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This paper considers a scheduling problem of a set of independent jobs on unrelated parallel machines
(UPMs) that minimizes the maximum completion time (i.e., makespan or C,,,,), maximum earliness
(Emnax), @and maximum tardiness (T;,q,) Simultaneously. Jobs have non-identical due dates, sequence-
dependent setup times and machine-dependent processing times. A multi-objective mixed-integer
linear programming (MILP) is considered and then solved with the e-constraint method in small-sized
problems. The results are compared with those obtained by meta-heuristic algorithms. Furthermore, an
effective hybrid multi-objective teaching-learning based optimization (HMOTLBO) algorithm is
proposed, whose performance is compared with a non-dominated sorting genetic algorithm (NSGA-I1)
for test problems generated at random. The results show that the proposed HMOTLBO outperforms the
NSGA-II in terms of different metrics.
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1. INTRODUCTION

This paper considers a parallel machines scheduling
problem in which different machines perform the same
function with different processing velocity, namely
unrelated parallel machines (UPMSs). In this study, each
job has machine-dependent processing time, sequence-
dependent setup time and due date.

In order to improve the performance of the
production systems, we consider both manufacturer
concerns, such as waiting time and WIP inventory and
customer concerns, such as assuring on time receipt. For
this purposes, a multi-objective problem to minimize
makespan (i.e., Cpay), maximum tardiness (i.e., Tqx)
and maximum earliness (i.e., E,g) IS considered
simultaneously. To make the problem applicable in real
environment, it is sequence-dependent setup time [1].
Tavakkoli-Moghaddam et al. [2] presented a
mathematical model for the UPMs scheduling problem,
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which minimizes the total earliness/tardiness penalties.
They proposed a GA algorithm. Tavakkoli-Moghaddam
et al. [3] presented the UPMs scheduling problem to
minimize the total completion time and number of tardy
jobs. They proposed a two-level mixed-integer
programming (MIP) model for their problem.
Tavakkoli-Moghaddam and Mehdizade [2] showed an
integer linear programming (ILP) model for an identical
PMs scheduling problem with family setups in order to
minimize the total weighted flow time. They proposed a
genetic algorithm (GA) to obtain good and near-optimal
solutions.  Tavakkoli-Moghaddam and  Aramon-
Bajestani [4] proposed lower and upper bounds for a
UPMs scheduling problem to minimize the total
weighted tardiness.

Torabi et al. [5] proposed a novel multi-objective
model for a UPMs problem under uncertain processing
times and due dates and proposed multi-objective
particle swarm optimization (MOPSO) in order to find a
Pareto frontier, in such a way that the total weighted
flow time, total machine load variation and total
weighted tardiness should be minimized. Lin and Ying
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[6] considered a UPMs scheduling problem with job
sequence-dependent setup times and proposed a hybrid
artificial bee colony algorithm in order to minimize the
makespan. Rodriguez et al. [7] considered the UPMs
scheduling problem that minimizes the total weighted
completion time and proposed an iterated greedy meta-
heuristic algorithm using destruction and construction
phases in order to obtain a number of solutions.
Bozorgirad and Logendran [8] addressed a UPMs
scheduling problem with sequence-dependent group
setup times that minimizes the total weighted
completion time and total weighted tardiness and
proposed tabu search to solve this problem. Lin et al. [9]
considered a UPMs scheduling problem that minimizes
the makespan, total weighted completion time and total
weighted tardiness, and compared the performance of
various heuristics. Nogueira et al. [10] considered a
UPMs scheduling problem with machine and job
sequence-dependent setup times and idle times that
minimizes the total earliness/tardiness penalties. They
proposed three different heuristics contained simple
GRASP, path relinking and iterated local search.
Gharehgozli et al. [11] showed a new fuzzy mixed-
integer goal programming (MIGP) model for a PMs
scheduling problem with sequence-dependent setup
times and release dates to minimize the total weighted
flow time and the total weighted tardiness. Kayvanfar et
al. [12] considered a PMs system with controllable
processing times of jobs to minimize the makespan and
total weighted tardiness/earliness penalties.
Tavakkoli-Moghaddam et al. [3] and [13] presented
a novel, two-level MIP model for a UPMs scheduling
problem with sequence-dependent setup times, non-
identical due dates, ready times and precedence
relations to minimize the number of tardy jobs and the
total completion time.Gao [14] considered a multi-
objective parallel machines scheduling problem to
minimize the maximum completion time (i.e.,
makespan) and total earliness/tardiness penalties and
proposed an artificial immune algorithm for solving this
problem. Chyuand Shang [15] considered a bi-objective
UPMs scheduling problem with job-sequence setup
times and machine-dependent setup times to minimize
the total weighted flow time and total weighted
tardiness. They proposed a Pareto evolutionary
algorithm to solve their problem. Lin and Lin [16]
considered a UPMs scheduling problem to minimize the
makespan and total weighted tardiness, and presented
heuristic and tabu search algorithms to solve their
problem. Salehi Mir and Rezaeian [17] considered a
UPMs scheduling problem with sequence-dependent
setup time, release dates, deteriorating jobs and learning
effects to minimize the total machine load. They
proposed the hybrid PSO-GA. Joo and Kim [18]
presented a UPMs scheduling problem with sequence
and machine-dependent setup times to minimize the

total completion time. Additionally, they proposed a
hybrid genetic algorithm with three dispatching rules.

A great number of meta-heuristic algorithms (i.e.,
ABC, PSO and DE) have been proposed in the last few
decades. However, a teaching-learning based
optimization (TLBO) algorithm is one of them proposed
by Roa et al. [19]. In this paper, we hybridized this
algorithm with hill climbing search for a new multi-
objective UPMs scheduling problem. Furthermore, the
g-constraint method is used to solve this problem in
small-sized problems and the results obtained by the
hybrid multi-objective TLBO algorithm are compared
with the results obtained by the non-dominated sorting
genetic algorithm (NSGA-II).

2. PROBLEM FORMULATION

This paper presents the scheduling problem of a set of N
independent jobs on M unrelated parallel machines to
minimizethe makespan, maximum tardiness and
maximum earliness simultaneously. It is assumed that
each job can be processed by only one machine and
each machine can process at most one job at a time. No
job preemptions are allowed and each job becomes
available at time zero. Jobs have sequence-dependent
setup times with the same priority. The mentioned
model is modified from the models presented in [3] and
[13] as follow:
Notations:
N Number of jobs
M Number of machines
i Jobindices(i =1,...,N)
m Machine indices (m = 1, ..., M)
K, Number of positions on machine m, K, < N
k  Position indices (k = 1, ..., K};)
d; Due date of jobi
pim Processing time of job i on machinem
Sijm Setup time to switch from job i to job j on
machine m
Xiem EQuals 1, if job i is scheduled in the kth
position on machine m; and 0, otherwise
¢;  Completion time job i
t;  Tardiness jobi,t; = max(0,¢; — d;)
e; Earliness jobi,e; = max(0,d; — ¢;)
Tmax ~ Maximum tardiness
Emax  Maximum earliness
Cmax  Makespan
According to the above-mentioned assumptions and
notations; the problem can be modelled by:

MinZ; = Tyax 1)
Min Zz = E‘max (2)
MinZ, = Cpax 3)
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S.t.
m=1 k=1xlkm -4 l
I Xgm <1, Vmk ()
YN Xiem — E?’ﬂ Xjk—1m < 0; Vk =2,m (6)
Ci Z Pim * Xpums  YM,i Q)
Km
i = XM Y YNy Xjkmam X Xigm X (¢ + Sjim)

=i ®)

M K; . i
+ Zm:l ZkT:nl Pim X Xikm ; Vi

t;=>c;—d; Vi 9
e =>d;—c;; Vi (10)
Tonax = i Vi (11)
Emax =€ Vi (12)
Cnax =€ ; Vi (13)
Xgm =0 or1l;  Vmk,i (14)
t;=0,e;=20,c; 20; Vi (15)

This model minimizes the maximum tardiness,
maximum earliness and makespan stated by objective
functions (1) to (3), respectively. Constraint (4) states
that each job is assigned to exactly one position on one
machine. Constraint (5) guarantees that assignment of at
most one job to each position on each machine.
Constraint (6) ensures that until one position on a
machine is empty, jobs are not assigned to subsequent
positions and jobs assigned to empty positions on each
machines, respectively. Constraints (7) and (8) together
ensure that only after starting the process by machine,
no idle time could be inserted into the schedule, and no
job preemption is allowed and should calculate the
completion time of jobs. Constraint (9) is the definition

of the tardiness of jobs. Constraint (10) is the definition
of the earliness of jobs. Constraint (11) defines the
maximum tardiness. Constraint (12) defines the
maximum earliness. Constraint (13) defines the
maximum completion time. Constraints (14) and (15)
define the type of decision variable.

3. SOLUTION ALGORITHM

A solution representation in HMOTLBO and a
chromosome representation in NSGA-II is an array
consisting of N + M — 1 real values between (0, 1).
Coding: An array consisting of N + M — 1real values
between (0, 1)

Decoding: Like a random key genetic algorithm
(RKGA), values sorted in a descending order then
according to the position of each value in the main
representation, an integer between 1 to N + M — 1do it.
These are integer numbers as the coding scheme for a
multi-machines scheduling problem. The integer
number representation all possible permutation of N
jobs and M — 1 machines. Numbers that are smaller
than and equal N represent jobs and numbers that are
larger than N represent machines. For example, number
N+1 is MACHINE;, N+2 is MACHINE, and
similarity N+ M — 1 is MACHINE,,_, and numbers
prior to them are jobs allocated to them. Finally, for
numbers Finally, numbers with smaller than and equal
to N are assigned to MACHINE,,. Following is a simple
example with nine jobs and three machines according
Figure 1.

3. 1. Initial Population For two proposed meta-
heuristic algorithms, we produce solutions (learners)/
chromosomes to the number of the population size then
compute objective functions according to Equations
(11) to (13). For example, in the problem with nine jobs,
three machines and population size 3, a sample of the
population is shown in Table 1.

1. Producing 11 (3+9-1) real random in (0,1) and put them into the boxes:

1 2 3 4 5 7 8 9 10 11
0.905 0.127 0.913 0.964 0.097 0.546 0.957 0.970 0.157 0.632
2. Sorting real numbers in descending order
9 4 8 3 1 7 6 10 2 5
0.970 0.964 0.957 0.913 0.905 0.546 0.278 0.157 0.127 0.097
3. Decoding procedure

MACHINE, 7,6
MACHINE,: 94,8,3,1
MACHINE;: 25

Figure 1. Solution representation, encoding and decoding procedures
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TABLE 1. Problem with 9 jobs, 3 machines and population size 3
Tnax  Emax  Cmax
L, 0498 0945 0340 0585 0.223 0.751 0.255 0.506 0.699 0.890 0.959 127 6 137
Population= L, 0547 0138 0.149 0.257 0.840 0.254 0.814 0.243 0.929 0.350 0.196 36 11 46
L, 0251 0616 0473 0351 0830 058 0549 0917 0.285 0.757 0.753 146 0 156

3. 2. Teaching-learning Based Optimization
Roa et al. [19] proposed a teaching-learning based
optimization (TLBO) algorithm. This algorithm is based
on learning a group of learners of a teacher in a class,
and this group is considered as population. The teacher
in each population is considered as the best learner. The
learning process in this algorithm includes two stages,
the first one is named teacher stage and the second the
learner stage as explained hereunder:

3. 2. 1. Teacher Stage In this stage, the learners’
level of knowledge in iteration t(x; . )transfers by using
DM, i.e., difference between the teacher xr. and mean
result of learners M,. Updated learner (xl-',t) is
considered as follows:

xlt =x;¢ + DM, (16)

where, DM, = r(x7 — TeM;) (17)

Tr is the teaching factor [19] and r:is the random
number in the range [0, 1]. The detailed implementation
for our problem is given as follows:

3. 2. 1. 1. Select Teacher In each iteration, the
teacher is considered to be the best learner, so form the

fronts and rank population using fast non-dominated
sorting and compute the crowding distance [20].
Teacher selection based on select the solution with the
lowest rank and in case of equality ranks, the solution
with greater crowded distances is considered. The grade
of the teacher is usually higher than the grade of the
learner. Therefore, after selecting the best learner as the
teacher by using hill-climbing search, the grade of the
selected learner is increased and considered as teacher.

For example, learners’ ranks of the above example
are (1,1,1), Because of Equal ranks, we compute the
crowding distances as (3, oo, o). According to computed
crowding distances, learner 2 or learner 3 is considered
as teacher. We select learner 2 as a teacher, then using
hill climbing search, the selected teacher is improved
(Table 2).

3. 2. 1. 2. Mean Result of Learners, M, For
obtaining the mean result of learners, calculate the mean
of population columns (Table 2).

3.2.1.3. DM, The difference between the teacher
and the mean result at iteration t is computed using
Equation (17).

For the above example, suppose that TF=1 and r, = 0.8
(Table 2).

TABLE 2. Teacher stage

Teacher 0.547 0.138 0.149 0.257 0.840 0.254 0.814 0.243 0.929 0.350 0.196
M, 0.432 0.566 0.321 0.398 0.631 0.530 0.539 0.555 0.638 0.666 0.636
DM, 0.092 -0.342 -0.138 -0.113 0.167 -0.221 0.220 -0.250 0.233 -0.253 -0.352
x'l,t 0.590 0.603 0.202 0.472 0.390 0.530 0.475 0.256 0.932 0.637 0.607
TABLE 3. Learner stage

xl,’t 0.033 0.326 0.590 0.145 0.365 0.439 0.808 0.279 0.080 0.640 0.571
Current solution 0.970 0.957 0.485 0.800 0141 0421 0915 0.792 0.959 0.655 0.035
Swap 0.970 0.421 0.485 0.792 0.141 0.957 0.915 0.800 0.959 0.655 0.035
Current 0.970 0.957 0.485 0.800 0141 0.421 0.915 0.792 0.959 0.655 0.035
Inversion 0.970 0.957 0.915 0.421 0.141 0.800 0.485 0.792 0.959 0.655 0.035
Current solution 0.970 0.957 o 0485 0.800 0.141 0.421 0.915 0.792 0.959 0.655 0.035
Insertion 0.970 0.957 0.959 0.485 0.800 0141 0421 0915 0.792 0.655 0.035
Current solution 0.970 0.957 0.485 0.800 0.141 0.421 0.915 0.792 0.959 0.655 0.035
subtracting from 1 0.030 0.043 0515 0.200 0.859 0.579 0.085 0.208 0.041 0.345 0.965

Figure 2. Types of neighborhood structures in hill climbing
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3. 2. 1. 4. Update the Learners Each learner in
population is updated by using Equation (16). If the
updated number is negative, it is converted to positive,
and if the obtained number is greater than 1, let
(obtained number-1) instead of it. For the above
example, for learner 1(x; ,), updated form is x; , (Table
2):

xlryt = xl't + DMt (18)

3. 2. 1. 5. Acceptance Updated Learner Ifxi"t
dominatesx; ., then replacedx; . by xi"t. This work done
with Definition 1.

Definition 1. x; dominates x; if f(x;) < f(x;) forall
objective functions and f(x;) < f(x;) for at least one
of objective functions [21].

For the above example, objective functions
x;. and x;.are (127 6 137) and (163 3 169)
respectively; therefore, x; ,dose not dominate x;.,
andx; ,cannot be replaced by x; ; .

3. 2. 2. Learner Stage In this stage, the fronts are
first formed and the population obtained from the
teacher stage using fast non-dominated sorting is ranked
as well, and the crowding distance is computed [20].
Then, the following steps in iteration t are carried out:

If rank(x; ;) < rank(x;,) (if rank(x,-'t) = rank(x;,), then
if crowding distance (x;.)> crowding distance(x;;)), then

th =xp¢ +1e(xe — x5¢) 7: €(0,1) (19)

228

Step 1. For learner x; ., randomly select another learner

If rank(x;.) < rank(x;.) (if rank(xj‘t) = rank(x;.) then-
if crowding distance (x;.)> crowding distance(x;)), then

xi’,t =x¢ +1:(xje — X)) 12 €(0,1) (20)
xj,t (l * ])
Step 2. Update learner x;, (xi"t) by using Equations
(19) or (20).

Step 3. If updated number is negative converted to
positive and if obtained number is greater than 1, let
(obtained number-1) instead of it.
Step 4. If x;, dominates x; . , then replace x; ; by x; .
Step 5. To make sure learning is done at the end of
learner stage, if learner x; . is not replaced by xi"t using
hill-climbing search, a better learner is replaced instead
of x;..

For the above example, suppose for learner 1 (x;.),
learner 3 (x3.) is selected. According to Equation (20)
and r; =0.4, learner 1 is updated as follows (Table 3):

X1p = X1 +1e(Xze — X1t) (21)

Objective functionsx;, and x,,are (127 6 137) and
(129 2 139), respectively. Therefore, x, . dose not
dominate x; ., andx, , cannot be replaced by x;, and
with hill climbing search x; . is improved and inserted
to replace it. Teacher and learner stages are repeated
until the stopping criteria is met.

Consider current solution X,yent
While (Termination criteria is not met) do
x, < Swap
x, < Inversion
x3 < Insertion
X, « subtracting from 1
X :[xcurrentﬂ X1, X2 ,X3 ’ x4]

Fast non-dominated sort X [20, 184]
x" «Select solution with lowest rank in X

’
xcurrent —X

Calculate objective functions X (Equations (11), (12), (13))

End while
Figure 3. Pseudo code of hill climbing
Parent, 0.970 0.957 0.485 0.800 0.141 0.421 0.915 0.792 0.959 0.655 0.035
Parent, 0.814 0.905 0.127 0.632 0.097 0.546 0.964 0.913 0.957 0.157 0.278
The coin results Head Head Tail Tail Head Tail Head Head Tail Head Tail
Offspring 0.970 0.957 0.127 0.632 0.141 0.546 0.915 0.792 0.957 0.655 0.278
Figure 4. Uniform crossover operator
Parent 0.970 0.957 0.485 0.800 0.141 0.421 0.915 0.792 0.959 0.655 0.035
Offspring 0.970 0.421 0.485 0.800 0.141 0.957 0.915 0.792 0.959 0.655 0.035

Figure 5. Swapping mutation operator
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3. 3. Hill-climbing Search In this paper, we use
four types of neighborhood structures that contain swap,
inversion, insertion and subtracting from 1 [22] (Figure
2). A pseudo code of the proposed hill-climbing method
is shown in Figure 3.

3. 4. NSGA-II The NSGA-II proposed in this paper
is described as follows:
Parameters:

Pop:  Population
Npop: Population size

Pc: Percentage of the offspring population that
completed with crossover operation
Pm: Percentage of the offspring population that

completed with mutation operation

Npc:  Numbers of offspring that created by crossover

operation

Npm:  Numbers of offspring that created by mutation

operation

Tournament size: Number of individuals that are

selected for tournament

Max-It: Maximum number of times to repeat the

algorithm (termination condition)

Steps:

1. Create an initial population with Npop numbers by
using Section 4 and calculate the value of objective
functionsC,ax, Tnaxand  Eq.(Equations (11) to
(13)).

2. Form the fronts and rank population using fast non
dominated sorting and compute crowding distance
[20].

3. Create population of offspring with Npop numbers
that included Npc (NpopxPc) individuals that are
obtained from crossover operator (Figure 4), Npm
(NpopxPc) obtained from mutation operator (Figure
5) and reset individuals are selected from the parent
population (all of selections for crossover operator,
mutation operator and reset individual doing in the
tournament size, using the non-dominated sorting
and crowding distance individuals in the parent
population).

4. Combine the parent population and offspring
population and create the population with 2xNpop,
then compute the non-dominated sorting and
crowding distance of individual of the current
population and for creating a new population with
Npop individual use the method offered by Deb et
al. [20].

5. Repeat Steps 1 to 4 until Max-It is occurred.

3. 5. e-constraint Method In this method, one of
the objective functions is placed as objective function
and optimized. The other objective functions are
transferred into constraints as follows:

Min  f;(x) (22)

s.t.
) <e; h=1,..m, h=+j, (23)
xX€ES (24)

where j € {1,..,m} and ¢,is upper bounds for the
objective h (h # j). VariousPareto solutions can be
found by changing the value of &,. We can let ™" =
firand fmex = fradiv by ysing payoff matrix [21]. We
consider three sample problems in small sizes with 8, 6
and 4 jobs and 2 machines. These problems are solved
with Lingo 8.0 and their results are shown in Table 10,
in which the results of two proposed algorithms for the
same problems are presented as well.

4. COMPUTATIONAL RESULTS

In order to test the effectiveness of the NSGA-II and
HMOTLBO, we solve several test problems, (e.g.,
Naderi-Beni et al. [23]), and then compare their
performances with a number of different metrics. The
proposed meta-heuristics are coded in MATLAB
R2016a software.

4. 1. Test Problem Instances Computational
results given in [23] are conducted in medium and
large-sized problems according to Tables 4 and 5. The
processing times (p;,,) are integers and are generated
from a uniform distribution of U(1, 20), the due dates
(d;) are uniformly distributed in the interval [P (1 —t—
N M
g),P(l —t+£)], where P =W ,t=08,r
=0.2 and the setup times are integers and are generated
from a uniform distribution of U(1, 20).

4. 2. Evolution Metric Quality of the non-
dominated solutions obtained from the proposed meta-
heuristic algorithms is used to compare these
algorithms. In this paper, three metrics (i.e., N-metric,
R-metric and S-metric) are used [24].

4. 3. Parameter Tuning The quality of the
solutions obtained from the proposed algorithms is
affected by the values of their parameters. To set the
parameters of proposed algorithms in this paper, the
response surface methodology (RSM) [25] using Design
Expert software is applied. The number of Pareto
solutions created by proposed NSGA-II and
HMOTLBO algorithms are used as responses and
considered in order to ease comparisons. The levels of
NSGA-II algorithm parameters are shown in Table 6.
For the given parameters, RMS designs 30 experiments
that contain 6 central and 24 axial points. According to
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our results, best combinations of parameters for medium
and large problems are showed in Table 7.

For tuning the parameters of HMOTLBO, the levels
of these parameters are shown in Table 8. For the given

TABLE 4. Medium-sized problems.

230

parameters, the RMS designs 20 experiments that
contain six central and 14 axial points. According to the
results, the best combinations of parameters for medium
and large-sized problems are shown in Table 9.

4. 4. Evaluating Results  Each proposed algorithm
is run 3 times and each time includes 10 runs in 32 test
problems including 16 medium problems and 16 large

M N M N M N M N problems (Tables 4 and 5).The average results of 3
3 10 4 15 5 20 6 25 times are shown in Tables 11 and 12. The results of
3 20 4 30 5 40 6 50 small problems are given in Table 10 that shows for
small problems (N=4, 6, 8 and M=2), HMOTLBO
330 4 45 5 60 6 75 . . I
and NSGA-II produce Pareto-optimal solutions similar
3 40 4 60 5 80 6 90 to the g-constraint method, although CPUT is reduced
significantly. Tables 11 and 12 show that the
HMOTLBO is better than the NSGA-II in terms of
. different metrics for medium and large-sized problems.
TABLE 5. Large-sized problems. . . - .
g £ The amount of changing the solving times in NSGA-I1I
M__N M__N M_N M_N is less than HMOTLBO. Solving times in NASGA-II
7 30 8 35 9 20 10 45 versus HMOTLBO has substantially reduced in larger
7 60 8 70 9 40 10 9 size problems. Nvalues in both algorithms are relatively
% o 0 0 6 0 s close; however, Rvalues are different. The results show
! 105 ! 135 that NSGA-II produces lots of Pareto solutions, but
7120 8 140 9 80 10 180 dominated by a few Pareto solutions produced by
HMOTLBO.
TABLE 6. The levels of NSGA-I1 parameters
Levels TABLE 8. Levels of HMOTLBO parameters
Parameters Lower Upper Levels
Maxlt 10 90 Parameters Lower Upper
NpOp 50 210 Max-It 5 25
Pm 0.02 01 TF 1 2
TABLE 7. Best combinations of NSGA-II parameters TABLE 9. Best combinations of HMOTLBO parameters
Parameters Parameters
Max-It Npop Pc Pm MaxIt Npop TF
M 60 150 06 007 M 15 30 1
Value
L 50 210 05 0.06 L 15 25 1.25
TABLE 10. Results for small-sized problem
g-Constraint NSGA-II HMOTLBO
N Cmax Tmax Emax CPUT Cmax Tmax Emax CPUT Cmax Tmax Emax CPUT
. 26 15 2 120 26 15 2 8.46 26 15 2 7.62
29 19 0 29 19 0 29 19 0
6 39 24 11 1234 39 24 1 8.82 39 24 1 8.74
41 27 0 41 27 41 27
8 40 26 5346 40 26 9.21 40 26 8.98
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TABLE 11. Results of NSGA-11 and HMOTLBO algorithms for medium-sized problems
CPUT S N
M HMOTLBO NSGA-II HMOTLBO NSGA-II HMOTLBO NSGA-II MOTLBOH NSGA-II
3 10 15.17 23.57 3.11 1.77 3 3 0.77 0.83
3 20 16.64 24.24 412 497 4.67 3.33 0.96 0.6
3 30 19.36 24.81 12.45 77.85 6 6.67 0.84 0.57
3 40 22.18 25.40 156.91 18.75 5.33 9.67 0.69 0.76
4 15 16.52 24.32 2.57 2.48 4 3.33 1 0.4
4 30 20.33 25.54 25.88 94.49 7.33 4.67 1 0.29
4 45 24.15 25.87 18.96 45.40 6.67 5.67 0.87 0.49
4 60 27.09 26.79 22 142.81 6.67 8 0.81 0.59
5 20 18.90 2471 14.70 7.33 7.67 1.67 0.95 0.16
5 40 23.38 26.48 4.07 127.91 6.33 3.67 0.97 0.31
5 60 29.64 27.40 18.72 29.22 9.33 4.33 0.85 0.38
5 80 35.95 29.46 38.25 7.15 6 9.67 0.96 0.53
6 25 21.56 26.64 7.55 25.79 8 5.33 1 0.34
6 50 26.12 26.78 30.86 23.40 9 6.67 0.86 0.44
6 75 34.32 28.55 111.63 59.39 8.33 6 0.81 0.47
6 90 42.14 30.72 52.92 3251 4.67 10.33 0.68 0.68
Average 24.59 26.33 32.79 43.83 6.44 5.75 0.88 0.49
TABLE 12. Results of NSGAIl and HMOTLBO algorithms for large-sized problems
CPUT S N
M N
HMOTLBO NSGA-II HMOTLBO NSGA-II HMOTLBO NSGA-II HMOTLBO NSGA-II

7 30 19.31 40.45 8.87 24.66 6.67 5.33 0.96 0.33
7 60 26.76 44.23 8.4 58.55 7.33 4.67 0.74 0.43
7 90 35.22 51.23 17.77 80.12 6.67 4.33 1 0.32
7 120 44.43 53.26 101.71 139.49 8.67 8.33 0.78 0.59
8 35 20.06 44.34 6.89 2241 7.33 4.33 1 0.29
8 70 30.04 47.67 8.86 15.23 5.67 4 0.97 0.19
8 105 39.41 52.36 42.61 38.26 8.33 4.33 0.95 0.35
8 140 53.4 56.12 17.45 11.32 4.33 8.67 0.95 0.33
9 40 21.55 45.33 8.55 69.17 7.33 4 0.94 0.29
9 80 33.01 49.17 15.28 52.73 8.67 5.33 0.94 0.28
9 120 46.12 53.38 51.38 63.91 6 9.67 0.71 0.49
9 160 61.12 58.55 75.59 15.96 9.67 8 0.89 0.29
10 45 24.56 47.47 24.66 13.11 8.33 5.33 0.96 0.24
10 90 35.92 50.26 12.89 19.91 7 5.67 0.89 0.38
10 135 53.35 56.65 21.75 26.77 5.67 4 0.84 0.15
10 180 70.56 61.81 54.77 11.39 3.67 2.33 0.68 0.13
Average 38.43 50.77 29.84 41.44 6.96 5.52 0.89 0.32
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5. CONCLUSION AND FUTURE RESEARCH

This paper has studied a multi-objective unrelated
parallel machines scheduling problem in order to
minimize the makespan, maximum tardiness and
maximum earliness of jobs, in which sequence-
dependent setup times are machine-dependent
processing times have been considered. Additionally, a
multi- objective mixed-integer linear programming
(MILP) model has been formulated, and then solved by
the g-constraint method for small-sized problems. The
results have been compared with the results obtained by
the proposed meta-heuristic algorithms. Furthermore, an
effective hybrid multi-objective teaching—learning based
optimization (HMOTLBOQO) has been proposed. Its
performance has been compared with a non-dominated
sorting genetic algorithm (NSGA-I11) on a number of test
problems generated at random. The related results have
shown that the proposed HMOTLBO is relatively better
than the NSGA-II.

In this study, we have considered real conditions in
an industrial environment. Of course, there are other
conditions that help us to improve our research, such as
taking into account pre-emption, precedence constrains
and machine failures. Also, one can use other meta-
heuristic algorithms and compare the results with our
results.

6. REFERENCES

1. Chang, P. C. and Chen, S.-H., "Integrating dominance properties
with genetic algorithms for parallel machine scheduling
problems with setup times", Applied Soft Computing, Vol. 11,
No. 1, (2011), 1263-1274.

2. Tavakkoli-Moghaddam, R. and Mehdizadeh, E., "A new ILP
model for identical parallel-machine scheduling with family
setup times minimizing the total weighted flow time by a genetic
algorithm", International Journal of Engineering Transactions
A Basics, Vol. 20, No. 2, (2007), 183-194.

3. Tavakkoli-Moghaddam, R., Taheri, F. and Bazzazi, M., "Multi-
objective unrelated parallel machines scheduling with sequence-
dependent setup times and precedence  constraints",
International Journal of Engineering, Transactions A: Basics,
Vol. 21, No. 3, (2008), 269-278.

4.  Tavakkoli-Moghaddam, R. and Aramon-Bajestani, M., "A novel
b and b algorithm for a unrelated parallel machine scheduling
problem to minimize the total weighted tardiness”, International
Journal of Engineering, Vol. 22, No. 3, (2009), 269-286.

5. Torabi, S. A., Sahebjamnia, N., Mansouri, S. A. and Bajestani,
M. A., "A particle swarm optimization for a fuzzy multi-
objective unrelated parallel machines scheduling problem",
Applied Soft Computing, Vol. 13, No. 12, (2013), 4750-4762.

6. Lin, S.-W. and Ying, K.-C. "Abc-based manufacturing
scheduling for unrelated parallel machines with machine-
dependent and job sequence-dependent setup times", Computers
& Operations Research, Vol. 51, (2014), 172-181.

7. Rodriguez, F. J., Lozano, M., Blum, C. and GarciA-MartiNez,
C., "An iterated greedy algorithm for the large-scale unrelated

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

parallel machines scheduling problem", Computers &
Operations Research, Vol. 40, No. 7, (2013), 1829-1841.

Bozorgirad, M. A. and Logendran, R., "Sequence-dependent
group scheduling problem on unrelated-parallel machines”,
Expert Systems with Applications, Vol. 39, No. 10, (2012),
9021-9030.

Lin, Y.-K., Pfund, M. E. and Fowler, J. W., "Heuristics for
minimizing regular performance measures in unrelated parallel
machine scheduling problems”, Computers & Operations
Research, Vol. 38, No. 6, (2011), 901-916.

Nogueira, J. P., Arroyo, J. E. C., Villadiego, H. M. M. and
Goncalves, L. B., "Hybrid grasp heuristics to solve an unrelated
parallel machine scheduling problem with earliness and
tardiness penalties”, Electronic Notes in Theoretical Computer
Science, Vol. 302, (2014), 53-72.

Gharehgozli, A., Tavakkoli-Moghaddam, R. and Zaerpour, N.,
"A fuzzy-mixed-integer goal programming model for a parallel-
machine scheduling problem with sequence-dependent setup
times and release dates", Robotics and Computer-Integrated
Manufacturing, Vol. 25, No. 4, (2009), 853-859.

Kayvanfar, V., Komaki, G. M., Aalaei, A. and Zandieh, M.,
"Minimizing total tardiness and earliness on unrelated parallel
machines with controllable processing times", Computers &
Operations Research, Vol. 41, (2014), 31-43.

Tavakkoli-Moghaddam, R., Taheri, F., Bazzazi, M., lzadi, M.
and Sassani, F., "Design of a genetic algorithm for bi-objective
unrelated parallel machines scheduling with sequence-dependent
setup times and precedence constraints”, Computers &
Operations Research, Vol. 36, No. 12, (2009), 3224-3230.

Gao, J., "A novel artificial immune system for solving
multiobjective scheduling problems subject to special process
constraint", Computers & Industrial Engineering, Vol. 58, No.
4, (2010), 602-609.

Chyu, C.-C. and Chang, W.-S., "A pareto evolutionary algorithm
approach to bi-objective unrelated parallel machine scheduling
problems”, The International Journal of Advanced
Manufacturing Technology, Vol. 49, No. 5-8, (2010), 697-708.

Lin, Y.-K. and Lin, H.-C., "Bicriteria scheduling problem for
unrelated parallel machines with release dates”, Computers &
Operations Research, Vol. 64, (2015), 28-39.

Mir, M. S. S. and Rezaeian, J., "A robust hybrid approach based
on particle swarm optimization and genetic algorithm to
minimize the total machine load on unrelated parallel machines",
Applied Soft Computing, Vol. 41, (2016), 488-504.

Joo, C. M. and Kim, B. S., "Hybrid genetic algorithms with
dispatching rules for unrelated parallel machine scheduling with
setup time and production availability", Computers & Industrial
Engineering, Vol. 85, (2015), 102-109.

Rao, R. V., Savsani, V. J. and Vakharia, D., "Teaching—learning-
based optimization: A novel method for constrained mechanical
design optimization problems”, Computer-Aided Design, Vol.
43, No. 3, (2011), 303-315.

Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T., "A fast and
elitist multiobjective genetic algorithm: NSGA-ii", IEEE
Transactions on Evolutionary Computation, Vol. 6, No. 2,
(2002), 182-197.

Deb, K. and Miettinen, K., "Multiobjective optimization:
Interactive and evolutionary approaches, Springer Science &
Business Media, Vol. 5252, (2008).

Soni, N. and Kumar, T., "Study of various mutation operators in
genetic algorithms”,  International Journal of Computer
Science and Information Technologies (1JCSIT), Vol. 5, No.
3, (2014), 4519-4521.

Naderi-Beni, M., Ghobadian, E., Ebrahimnejad, S. and
Tavakkoli-Moghaddam, R., "Fuzzy bi-objective formulation for



233 A. Sadati et al. / [JE TRANSACTIONS B: Applications Vol. 30, No. 2, (February 2017) 224-233

a parallel machine scheduling problem with machine eligibility improved NSGA-ii algorithm for multi-objective lot-streaming
restrictions and sequence-dependent setup times", International flow shop scheduling problem”, International Journal of
Journal of Production Research, Vol. 52, No. 19, (2014), Production Research, Vol. 52, No. 8, (2014), 2211-2231.

5799-5822. 25. Montgomery, D. C., "Design and analysis of experiments, John

24. Han,Y.-Y. Gong, D.-w., Sun, X.-Y. and Pan, Q.-K., "An Wiley & Sons, (2008).

Solving a New Multi-objective Unrelated Parallel Machines Scheduling Problem by
Hybrid Teaching-learning Based Optimization

A. Sadati?, R. Tavakkoli-Moghaddam?b, B. Naderi¢, M. Mohammadi¢

a Department of Industrial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
bSchool of Industrial Engineering, South Tehran Brach, Islamic Azad University, Tehran, Iran
¢ Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran

PAPER INFO 0k S

Paper history:
Received 22 December 2016

05 S xS 5 s 4 LSS 1 Sl slapile s i SIS 1 s perme S suley b lis ol o
Received in revised form 19 January 2017 03,5 wanS i s DL 2E S35 GRG0 SRt SUOB T 48ses LSRN >

Accepted 22 January 2017 shls Ll Jﬂfdﬁ S5 andlas 5550 3 S35 ainday 55,5 03 aindi (GdoObey wil p J4b) a8 J‘:"-Q Ole ains

die Gl o cpdle i anls 3l glacley 5 5w aaly (olilely glaole; QLSS b s slads s
5:{!}251;({S1.earning Based Optimization s iy b S S o3I Bles 534S 5,8 e 13 a3 50 abdadsr Ll e ke it (65l
I&Zﬁ?;i‘iparanel Machines S L r aglie 03 0y SIS Slapzs S 1 Jole s b il e ] S o 3550 O
Fardiness 020350 ol SIS 5 355 sl (HMOTLBO) (5,85 pal ol s il taiy (s3ltiogs 0255501

W5 Bolas g 4 oS 4ged Bilows 31 (3Mn5 (595 (NSGA-I) st b o 5 e Si§ o S L ol
L e @2 NSGAID & s HMOTLBO (oalgniny o8l 45 das o 0L gl s o amlio llodd

as e &Ll
doi: 10.5829/idosi.ije.2017.30.02b.09




