖  (14) 

𝑡𝑖 ≥ 0 , 𝑒𝑖 ≥ 0 , 𝑐𝑖 ≥ 0;        ∀ 𝑖  (15) 

This model minimizes the maximum tardiness, 

maximum earliness and makespan stated by objective 

functions (1) to (3), respectively. Constraint (4) states 

that each job is assigned to exactly one position on one 

machine. Constraint (5) guarantees that assignment of at 

most one job to each position on each machine. 

Constraint (6) ensures that until one position on a 

machine is empty, jobs are not assigned to subsequent 

positions and jobs assigned to empty positions on each 

machines, respectively. Constraints (7) and (8) together 

ensure that only after starting the process by machine, 

no idle time could be inserted into the schedule, and no 

job preemption is allowed and should calculate the 

completion time of jobs. Constraint (9) is the definition 

of the tardiness of jobs. Constraint (10) is the definition 

of the earliness of jobs. Constraint (11) defines the 

maximum tardiness. Constraint (12) defines the 

maximum earliness. Constraint (13) defines the 

maximum completion time. Constraints (14) and (15) 

define the type of decision variable. 

 

 

3. SOLUTION ALGORITHM 
 

A solution representation in HMOTLBO and a 

chromosome representation in NSGA-II is an array 

consisting of 𝑁 + 𝑀 − 1 real values between (0, 1). 

Coding: An array consisting of 𝑁 + 𝑀 − 1real values 

between (0, 1) 

Decoding: Like a random key genetic algorithm 

(RKGA), values sorted in a descending order then 

according to the position of each value in the main 

representation, an integer between 1 to 𝑁 + 𝑀 − 1do it. 

These are integer numbers as the coding scheme for a 

multi-machines scheduling problem. The integer 

number representation all possible permutation of 𝑁 

jobs and 𝑀 − 1 machines. Numbers that are smaller 

than and equal 𝑁 represent jobs and numbers that are 

larger than 𝑁 represent machines. For example, number 

𝑁 + 1 is 𝑀𝐴𝐶𝐻𝐼𝑁𝐸1, 𝑁 + 2 is 𝑀𝐴𝐶𝐻𝐼𝑁𝐸2 and 

similarity 𝑁 + 𝑀 − 1 is 𝑀𝐴𝐶𝐻𝐼𝑁𝐸𝑀−1  and numbers 

prior to them are jobs allocated to them. Finally, for 

numbers Finally, numbers with smaller than and equal 

to N are assigned to 𝑀𝐴𝐶𝐻𝐼𝑁𝐸𝑀. Following is a simple 

example with nine jobs and three machines according 

Figure 1. 

 

3. 1. Initial Population         For two proposed meta-

heuristic algorithms, we produce solutions (learners)/ 

chromosomes to the number of the population size then 

compute objective functions according to Equations 

(11) to (13). For example, in the problem with nine jobs, 

three machines and population size 3, a sample of the 

population is shown in Table 1. 

 

 

1. Producing 11 (3+9-1) real random in (0,1) and put them into the boxes: 

1 2 3 4 5 6 7 8 9 10 11 

0.905 0.127 0.913 0.964 0.097 0.278 0.546 0.957 0.970 0.157 0.632 

2. Sorting real numbers in descending order 

9 4 8 3 1 11 7 6 10 2 5 

0.970 0.964 0.957 0.913 0.905 0.632 0.546 0.278 0.157 0.127 0.097 

3. Decoding procedure 

 𝑀𝐴𝐶𝐻𝐼𝑁𝐸1 7,6      

 𝑀𝐴𝐶𝐻𝐼𝑁𝐸2: 9,4,8,3,1    

 𝑀𝐴𝐶𝐻𝐼𝑁𝐸3: 2,5 

Figure 1. Solution representation, encoding and decoding procedures 

 



227                                   A. Sadati et al. / IJE TRANSACTIONS B: Applications  Vol. 30, No. 2, (February 2017)   224-233 
 

TABLE 1. Problem with 9 jobs, 3 machines and population size 3 

             𝑇𝑚𝑎𝑥 𝐸𝑚𝑎𝑥 𝐶𝑚𝑎𝑥 

 𝐿1 0.498 0.945 0.340 0.585 0.223 0.751 0.255 0.506 0.699 0.890 0.959 127 6 137 

Population= 𝐿2 0.547 0.138 0.149 0.257 0.840 0.254 0.814 0.243 0.929 0.350 0.196 36 11 46 

 

𝐿3 0.251 0.616 0.473 0.351 0.830 0.585 0.549 0.917 0.285 0.757 0.753 146 0 156 

 

 

3. 2. Teaching–learning Based Optimization     

Roa et al. [19] proposed a teaching-learning based 

optimization (TLBO) algorithm. This algorithm is based 

on learning a group of learners of a teacher in a class, 

and this group is considered as population. The teacher 

in each population is considered as the best learner. The 

learning process in this algorithm includes two stages, 

the first one is named teacher stage and the second the 

learner stage as explained hereunder: 

 

3. 2. 1. Teacher Stage     In this stage, the learners’ 

level of knowledge in iteration t(𝑥𝑖,𝑡)transfers by using 

𝐷𝑀𝑡, i.e., difference between the teacher 𝑥𝑇,𝑡 and mean 

result of learners 𝑀𝑡 . Updated learner (𝑥𝑖,𝑡
′ ) is 

considered as follows: 

𝑥𝑖,𝑡
′ = 𝑥𝑖,𝑡 + 𝐷𝑀𝑡 (16) 

where, 𝐷𝑀𝑡 = 𝑟𝑡(𝑥𝑇,𝑡 − 𝑇𝐹𝑀𝑡) (17) 

TF is the teaching factor [19] and 𝑟𝑡is the random 

number in the range [0, 1]. The detailed implementation 

for our problem is given as follows: 

 

3. 2. 1. 1. Select Teacher        In each iteration, the 

teacher is considered to be the best learner, so form the  

fronts and rank population using fast non-dominated 

sorting and compute the crowding distance [20]. 

Teacher selection based on select the solution with the 

lowest rank and in case of equality ranks, the solution 

with greater crowded distances is considered. The grade 

of the teacher is usually higher than the grade of the 

learner. Therefore, after selecting the best learner as the 

teacher by using hill-climbing search, the grade of the 

selected learner is increased and considered as teacher.  

For example, learners’ ranks of the above example 

are (1,1,1), Because of Equal ranks, we compute the 

crowding distances as (3, ∞, ∞). According to computed 

crowding distances, learner 2 or learner 3 is considered 

as teacher. We select learner 2 as a teacher, then using 

hill climbing search, the selected teacher is improved 

(Table 2). 

 

3. 2. 1. 2. Mean Result of Learners, 𝐌𝐭        For 

obtaining the mean result of learners, calculate the mean 

of population columns (Table 2). 

 

3. 2. 1. 3. 𝐃𝐌𝐭          The difference between the teacher 

and the mean result at iteration t is computed using 

Equation (17).  

For the above example, suppose that TF=1 and 𝑟𝑡 =  0.8 

(Table 2). 
 

TABLE 2. Teacher stage 

 

 
TABLE 3. Learner stage 

 

Teacher 0.547 0.138 0.149 0.257 0.840 0.254 0.814 0.243 0.929 0.350 0.196 

Mt 0.432 0.566 0.321 0.398 0.631 0.530 0.539 0.555 0.638 0.666 0.636 

DMt 0.092 -0.342 -0.138 -0.113 0.167 -0.221 0.220 -0.250 0.233 -0.253 -0.352 

x1,t
′  0.590 0.603 0.202 0.472 0.390 0.530 0.475 0.256 0.932 0.637 0.607 

𝑥1,𝑡
′  0.033 0.326 0.590 0.145 0.365 0.439 0.808 0.279 0.080 0.640 0.571 

Current 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 0.970 0.957 0.485 0.800 0.141 0.421 0.915 0.792 0.959 0.655 0.035 

Swap 0.970 0.421 0.485 0.792 0.141 0.957 0.915 0.800 0.959 0.655 0.035 

Current 0.970 0.957 0.485 0.800 0.141 0.421 0.915 0.792 0.959 0.655 0.035 

Inversion 0.970 0.957 0.915 0.421 0.141 0.800 0.485 0.792 0.959 0.655 0.035 

Current 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 0.970 0.957 0.485 0.800 0.141 0.421 0.915 0.792 0.959 0.655 0.035 

Insertion 0.970 0.957 0.959 0.485 0.800 0.141 0.421 0.915 0.792 0.655 0.035 

Current 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 0.970 0.957 0.485 0.800 0.141 0.421 0.915 0.792 0.959 0.655 0.035 

subtracting from 1 0.030 0.043 0.515 0.200 0.859 0.579 0.085 0.208 0.041 0.345 0.965 

Figure 2. Types of neighborhood structures in hill climbing 
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3. 2. 1. 4. Update the Learners            Each learner in 

population is updated by using Equation (16). If the 

updated number is negative, it is converted to positive, 

and if the obtained number is greater than 1, let 

(obtained number-1) instead of it. For the above 

example, for learner 1(𝑥1,𝑡), updated form is 𝑥1,𝑡
′  (Table 

2): 

 
3. 2. 1. 5. Acceptance Updated Learner       If𝑥𝑖,𝑡

′  

dominates𝑥𝑖,𝑡, then replaced𝑥𝑖,𝑡 by 𝑥𝑖,𝑡
′ . This work done 

with Definition 1. 

Definition 1. 𝑥𝑖  dominates  𝑥𝑗 if  𝑓(𝑥𝑖) ≤  𝑓(𝑥𝑗) for all 

objective functions and 𝑓(𝑥𝑖) <  𝑓(𝑥𝑗) for at least one 

of objective functions [21]. 

For the above example, objective functions 

𝑥1,𝑡 and 𝑥1,𝑡
′  are (127 6 137) and (163 3 169) 

respectively; therefore, 𝑥1,𝑡
′ dose not dominate 𝑥1,𝑡, 

and𝑥1,𝑡cannot be replaced by 𝑥1,𝑡
′  . 

 
3. 2. 2. Learner Stage       In this stage, the fronts are 

first formed and the population obtained from the 

teacher stage using fast non-dominated sorting is ranked 

as well, and the crowding distance is computed [20]. 

Then, the following steps in iteration t are carried out: 

If 𝑟𝑎𝑛𝑘(𝑥𝑖,𝑡) < 𝑟𝑎𝑛𝑘(𝑥𝑗,𝑡) (if  𝑟𝑎𝑛𝑘(𝑥𝑖,𝑡) = 𝑟𝑎𝑛𝑘(𝑥𝑗,𝑡), then 

if crowding  distance (𝑥𝑖,𝑡)> crowding distance(𝑥𝑗,𝑡)), then 

𝑥𝑖,𝑡
′ = 𝑥𝑖,𝑡 + 𝑟𝑡(𝑥𝑖,𝑡 − 𝑥𝑗,𝑡)     𝑟𝑡 ∈ (0,1)   (19) 

Step 1. For learner 𝑥𝑖,𝑡, randomly select another learner  

If 𝑟𝑎𝑛𝑘(𝑥𝑗,𝑡) < 𝑟𝑎𝑛𝑘(𝑥𝑖,𝑡) (if  𝑟𝑎𝑛𝑘(𝑥𝑗,𝑡) = 𝑟𝑎𝑛𝑘(𝑥𝑖,𝑡) then-

if crowding  distance  (𝑥𝑗,𝑡)> crowding distance(𝑥𝑖,𝑡)), then 

𝑥𝑖,𝑡
′ = 𝑥𝑖,𝑡 + 𝑟𝑡(𝑥𝑗,𝑡 − 𝑥𝑖,𝑡)    𝑟𝑡 ∈ (0,1)  (20) 

𝑥𝑗,𝑡 (𝑖 ≠ 𝑗). 

Step 2. Update learner 𝑥𝑖,𝑡 (𝑥𝑖,𝑡
′ ) by using Equations 

(19) or (20). 

Step 3. If updated number is negative converted to 

positive and if obtained number is greater than 1, let 

(obtained number-1) instead of it. 

Step 4. If 𝑥𝑖,𝑡
′  dominates  𝑥𝑖,𝑡 , then replace 𝑥𝑖,𝑡 by 𝑥𝑖,𝑡

′ . 

Step 5. To make sure learning is done at the end of 

learner stage, if learner 𝑥𝑖,𝑡 is not replaced by 𝑥𝑖,𝑡
′  using 

hill-climbing search, a better learner is replaced instead 

of  𝑥𝑖,𝑡. 

For the above example, suppose for learner 1 (𝑥1,𝑡), 

learner 3 (𝑥3,𝑡) is selected. According to Equation (20) 

and 𝑟𝑡 =0.4, learner 1 is updated as follows (Table 3): 

𝑥1,𝑡
′ = 𝑥1,𝑡 + 𝑟𝑡(𝑥3,𝑡 − 𝑥1,𝑡) (21) 

Objective functions 𝑥1,𝑡 and 𝑥1,𝑡
′  are (127 6 137) and 

(129 2 139), respectively. Therefore, 𝑥1,𝑡
′  dose not 

dominate 𝑥1,𝑡, and𝑥1,𝑡  cannot be replaced by 𝑥1,𝑡
′  and 

with hill climbing search 𝑥1,𝑡 is improved and inserted 

to replace it. Teacher and learner stages are repeated 

until the stopping criteria is met.  

 

 
Figure 3. Pseudo code of hill climbing 

 

 

𝑥1,𝑡
′ = 𝑥1,𝑡 + 𝐷𝑀𝑡 (18) 

Parent1  0.970 0.957 0.485 0.800 0.141 0.421 0.915 0.792 0.959 0.655 0.035 

Parent2  0.814 0.905 0.127 0.632 0.097 0.546 0.964 0.913 0.957 0.157 0.278 

The coin results Head Head Tail Tail Head Tail Head Head Tail Head Tail 

Offspring 0.970 0.957 0.127 0.632 0.141 0.546 0.915 0.792 0.957 0.655 0.278 

Figure 4. Uniform crossover operator 

 𝑃𝑎𝑟𝑒𝑛𝑡 0.970 0.957 0.485 0.800 0.141 0.421 0.915 0.792 0.959 0.655 0.035 

Offspring 0.970 0.421 0.485 0.800 0.141 0.957 0.915 0.792 0.959 0.655 0.035 

Figure 5. Swapping mutation operator 

     𝑥2 ← 𝐼𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 

     𝑥3 ← 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 

     𝑥4 ← 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 1  

        𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑥′ 

Consider current solution 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 
While (Termination criteria is not met) do 

    𝑥1 ← 𝑆𝑤𝑎𝑝 

     𝑋 =[𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑥1, 𝑥2 , 𝑥3 , 𝑥4]  
      Calculate objective functions 𝑋 (Equations (11), (12), (13)) 

       Fast non-dominated sort 𝑋 [20, 184] 

        𝑥′ ←Select solution with lowest rank in 𝑋 

End while 
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3. 3. Hill-climbing Search       In this paper, we use 

four types of neighborhood structures that contain swap, 

inversion, insertion and subtracting from 1 [22] (Figure 

2). A pseudo code of the proposed hill-climbing method 

is shown in Figure 3. 
 

3. 4. NSGA-II       The NSGA-II proposed in this paper 

is described as follows: 

Parameters: 
Pop:     Population 

Npop:    Population size 

Pc:         Percentage of the offspring population that 

completed with crossover operation 

Pm:     Percentage of the offspring population that 

completed with mutation operation 

Npc: Numbers of offspring that created by crossover 

operation   

Npm: Numbers of offspring that created by mutation 

operation  

Tournament size:   Number of individuals that are 

selected for tournament 

Max-It: Maximum number of times to repeat the 

algorithm (termination condition) 

Steps: 
1. Create an initial population with Npop numbers by 

using Section 4 and calculate the value of objective 

functions𝐶𝑚𝑎𝑥, 𝑇𝑚𝑎𝑥and 𝐸𝑚𝑎𝑥(Equations (11) to 

(13)). 

2. Form the fronts and rank population using fast non 

dominated sorting and compute crowding distance 

[20]. 

3. Create population of offspring with Npop numbers 

that included Npc (Npop×Pc) individuals that are 

obtained from crossover operator (Figure 4), Npm 

(Npop×Pc) obtained from mutation operator (Figure 

5) and reset individuals are selected from the parent 

population (all of selections for crossover operator, 

mutation operator and reset individual doing in the 

tournament size, using the non-dominated sorting 

and crowding distance individuals in the parent 

population). 

4. Combine the parent population and offspring 

population and create the population with 2×Npop, 

then compute the non-dominated sorting and 

crowding distance of individual of the current 

population and for creating a new population with 

Npop individual use the method offered by Deb et 

al. [20]. 

5. Repeat Steps 1 to 4 until Max-It is occurred. 

 

3. 5. ε-constraint Method        In this method, one of 

the objective functions is placed as objective function 

and optimized. The other objective functions are 

transferred into constraints as follows:  

Min   𝑓𝑗(𝑥)  (22) 

s.t.  

𝑓ℎ(𝑥) ≤ 𝜀ℎ;      ℎ = 1, … , 𝑚, ℎ ≠ 𝑗,

𝑓ℎ
𝑚𝑖𝑛 ≤ 𝜀ℎ ≤ 𝑓ℎ

𝑚𝑎𝑥 

(23) 

  𝑥 ∈ 𝑆  (24) 

where 𝑗 ∈ {1, … , 𝑚} and 𝜀ℎ is upper bounds for the 

objective h (ℎ ≠ 𝑗). VariousPareto solutions can be 

found by changing the value of 𝜀ℎ. We can let 𝑓ℎ
𝑚𝑖𝑛 =

𝑓ℎ
∗ and 𝑓ℎ

𝑚𝑎𝑥   = 𝑓ℎ
𝑛𝑎𝑑𝑖𝑟  by using payoff matrix [21]. We 

consider three sample problems in small sizes with 8, 6 

and 4 jobs and 2 machines. These problems are solved 

with Lingo 8.0 and their results are shown in Table 10, 

in which the results of two proposed algorithms for the 

same problems are presented as well. 

 

 

4. COMPUTATIONAL RESULTS 
 

In order to test the effectiveness of the NSGA-II and 

HMOTLBO, we solve several test problems, (e.g., 

Naderi-Beni et al. [23]), and then compare their 

performances with a number of different metrics. The 

proposed meta-heuristics are coded in MATLAB 

R2016a software. 

 

4. 1. Test Problem Instances         Computational 

results given in [23] are conducted in medium and 

large-sized problems according to Tables 4 and 5. The 

processing times (𝑝𝑖𝑚) are integers and are generated 

from a uniform distribution of U(1, 20), the due dates 

(𝑑𝑖) are uniformly distributed in the interval [𝑃 (1 − 𝑡 −

𝑟

2
) , 𝑃 (1 − 𝑡 +

𝑟

2
)], where  𝑃 =

∑ ∑ 𝑝𝑖𝑗
𝑀
𝑗=1

𝑁
𝑖=1

2𝑀
 , t =0.8 , r 

=0.2 and the setup times are integers and are generated 

from a uniform distribution of U(1, 20). 

 

4. 2. Evolution Metric         Quality of the non-

dominated solutions obtained from the proposed meta-

heuristic algorithms is used to compare these 

algorithms. In this paper, three metrics (i.e., N-metric, 

R-metric and S-metric) are used [24]. 

 

4. 3. Parameter Tuning       The quality of the 

solutions obtained from the proposed algorithms is 

affected by the values of their parameters. To set the 

parameters of proposed algorithms in this paper, the 

response surface methodology (RSM) [25] using Design 

Expert software is applied. The number of Pareto 

solutions created by proposed NSGA-II and 

HMOTLBO algorithms are used as responses and 

considered in order to ease comparisons. The levels of 

NSGA-II algorithm parameters are shown in Table 6. 

For the given parameters, RMS designs 30 experiments 

that contain 6 central and 24 axial points. According to 
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our results, best combinations of parameters for medium 

and large problems are showed in Table 7. 

For tuning the parameters of HMOTLBO, the levels 

of these parameters are shown in Table 8. For the given  

 

 
TABLE 4. Medium-sized problems. 

M N  M N  M N  M N 

3 10  4 15  5 20  6 25 

3 20  4 30  5 40  6 50 

3 30  4 45  5 60  6 75 

3 40  4 60  5 80  6 90 

 

 
TABLE 5. Large-sized problems. 

M N  M N  M N  M N 

7 30  8 35  9 20  10 45 

7 60  8 70  9 40  10 90 

7 90  8 105  9 60  10 135 

7 120  8 140  9 80  10 180 

 

 
TABLE 6. The levels of NSGA-II parameters 

 Levels 

Parameters Lower  Upper 

MaxIt 10  90 

Npop 50  210 

Pc 0.1  0.9 

Pm 0.02  0.1 

 

 
TABLE 7. Best combinations of NSGA-II parameters 

 Parameters 

  Max-It Npop Pc Pm 

Value 
M 60 150 0.6 0.07 

L 50 210 0.5 0.06 

parameters, the RMS designs 20 experiments that 

contain six central and 14 axial points. According to the 

results, the best combinations of parameters for medium 

and large-sized problems are shown in Table 9. 
 

4. 4. Evaluating Results      Each proposed algorithm 

is run 3 times and each time includes 10 runs in 32 test 

problems including 16 medium problems and 16 large 

problems (Tables 4 and 5).The average results of 3 

times are shown in Tables 11 and 12. The results of 

small problems are given in Table 10 that shows for 

small problems (N=4, 6, 8 and M=2), HMOTLBO 

and NSGA-II produce Pareto-optimal solutions similar 

to the ε-constraint method, although CPUT is reduced 

significantly. Tables 11 and 12 show that the 

HMOTLBO is better than the NSGA-II in terms of 

different metrics for medium and large-sized problems. 

The amount of changing the solving times in NSGA-II 

is less than HMOTLBO. Solving times in NASGA-II 

versus HMOTLBO has substantially reduced in larger 

size problems. Nvalues in both algorithms are relatively 

close; however, Rvalues are different. The results show 

that NSGA-II produces lots of Pareto solutions, but 

dominated by a few Pareto solutions produced by 

HMOTLBO. 

 

 
TABLE 8. Levels of HMOTLBO parameters 

 Levels 

Parameters Lower  Upper 

Max-It 5  25 

Npop 10  30 

TF 1  2 

 

 
TABLE 9. Best combinations of HMOTLBO parameters 

Parameters 

 MaxIt Npop TF 

M 15 30 1 

L 15 25 1.25 

  
 

 

 

TABLE 10. Results for small-sized problem 

N 

ε-Constraint NSGA-II HMOTLBO 

𝐶𝑚𝑎𝑥 𝑇𝑚𝑎𝑥 𝐸𝑚𝑎𝑥 CPUT 𝐶𝑚𝑎𝑥 𝑇𝑚𝑎𝑥 𝐸𝑚𝑎𝑥 CPUT 𝐶𝑚𝑎𝑥 𝑇𝑚𝑎𝑥 𝐸𝑚𝑎𝑥 CPUT 

4 
26 15 2 120 26 15 2 8.46 26 15 2 7.62 

29 19 0  29 19 0  29 19 0  

6 
39 24 11 1234 39 24 11 8.82 39 24 11 8.74 

41 27 0  41 27 0  41 27 0  

8 40 26 0 5346 40 26 0 9.21 40 26 0 8.98 

 



231                                   A. Sadati et al. / IJE TRANSACTIONS B: Applications  Vol. 30, No. 2, (February 2017)   224-233 
 

TABLE 11. Results of NSGA-II and HMOTLBO algorithms for medium-sized problems 

M N 
CPUT S N R 

HMOTLBO NSGA-II HMOTLBO NSGA-II HMOTLBO NSGA-II MOTLBOH  NSGA-II 

3 10 15.17 23.57 3.11 1.77 3 3 0.77 0.83 

3 20 16.64 24.24 4.12 4.97 4.67 3.33 0.96 0.6 

3 30 19.36 24.81 12.45 77.85 6 6.67 0.84 0.57 

3 40 22.18 25.40 156.91 18.75 5.33 9.67 0.69 0.76 

4 15 16.52 24.32 2.57 2.48 4 3.33 1 0.4 

4 30 20.33 25.54 25.88 94.49 7.33 4.67 1 0.29 

4 45 24.15 25.87 18.96 45.40 6.67 5.67 0.87 0.49 

4 60 27.09 26.79 22 142.81 6.67 8 0.81 0.59 

5 20 18.90 24.71 14.70 7.33 7.67 1.67 0.95 0.16 

5 40 23.38 26.48 4.07 127.91 6.33 3.67 0.97 0.31 

5 60 29.64 27.40 18.72 29.22 9.33 4.33 0.85 0.38 

5 80 35.95 29.46 38.25 7.15 6 9.67 0.96 0.53 

6 25 21.56 26.64 7.55 25.79 8 5.33 1 0.34 

6 50 26.12 26.78 30.86 23.40 9 6.67 0.86 0.44 

6 75 34.32 28.55 111.63 59.39 8.33 6 0.81 0.47 

6 90 42.14 30.72 52.92 32.51 4.67 10.33 0.68 0.68 

Average 24.59 26.33 32.79 43.83 6.44 5.75 0.88 0.49 

 
 

TABLE 12. Results of NSGAII and HMOTLBO algorithms for large-sized problems 

M N 
CPUT S N R 

HMOTLBO NSGA-II HMOTLBO NSGA-II HMOTLBO NSGA-II HMOTLBO NSGA-II 

7 30 19.31 40.45 8.87 24.66 6.67 5.33 0.96 0.33 

7 60 26.76 44.23 8.4 58.55 7.33 4.67 0.74 0.43 

7 90 35.22 51.23 17.77 80.12 6.67 4.33 1 0.32 

7 120 44.43 53.26 101.71 139.49 8.67 8.33 0.78 0.59 

8 35 20.06 44.34 6.89 22.41 7.33 4.33 1 0.29 

8 70 30.04 47.67 8.86 15.23 5.67 4 0.97 0.19 

8 105 39.41 52.36 42.61 38.26 8.33 4.33 0.95 0.35 

8 140 53.4 56.12 17.45 11.32 4.33 8.67 0.95 0.33 

9 40 21.55 45.33 8.55 69.17 7.33 4 0.94 0.29 

9 80 33.01 49.17 15.28 52.73 8.67 5.33 0.94 0.28 

9 120 46.12 53.38 51.38 63.91 6 9.67 0.71 0.49 

9 160 61.12 58.55 75.59 15.96 9.67 8 0.89 0.29 

10 45 24.56 47.47 24.66 13.11 8.33 5.33 0.96 0.24 

10 90 35.92 50.26 12.89 19.91 7 5.67 0.89 0.38 

10 135 53.35 56.65 21.75 26.77 5.67 4 0.84 0.15 

10 180 70.56 61.81 54.77 11.39 3.67 2.33 0.68 0.13 

Average 38.43 50.77 29.84 41.44 6.96 5.52 0.89 0.32 
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5. CONCLUSION AND FUTURE RESEARCH  
 

This paper has studied a multi-objective unrelated 

parallel machines scheduling problem in order to 

minimize the makespan, maximum tardiness and 

maximum earliness of jobs, in which sequence-

dependent setup times are machine-dependent 

processing times have been considered. Additionally, a 

multi- objective mixed-integer linear programming 

(MILP) model has been formulated, and then solved by 

the ε-constraint method for small-sized problems. The 

results have been compared with the results obtained by 

the proposed meta-heuristic algorithms. Furthermore, an 

effective hybrid multi-objective teaching–learning based 

optimization (HMOTLBO) has been proposed. Its 

performance has been compared with a non-dominated 

sorting genetic algorithm (NSGA-II) on a number of test 

problems generated at random. The related results have 

shown that the proposed HMOTLBO is relatively better 

than the NSGA-II. 

In this study, we have considered real conditions in 

an industrial environment. Of course, there are other 

conditions that help us to improve our research, such as 

taking into account pre-emption, precedence constrains 

and machine failures. Also, one can use other meta-

heuristic algorithms and compare the results with our 

results.  
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 هچكيد
 

 
 کردن نهیکم منظور به کسانیریغ یمواز یهانیماش یوابسته روریغ یکارها از مجموعه کی یبندزمان مسأله مقاله، نیدر ا

 یدارا کارها. ردیگیم قرار مطالعه مورد زودکرد نهیشیب و رکردید نهیشیب(، یبندزمان برنامه)طول  کارها لیتکم زمان نهیشیب

 مدل کیباشند. یم نیپردازش وابسته به ماش یهاو زمان یوابسته به توال یاندازراه یهازمان کسان،یریغ لیتحو یموعدها

-تیمحدواندازه کوچک با روش که در مسائل با  ردیگیم قرار توجه مورد چندهدفه مختلط حیصح عدد یخط یزیربرنامه

 کیشوند. یم سهیمقا شده انیب یفراابتکار یهاتمیالگور از حاصل جیبا نتا جینتا ،سپس .است شدهمورد حل  لونیاپس

 تمیالگور نیا ییو کارا شودیم شنهادیپ(HMOTLBO)  یریادگی-بر اساس آموزش یقیچندهدفه تلف یسازنهیبه تمیالگور

 دیتول یاز مسائل نمونه که به صورت تصادف یتعداد یرو (NSGA-II)رمغلوبیغ شده مرتب تکیژن تمیالگور با یشنهادیپ

را  یبهتر جینتا NSGA-IIنسبت به  HMOTLBO یشنهادیپ تمیدهد که الگوریم نشان جیشوند. نتایم سهیاند، مقاشده

 دهد.یارائه م
doi: 10.5829/idosi.ije.2017.30.02b.09 

 

 

 


