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A B S T R A C T  
 

 

Nowadays energy saving is one of the crucial aspects in decisions. One of the approaches in this case 
is efficient use of resources in the industrial systems. Studies in real manufacturing systems indicating 

that one or more machines may also act as the Bottleneck Resource/ Resources (BR). On the other 
hand, according to the Theory of Constraints (TOC), the efficient use of resources in manufacturing 

systems is limited by the capacity of the BR(s). Hence, in order to improve the performance of such 

systems, the BR(s) should be identified and assessed and improved using capacity of such resources to 
the greatest extent possible. Studies indicating that Bottleneck Resource Detection (BRD) problem in 

the ―Multi-Objective and the Dynamic conditions‖ of job-shop is an important issue which has not 

been studied so far due to its computational complexity. Hence, the development of an efficient 
approach to identify and assess BRs in Multi-objective Dynamic Job Shop (MODJS) has been 

considered as the subject of this paper. In this article, a BRD method based on the Taguchi method for 

MODJS (TM-MODJS) has been developed. This method takes the objectives of the MODJS as 
estimated indices and carries out typical and finite number of experiments by combining different 

suitable dispatching rules to detect BR(s) which have the greatest effect on the estimated index. 

Comparing the results indicates effectiveness of the developed method especially in scheduling which 
results in a reasonable time. 

doi: 10.5829/idosi.ije.2016.29.12c.08 
 

 

NOMENCLATURE   

Index 
   Operation,             

   Each job (e.g. the job  ) enters the shop for process a nonzero    time. 

  Job      If the job   is performed on the machine   prior to the job  ,      = 1; otherwise, = 0. 

  Operation 

  machine Variables 

Parameters     the job‘s completion time   on the machine   

  great and positive number      the operation process time   from the job   is on the machine   

  Number of jobs,                 the scheduling scheme for machine   

  Number of machines,                 objective value 

 
1. INTRODUCTION1 
 

Real manufacturing systems generally have Bottleneck 

Resource (BR) [1]. According to concepts of TOC, the 

throughput of the manufacturing systems is limited by 

the capacity of the BR(s) [2]. In a Multi-Objective 

                                                           

1*Corresponding Author‘s Email: n_nahavandi@modares.ac.ir (N. 

Nahavandi) 

Dynamic Job Shop (MODJS) environment 

(  |  | ∑             ̅      ̅ ), one or a 

combination of machines may act as the BR(s). 
Bottleneck Resources Detection (BRD) problem in the 

―Multi-Objective and the Dynamic‖ conditions of job 

shop (JS) is an important issue in real manufacturing 

systems. In the following, after definition and 

classification of BR(s), literature related to BRD 

methods in JS is reviewed.  
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2. LITERATURE REVIEW 
 
2. 1. Definition and Types of BR(S)         BR(s) is 
machine(s) which prevent better function of the 
system. In a classification by Hinckeldeyn et al. [3], 

different types of BR(s) are: capacity, parts, flexibility, 

layout, budget, information, and know-how. On the 

other view, BR(s) is classified in three categories 

(Figure 1). In Simple BR only one of the machines acts 

as a bottleneck. In Multiple BRs, more than one 

machine acts as a bottleneck. But these bottlenecks are 

fixed throughout the considered period of time. In the 

Shifting BR, there is not just one bottleneck for the 

entire period, but during the period the bottleneck shifts 

from one machine to another [4]. 

 

2. 2. Literature Review BRD Methods          Roser et 

al. [5] have identified and classified all the BRD 

methods up to 2002, in the following methods: 

 UF (Utilization Factor),  

 QSFM (Queue Size in Front of Machine),  

 WTFM (Waiting Time in Front of Machine) and  

 AP (Active Period). 

In another research, Roser et al. [5] have detected BR by 

calculating active periods of machines and called it 

Shifting Bottleneck Detection (SBD). 

 

 

 

 
(a) Simple BR 

 
(b) Multiple BRs 

 
(c) Shifting BRs 

Figure 1. Simple, Multiple and Shifting BRs [4] 

Yet, in another research, Roser et al. [6] have 

categorized BR in two types of ―shifting BR‖ and ―sole 

BR‖ and introduced the machine with the largest 

percentage of shifting and sole BR as the original BR of 

the system. Wang et al. [7] used disjunctive graphs to 

detect the BR in the SBD procedure for Classic Job 

Shop (CJS). Yan et al. [8] after developing a new 

definition of BR, proposed a BR-oriented heuristic 

algorithm for a large scale CJS. Tay and Ho [9] 

developed a method based on combining dispatching 

rules and genetic programming for solving Flexible Job 

Shop (FJS). Sengupta et al. [10] proposed a new 

methodology for BRD. Lima et al. [4] proposed a 

simulation-based method for BRD and successfully 

used it in the real manufacturing system. Zhang and Wu 

[11] studied BRD approaches for CJS using Genetic 

Algorithm (GA). Lin et al. [12] studied data-based 

detection process of BR(s) for serial manufacturing 

systems. Kasemset and Kachitvichyanukul [13] studied 

the decisions made in implementing TOC in a CJS by 

using a two level multi-objective mathematical model. 

Zhai et al. [14] proposed a new heuristic algorithm for 

large scale CJS. BR(s) in this algorithm are detected 

using orthogonal method. In order to reduce its 

complexity, based on the operations which must be 

processed on BR, large scale CJS is divided into three 

sub-problems: BN-OS, PBN-OS and FBN-OS. Zahi et 

al. [7, 15] proposed a prior-to-run method for BRD 

based on orthogonal experiences (BD-OE) in static JS. 

The above-mentioned method is developed based on a 

new definition of BR which is according to a principle 

in TOC stating ―manufacturing systems function is 

determined by BR‖. This method take scheduling 

objectives as estimated index and constructs orthogonal 

trials by orthogonal arrays and dispatching rules to 

detect the BR which have the greatest effect on the 

estimated index. Abbasian and Nahavandi [16, 17] 

considered operation flexibility and parallel machines 

flexibility in FJS. They used these abilities to take an 

effective method against BR(s) problem. Zhang and Wu 

[1] developed a BRD method based on transferring the 

constraints by using GA for CJS. Zhenqiang et al. [16] 

studied manufacturing‘s BR based on a multi-factor 

study. Scholz-Reiter et al. [18] claimed that SBD 

method was a very efficient approach for BRD 

problems, especially for DJS in small and rather 

medium scales. The weaknesses of this method are 

time-consuming and reduction in its efficiency by 

increasing the scale of problem, especially in real 

industrial environments. Therefore, by combining SBD 

method and VNS algorithm, they proposed a new 

approach for DJS. They compared the results with SBD 

method proposed by Pinedo and Singer [19] for static JS 

and then showed the efficient of their proposed method, 

especially considering run times. Georgiadis and Politou 

[20] studied dynamic Drum-Buffer-Rope (DBR) 

approach for scheduling and production control in flow 

http://www.sciencedirect.com/science/article/pii/S1875389212003239
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shop manufacturing systems which have capacity. Their 

dynamic conception includes demand changes and 

estimated production times. Glock and Jaber [21] 

studied the effects of learning and forgetting graphs 

parameters in a two-level serial manufacturing systems. 

They also investigated the phenomenon of shifting 

BR(s). They showed taking advantage of learning may 

lead to BR(s). By predicting the position of system‘s 

potential BR, this enables the system to take flexible 

reaction in shifting BR(s).  

Hinckeldeyn et al. [3] strived to develop BR 

management from manufacturing discussions to 

engineering process and product design discussions by 

presenting a new conception of BR management. They 

presented this new conception using system theory 

simulation approach. Abbasian et al. [22] investigated 

FJS considering resource availability constraints. They 

presented an intelligent GA to solve it. In order to limit 

BR(s), they used parallel machine implementation 

approach, but they did not propose a method for BRD  

problem and postponed it to their future studies. 

Literature review indicates that BRD problem even in 

CJS is still in the center of attention for researchers as 

one of the recurrent research areas [3, 11]. Also, the 

BRD problem in the ―Multi-Objective and the 

Dynamic‖ conditions of job-shop is an important issue 

which has not been studied in the previous literature due 

to its computational complexity. 
 

2. 3. BRD Methods Classifications       In order to 
rigorous comparisons among the different 
approaches reported in the literature, typical BRD 
methods available in the literature for CJS problem 
are classified and analyzed in Table 1. In general, 

regarding Table 1, it can be deduced that there are three 

common approaches for BRD in CJS, as follows: 

 First group of BRD approaches (like MWL and UF) 

detect BR by measuring efficiency or workload. A 

machine with the greatest efficiency or workload is 

introduced as the BR. These approaches are very 

simple and easily implemented. However, they 

cannot detect the BR with confidence if more than 

one machine has the same workload. 

 

 
TABLE 1. Comparison of typical BRD approaches available in the CJS‘ problem literature 

R Approach Features Criteria Deficiencies 

1 
Maximum 

Workload (MWL) 

The amount of time needed for process of jobs in 

production station is measured and the machine with the 
maximum workload is considered BR. 

Time 

 More than one resource may have MWL. 
 Considering only system resources and 
neglecting the role of systems‘ objective 
functions. 

2 
Utilization Factor 

(UF) 

The time percentage of production station running over 

the whole system time is measured and the machine 

with maximum run time is considered BR. 

Percentage 

 More than one resource may have maximum 
UF. 
 Considering only system resources and 
neglecting the role of systems‘ objective 
functions. 

3 

Queue Size in 

Front of Machine 
Detection (QSFM) 

The numbers of half manufactured products existing in 
waiting queue before machine (waiting for process) are 

counted. The machine with the longest queue is 

considered BR. 

Amount 

of 
Product 

 Queue size may be larger than the size of 
resource buffer. 
 Considering only system resources and 
neglecting the role of systems‘ objective 
functions. 

4 

Waiting Time in 

Front of Machine 

(WTFM) 

This method is the same as QSFM. The only difference 

is that in this method the waiting time of product in 

queue for processing is taken into accounts. 

Time 

 Queue size may be larger than the size of 
resource buffer. 
 Considering only system resources and 
neglecting the role of systems‘ objective 
functions. 

5 Active Period (AP) 

For all types of machinery, two states of active and non-
active is considered. The sum of entire periods in which 

the machine is active is measured. The machine with the 

greatest active period is considered BR. 

Time Unit 

or Time 
Percentage 

 Considering only system resources and 
neglecting the role of systems‘ objective 
functions. 

6 
Shifting Bottleneck 

Detection (SBD) 

This method is among the group of backtracking 

methods in which periods or percentages of an active 

non-stop production station is calculated. The periods in 
which production station is a sole bottleneck along with 

the periods in which production station is shifting 

bottleneck are computed and summed up to gain total 
time. Since some machines can be bottleneck in each 

time, the machine with maximum time is considered the 

original BR. 

Time Unit 

or Time 

Percentage 

 Considering only system resources and 
neglecting the role of systems‘ objective 
functions. 
 Required long computational time. 
 Low efficiency in large scale of problems 
especially in BRD in real industrial environment. 

7 

Orthogonality 

Experiments (BD-

OE) 

Using experiment design method, in addition to 

considering the role of processor machines, the role of 

problems objective function is also considered in BRD. 

Maximum 
Variance 

 Lack of an appropriate approach for 
considering the rule of system‘s objective 
functions. 
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 Second group of BRD approaches (like QSFM and 

WTFM) detect BR by measuring queue length or 

waiting time for non-processed jobs in front of each 

machine. In such approaches, the machine with the 

greatest waiting time or queue length is detected as 

the JS‘s BR. However, this approach validation is in 

doubt if the number of non-processed jobs be greater 

than maximum size of machines‘ buffer.  

 Common deficiency of both mentioned categories is 

the fact that these approaches only consider 

processor machines‘ role in solving BRD problem 

and neglect the rule of system‘s objective(s) as the 

most important criteria which decision makers 

attempts to improve it, and perhaps in some cases of 

BRD, this causes these approaches not to lead to the 

same results. Although the third group of BRD 

approaches attempted to omit this deficiency, but 

they could not create a suitable method for this 

reason. Accordingly, Zhang and Wu [1] reported in 

their researches that BR(s) change if scheduling 

objective(s) change. 

From another point of view, BRD approaches divide 

into two general categories considering run times, as 

follows: 

 Prior-to-run BRD approaches: these approaches 

are able to detect BR(s) before manufacturing 

system‘s run and then guide the production process 

to improve manufacturing system‘s function. These 

approaches, generally, perform BRD using data 

acquisition technique, simulation, and analysis after 

a long term period of production system run. 

 Posterior-to-run BRD approaches: In these 

approaches BR(s) are detected after manufacturing 

system run. 

Obviously, if we can detect BR(s) before setting up the 

system, it will be more valuable because detected BR(s) 

can, as an advantage, guide the management of 

operation and resources [7, 15]. 

 

 

3. PROBLEM MATHEMATIC MODEL 
 

3. 1. Research Problem Definition        BR(s) is a 

machine(s) which prevents better effective of the 

system. Immediate and exact detection of the location(s) 

of BR(s) can lead to important in operation 

management. In a MODJS manufacturing systems 

(  |  | ∑             ̅      ̅ ), one (or more) 

machine may act as the BR(s). BRD problem in a 

MODJS is an important issue which is not investigated 

in the literature due to computational complexities. The 

MODJS is defined as follows: 

There are   jobs,            , and   machines, 

           . Each job (e.g. the job  ) enters the shop 

for process in a nonzero    time. The    includes a chain 

of operations                  .  

3. 2. Bottleneck Definition       In a MODJS, 

scheduling scheme is one of the most crucial factors 

which affect the performance of the system. From the 

perspective of the manufacturing system‘s objectives, 

different scheduling scheme for one machine may give 

rise to different objective value. According to TOC, 

BR(s) constraints the throughput of the manufacturing 

systems, so the alteration of scheduling schemes on the 

BR(s) will bring about the maximum change of the 

system‘s objective value [7]. 

Definition 1: Let   be the number of the machines 

and   be the index of the machine. Let        
        , denote the scheduling scheme for machine 

 , and                , denote the objective value. 

Then the sensitivity of the objective value to the 

scheduling scheme alteration of machine   is 

―alternations of the objective value‖ over ―alternations 

of scheduling scheme‖ for the machine  , that is [7]:  

(1)    
   

   
            

Definition 2: The machine with the largest    is the 

corresponding BR(s). Namely,  

(2)                             

Therefore ―The BR is a machine whose scheduling 

variation has the greatest effect (or variations) on the 

manufacturing system‘s objectives.‖ [7]. 

 

3. 3. Definition of Decision’s Parameters and 
Variable       The MODJS problem can be formulated 

as a zero-one integer programming [16, 17]. In this 

model, each operation is shown with three indexes 

        which indicate operation   from job   be 

processed on machine  .  

 

3. 4. The Problem’s Mathematical Model        Now 

supposing that    represent the machine by which the 

last operation of job   is processed, the MODJS problem 

is formulate as follows [16, 17]: 

(3)                        

(4)            {    
|       }  

(5)     ̅  
 

 
∑      

    
 
     

(6)     ̅  
 

 
∑ {  (    

   )  } 
     

(7) 

         

            

                   , 

                

(8) 
              
      

              

            

(9) 
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(10) 
        

     , 
               

(11)                  ,                      

(12)                               

The three objectives in the definition are the typical 

objectives in production scheduling that frequently 

trade-off against each other [12]. In this study, all the 

objectives have the same priority (  ,   and   =
 

 
). 

Equations (3, 4, 5, and 6) represent these relations. Also, 

the penalty of tardiness is one (    ). The inequality 

(7) represents priority constraints between different 

operations of one job on the machines. The inequalities 

(8) and (9) represent the constraint of performing 

different jobs operations on one machine at unequal 

times. The inequality (10) is mentioned so that the 

completion time of the first jobs operations be equal or 

greater than the process time of that operation, in 

addition to the waiting time of the mentioned job in the 

shop. The job‘s entrance times to the shop adapted with 

sizes of test-problems and depend on the number of jobs 

at shop in a way that for the jobs less than 30, the 

        uniform distribution are used and for the jobs 

equal or greater than 30, the         uniform 

distribution are used [9].  

Baker (1984) proposed a formula to estimate the due 

date of a job using the TWK-method [9]: 

        ∑                          (13) 

where   denotes the tightness factor of the due date. 

In this paper, value of   is 1.6 which is mean tight, 

moderate, or loose due date tightness factor 

corresponding to values of c = 1.2, 1.5, and 2. 

In the following, the proposed solution to the 

problems of BRD problem for MODJS will be 

presented. This solution is the developed case of Zhai et 

al. [7] method was proposed for BRD problem for static 

JS. 

 

 

4. HURESTIC SOLUTION METHOD FOR BRD 
SUBPROBLEM IN MODJS (TA-MODJS) 
 

4. 1. TA-MODJS Principles        The orthogonal 

experiments (OE) are an effective method for multi-

level factorial experimental design. This method covers 

infinite experiments by selecting a finite number of 

typical trials. Moreover, this method offers excellent 

factorial-fractional design and suitable experiments for 

investigating the effects of each factor on the estimated 

index. Literature review indicates that Taguchi Method 

and Orthogonal Arrays (OA) have been widely used in 

the Design of Experiments (DOE) [23]. 

In order to use the definitions (1) and (2) in BRD 

(section 3. 2), we need schedules at first. These 

schedules are determined by using suitable dispatching 

rules. Therefore, if the number of suitable dispatching 

rules is  , then the number of the combinations of 

suitable dispatching rules is    (  is the number of the 

machines). If the number of suitable dispatching rules 

increases, the computational times required for gaining 

schedules derived from them will greatly increase. 

Also, in order to use these definitions, we need to 

calculate    variations in denominator. But    is not a 

quantitative parameter. So, we cannot directly use the 

relation in definitions (1) and (2) for BRD. 

For this reason, in this paper, an indirect method for 

BRD problem using orthogonally and based on Taguchi 

Method for multi-criteria environment such as MODJS, 

(TA-MODJS) has been developed. In this method, there 

is no need to calculate     and    . It treats    as a 

whole, and can obtain    of each machine by using OE. 

The essentials of Taguchi method based on OE are 

factors, levels, estimated index, and key factor. The 

factors are the elements or cause which affect the 

estimated index; the states that the factors being at are 

the levels. Because the change of the level of each 

factor can bring about the change of the estimated index 

value, the key factor is the factor where level change 

has the greatest effect on the estimated index. 

According to Definition (2), BR(s) is the machine(s) 

whose schedule alteration has the greatest effect on the 

objectives of the manufacturing system. So, if the 

objective of the manufacturing system corresponds to 

the estimated index of an OE, then the BR just 

corresponds to the key factor of the OE. Accordingly, 

the machines of the manufacturing system correspond to 

the factors of the OE, and the suitable dispatching rules 

for each machine correspond to Taguchi method based 

on OE. The corresponding relations between the 

elements of Taguchi method based on OE (TA-MODJS) 

and the element of BRD in a MODJS environment are 

shown in Table 2. Therefore, where factors (machines) 

considered equal to factors affecting estimated indexes 

(objectives), the states of factors determine levels 

(suitable dispatching rules).  

Variation in each level (suitable dispatching rules) of 

each factor (machine) can lead to variation in estimated 

indexes (objectives). 
 

 

 

TABLE 2. Corresponding relations TA-MODJS and BRD 

Elements of BRD Elements of TA-MODJS 

Machines of the manufacturing system Factors 

Suitable Dispatching rules for machines Levels 

Objective of the manufacturing system Estimated index 

BR(s) Key factor 
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As a result, the key factor (MODJS‘s BR) is a factor 

(machine) which has the greatest effect on the estimated 

index (MODJS‘s objectives). 

In general, OEs are designed based on OAs. The form 

of an OA is      
  , that [23]: 

  : the signal of orthogonal design, 

  : the number of levels in the OE, 

  : the integer series        , 

  : the number of the factors in the OE or the number 

of column in the OA and: 

              ,                (14) 

   : the number of orthogonal trials in the OE or the 

number of rows in the OA.  

For example, L9(3
4
)  is shown in the Table 3. 

According to the OE principles, the variance of each 

factor (  ) is computed by: 

    ∑                         (15) 

   
   (   )     (   )

   
                  (16) 

   reflects the effects of different levels of factor   

on the estimated index. Also    equals    in Definition 

(1). The factor with          is the key factor whose 

level change has the greatest effect on the estimated 

index in OE. This phenomenon exactly corresponds to 

BR whose schedule alteration has the greatest effect on 

the objectives of the problem. Hence,               

corresponds       in Definition (2). This method is an 

extended case of the proposed method (Zhai et al. [14]) 

which is extended for the studied problem in a dynamic 

and multi-objectives environment and the results are 

brought in the following sections. 

 

4. 2. The Procedure of TA-MODJS 
4. 2. 1. Selecting Factors, Levels, and Appropriate 
Oa        We adapted 13 selected suitable dispatching 

rules (Haupt et al. [24]) which are displayed in Table 4 

as the levels for each factor. 

The OA can be selected or constructed according to 

the number of machines and suitable dispatching rules 

in the specific detection problem. 

 

4. 2. 2. Constructing the Orthogonal Trials in The 
OA of TA-MODJS        By transforming the digits of the 

OA into the dispatching rules, the corresponding 

orthogonal trials can be acquired. For example, a BRD 

problem with three machines and three dispatching rules 

corresponds to an OE including three factors and three 

levels, and the L9(3
4
) OA should be selected. The 

parameters and the orthogonal trials are shown in Tables 

5 and 6.  

 

4. 2. 3. Carrying Out Trials in TA-MODJS      The 

work of this step is to obtain the estimated index value 

of each orthogonal trial.  

TABLE 3. The OA of L9(3
4
) 

 
 
The estimated index value is the scheduling objective 

value which can be obtained by decoding the 

combination of dispatching rules. In order to gain the 

objective value, the suitable dispatching rules of each 

experiment was decoded to scheduling design. The 

decoding algorithm is as follows:  

Suppose           represent an orthogonal trial in the 

OE of TA-MODJS.             is dispatching rule 

for machine  . Let    denote set of the operations which 

are scheduled, and   denote the set of operations to be 

scheduled currently. 

 

 
TABLE 4. Selected Suitable Dispatching rule for TA-MODJS 

 

 
TABLE 5. The parameters of the TA-MODJS 

Machine 3 Machine 2 Machine 1 
          Factors 

Levels              

FCFS FCFS FCFS 1 

LPT LPT LPT 2 

LOR LOR LOR 3 

Trials 
Factors 

Factor 1 Factor 2 Factor 3 Factor 4 

1 1 1 1 1 

2 1 2 2 2 

3 1 3 3 3 

4 2 1 2 3 

5 2 2 3 1 

6 2 3 1 2 

7 3 1 3 2 

8 3 2 1 3 

9 3 3 2 1 

Description Jobs selected which has ... Rule No 

Arrived at queue first; (‗‗first come, first serve‘‘) FCFS 1 

The longest processing-time LPT 2 

The fewest number of operations remaining LOR 3 

The most work remaining MWR 4 

The shortest processing-time SPT 5 

The least work remaining LWR 6 

The greatest number of operations remaining MOR 7 

The least total work in the queue of its next operation WINQ 8 

The least number of jobs in queue of its next operation NINQ 9 

The earliest due date EDD 10 

The earliest operation due date ODD 11 

The smallest slack time SL 12 

The  smallest operation slack time OSL 13 
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TABLE 6. The orthogonal trials in the TA-MODJS 

  

 

 

The earliest start time and earliest predicted 

completion time for operation   in   is    and   , 

respectively.   denotes the set of conflicting operations 

which satisfy the schedule condition. 

 Step 1: Let      

 Step 2: Get               , and the 

corresponding machine   . If there is more than one 

machine, choose one machine randomly. 

 Step 3: Establish   by the operations which are 

processed on    and satisfy the condition of 

           . 

 Step 4: Select one operation   from   according to 

   (the dispatching rule form   ).  

If there is more than one  operation, choose one 

operation randomly. 

 Step 5:         . Update   .  

 Step 6: If     , then the algorithm stops and gives 

the scheduling value. Otherwise go to step 2. 

 
4. 2. 4. Analyzing the Results of The Orthogonal 
Trials to Detect BR(S)        After the estimated index 

value of each orthogonal trials is obtained, the effect of 

each machine‘s schedule alterations on the 

manufacturing system‘s objectives can be got by 

calculating the variance of each factor according to 

Equation (16).  

 
4. 3. A Complete Analysis of Selection Method of 
Sample Problems        In order to analyze the 

performance of TA-MODJS and the influence of the 

objective variation on the bottleneck shifting, we adopt 

the JS scheduling benchmark instances for simulation, 

including different scales of operations. The simulation 

details of each instance are placed in the route
2
. 

For performance analysis of BRD methods, the SBD 

method has more reliability than the other the common 

methods of BRD [4]. Apart from that, this method can 

present excellence for DJS [16]. Therefore, in this 

study, we compare the performance of the proposed 

TA-MODJS method with the performance of MWL, 

BDOE, and SBD methods in the BRD.  
 

 

5. DESIGNING AND CARRYING OUT NUMERICAL 
EXPERIMENTS 

 
5. 1. The TA-MODJS Results        In this section, the 

results from simulation are presented. For this reason, 

TA-MODJS performance is compared to a prior-to-run 

BRD (BD-OE) and a posterior-to-run BRD (SBD). The 

results are shown in Tables 7-9 and Figures 2-5. 

 
 

 

TABLE 7. BRD results of Dynamic TA-MODJS, Static TA-MODJS, BD–OE, SBD and MWL for Small scale problems 
Number of Machine 5 

Number of Jobs 10 15 

Problem’s Number LA 01 LA 02* LA 03 
LA 

04* 
LA 06 LA 07 

LA 

08* 
LA 09 

BR(s) 

Dynamic TA-MODJS for MODJS 5 4 3 5 2 2 1 4 

Dynamic TA-MODJS with 

        
5 5 1 1 1 1 3 2 

Static TA-MODJS with         5 1 2 5 1 1 4 2 

BD-OE 5 1 2 1,3,5 1 1 3 2 

SBD 5 4 2 1,3 1 1 5 2 

MWL 5 4 2 5 1 1 5 2 

Computational 

Time (second) 

Dynamic TA-MODJS with 

        
0.3 0.3 0.31 0.3 0.55 0.55 0.55 0.54 

Static TA-MODJS with         1.35 1.37 1.33 1.3 2.42 2.4 2.35 2.38 

SBD 7.5 43.7 47.9 46.6 56.2 55.6 65.3 47.4 

Instances with * express that the bottlenecks detected by the three methods are different. 

2 
http:// people.brunel.ac.uk/~mastjjb/jeb/orlib/files/jobshop1.txt

 

 

Index value 
   

Machine 3 Machine 2 Machine 1 

Factors 

 

Trials 

y1 1(FCFS) 1(FCFS) 1(FCFS) 1 

y2 2( LPT ) 2( LPT ) 1(FCFS) 2 

y3 3( LOR ) 3( LOR ) 1(FCFS) 3 

y4 2( LPT ) 1(FCFS) 2( LPT ) 4 

y5 3( LOR ) 2( LPT ) 2( LPT ) 5 

y6 1(FCFS) 3( LOR ) 2( LPT ) 6 

y7 3( LOR ) 1(FCFS) 3( LOR ) 7 

y8 1(FCFS) 2( LPT ) 3( LOR ) 8 

y9 2( LPT ) 3( LOR ) 3( LOR ) 9 

--                 

--                 

--                 

--          R 
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TABLE 8. BRD results of Dynamic TA-MODJS, Static TA-MODJS, BD–OE, SBD and MWL for Median scale problems 
Number of Machine 10 

Number of Jobs 10 15 

Problem’s Number LA 16* LA 17 LA 18 LA 19* LA 21 LA 22 LA 23 LA 24* 

BR(s) 

Dynamic TA-MODJS for MODJS 8 5 1 2 4 10 8 6 

Dynamic TA-MODJS with         3 4 2 3 10 5 7 10 

Static TA-MODJS with         3 4 1 10 10 5 7 2 

BD-OE 1,3 4 1 2 10 5 7 10 

SBD 1,3 4 1 7 10 5 7 10 

MWL 1 4 1 7 1 8 7 10 

Computational 

Time (second) 

Dynamic TA-MODJS with         5.62 5.54 5.55 10.14 9.81 9.85 9.86 5.62 

Static TA-MODJS with         2.46 2.45 2.43 2.41 4.38 4.46 4.32 4.31 

SBD 112.6 134.9 171.5 263.6 240.6 208.1 251.6 112.6 

Instances with * express that the bottlenecks detected by the three methods are different. 

 
 

TABLE 9. BRD results of Dynamic TA-MODJS, Static TA-MODJS, BD–OE, SBD and MWL for Large scale problems 

Number of Machine 10 

Number of Jobs 20 30 

Problem’s Number 
LA 

26* 
LA 27 LA 28 LA 29 LA 31 

LA 

32* 
LA 33 

LA 

34* 

BR(s) 

Dynamic TA-MODJS for MODJS 6 6 3 1 6 10 10 10 

Dynamic TA-MODJS with 

        
2 4 2 4 1 9 4 2 

Static TA-MODJS with         2 4 2 4 1 2 4 2 

BD-OE 5 4 2 4 1 9 4 7 

SBD 5 4 2 4 1 7 4 7 

MWL 1 7 2 4 1 7 4 7 

Computational 

Time (second) 

Dynamic TA-MODJS with 

        
15.49 15.19 15.4 15.37 29.38 29.49 29.87 29.86 

Static TA-MODJS with         7.06 6.92 6.64 6.63 13.32 13.29 12.93 12.6 

SBD 380.3 376.8 356.4 340.8 623.4 585.5 632.2 633.2 

Instances with * express that the bottlenecks detected by the three methods are different. 

 

 

  
Figure 2. Comparing computational time for three methods in 

Small scale problems 

Figure 3. Comparing computational time for three methods in 

Medium scale problems 
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Figure 4. Comparing computational time for three methods in 

Large scale problems 
Figure 5. Comparing computational time for three scale 

 

According to Hinckeldeyn et al. [3], there are various 

BR countermeasures such as scheduling solution, 

targeted source increase, increase of resource 

flexibility, process important, reduce workload of BR, 

and BR oriented counter-pricing. Among these, 75% of 

the investigated researches by Hinckeldeyn et al. [3] 

are carried counter out using scheduling solution  

 

approach as the BR countermeasures are. Accordingly, 

in this study, in order to analyze the results of 

differences for the three mentioned methods, the 

MODJS with the objective of maximum weighted sum 

(F) and based on the detected BR, has been solved and 

the results are presented in Tables 10 and 11 and 

Figures 6-9.  
 
 

TABLE 10. The scheduling results using the bottlenecks detected by the three methods 

Problem’s Number LA 02 LA 04 LA 08 LA 16 LA 19* LA 24 LA 26 LA 32 

BR(s) 

Static TA-MODJS 1 5 4 3 10 2 2 2 

BD-OE 1 5 3 1 2 10 5 9 

SBD 4 3 5 3 7 10 5 7 

Scheduling 

based on 
Bottleneck 

Clasic GA 779 696 928 981 1010 1202 1467 2064 

Static TA-MODJS 717 633 875 924 931 1081 1393 1988 

BD-OE 717 633 878 927 943 1098 1398 1988 

SBD 722 633 878 927 931 1098 1398 1979 

Improvment 

Static TA-MODJS 7.96% 9.05% 5.71% 5.81% 7.82% 10.07% 5.04% 3.68% 

BD-OE 0.00% 0.00% 0.34% 0.32% 1.27% 1.55% 0.36% 0.00% 

SBD 0.69% 0.00% 0.34% 0.32% 0.00% 1.55% 0.36% -0.45% 

 

 

   
Figure 6. The scheduling results using the 

BRD by the three methods in a Small 

scale 

Figure 7. The scheduling results using the 

BRD by the three methods in a Medium 

scale 

Figure 8. The scheduling results using 

the BRD by the three methods in a Large 

scale 
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TABLE 11. Mean improvement in the scheduling results using 

the BRD by the three methods 

 

mean small 

scale 

mean median 

scale 

mean large 

scale 

Classic GA 801.1 1064.3 1765.5 

TM-MODJS 741.7 978.7 1690.5 

BD-OE 742.7 989.3 1693.0 

SBD 744.3 985.3 1688.5 

 
 

5. 2. Analyzing the Performance of TA-MODJS        

According to the results reported in Tables 7 through 11 

and also Figures 2 through 9, we can observe that: 

 The BR‘s conforming rate for      in the two 

methods of BD-OE and SBD for small, medium, and 

large scales problems of DJS is up to 75% (6 out of 

8 conforming samples), 88% (7 out of 8 conforming 

samples), and 88% (7 out of 8 conforming samples) 

respectively. Also, the BR‘s conforming rate for 

     in the two methods of BD-OE and SBD for 

problems to different scales of DJS is generally up to 

83% (20 out of 24 conforming samples). 

 The BR‘s conforming rate for      in the two 

methods of BD-OE and MWL for small, medium, 

and large scales of DJS is up to 75% (6 out of 8 

conforming samples), 63% (5 out of 8 conforming 

samples), and 63% (5 out of 8 conforming samples) 

respectively. Also, the BR‘s conforming rate for 

     in the two methods of BD-OE and MWL for 

problems to different scales of DJS is generally up to 

67% (16 out of 24 conforming samples). 

 The BR‘s conforming rate for      in the two 

methods of SBD and MWL for small, medium, and 

large scales problems of DJS is up to 88% (7 out of 

8 conforming samples), 75% (6 out of 8 conforming 

samples), and 75% (6 out of 8 conforming samples), 

respectively. Also, the bottleneck‘s conforming rate 

for      in the two methods of SBD and MWL for 

problems to different scales of DJS is generally up to 

79% (19 out of 24 conforming samples). 

 The BR‘s conforming rate for      in the two 

methods of TA-MODJS and BD-OE for small, 

medium, and large scales problems of DJS is up to 

88% (7 out of 8 conforming samples), 75% (6 out of 

8 conforming samples), and 63% (5 out of 8 

conforming samples), respectively. Also, the 

bottleneck‘s conforming rate for      in the two 

methods of TA-MODJS and BD-OE for problems to 

different scales of DJS is generally up to 75% (18 

out of 24 conforming samples). 

 The BR‘s conforming rate for      in the two 

methods of TA-MODJS and SBD for different 

scales of DJS is up to 67% (16 out of 24 conforming 

samples). 

 
Figure 9. The scheduling results using the BRD by the 
three methods in a three scales 
 

 

 The results from solving scheduling problem based 

on the detected BR for variations indicate 

improvment in 88% of problems (7 out of 8 better 

samples). 

 The BR‘s conforming rate in the static and dynamic 

JS problems is up to 50% (4 out of 8 conforming 

samples), 63% (5 out of 8 conforming samples), and 

88% (7 out of 8 conforming samples) respectively. 

Also the BR‘s conforming rate for the problems of 

static and dynamic with different scales is up to 67% 

(16 out of 24 conforming samples). 

 Another advantage of TA-MODJS over other 

methods, especially over SBD method, is its 

reduction in each sample‘s run time to 5 seconds. 

Since the SBD method requires improved 

scheduling for calculating each machine‘s active 

period to detect the BR, run time depends on the 

function of the improved algorithm and the 

corresponding parameters. 

The above-mentioned results indicate that the proposed 

TA-MODJS method is an efficient method for the BRD 
problem in the static and dynamic MODJS problems. 

In other words, it can be stated that the TA-MODJS 

method (considering run time, complexity, and 

scheduling results) functions better than any of the 

existing three methods (BD-OE, SBD, and MWL) in the 

BRD problems literature. 

 

5. 3. Analyzing the Performance of Ta-Modjs        

According to concepts of the TOC, the throughput of all 

manufacturing systems is limited by the capacity of the 

BR(s) [2]. Hence, in order to improve system 

performance in flexibility DJS environments we applied 

TA-MODJS. The results based on Kacem, Brandimarte 
and Dauzere-peres instances [25] are indicated in 

Tables 12 through 14. 
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TABLE 12. BD results for the Kacem instances 

problem nm 

static scheduling dynamic scheduling 

bottleneck 

resource 

computational 

time(s) 

bottleneck 

resource 

computational 

time(s) 

01 88 7 2.13 4 2.00 

02 1010 8 2.29 2 2.29 

03 1510 4 4.98 10 5.05 

 

 
TABLE 13. BD results for the Brandimarte instances 

problem nm 

static scheduling dynamic scheduling 

bottleneck 

resource 

computational 

time(s) 

bottleneck 

resource 

computational 

time(s) 

MK 01 106 2 2.29 2 4.29 

MK 02 106 2 4.70 2 4.42 

MK 03 158 1 13.80 1 13.79 

MK 04 158 1 8.70 1 8.83 

MK 05 154 4 10.68 3 10.75 

MK 06 1015 7 11.69 7 11.69 

MK 07 205 4 12.14 4 11.79 

MK 08 2010 10 25.39 10 24.82 

MK 09 2010 8 25.59 8 25.51 

MK 10 2015 5 25.82 2 26.47 

 
 

TABLE 14. BD results for the Dauzere-peres instances 

Problem nm 

Static Scheduling Dynamic Scheduling 

Bottleneck 
Resource 

Computational 
Time(s) 

Bottleneck 
Resource 

Computational 
Time(s) 

01a 105 2 14.70 2 14.91 

02a 105 4 16.08 4 14.91 

03a 105 4 14.66 4 14.96 

04a 105 2 14.91 2 14.71 

05a 105 4 17.44 3 15.13 

06a 105 3 15.04 2 14.60 

07a 158 6 26.83 6 25.95 

08a 158 7 25.95 2 25.72 

09a 158 3 26.07 3 25.76 

10a 158 6 26.66 6 26.46 

11a 158 2 29.16 3 27.95 

12a 158 1 27.74 1 26.75 

13a 2010 6 40.89 6 40.95 

14a 2010 2 41.51 10 40.92 

15a 2010 6 41.33 10 41.19 

16a 2010 6 41.36 6 41.12 

17a 2010 7 41.37 2 41.66 

18a 2010 9 42.18 10 41.30 

6. CONCLUSIONS 
 
Inefficient use or idling resource(s) in manufacturing 

systems is instance of energy wastage. Since nowadays 

energy saving is one of the crucial decisions, one of the 

ways in this case is efficient use of resources in 

industrials systems. Most manufacturing systems have 

BR(s). The BR is a machine or a number of machines 

which prevent better performance of the systems. The 

existence of BR in a manufacturing causes considerable 

reduction in efficiency. Quick and appropriate detection 

of BR(s) place(s) can lead to improvement in operation 

management of production resources, increase in 

system‘s throughput, and also reduction of total energy 

consumption costs. In MODJS systems, one or more 

machines may also act as a BR(s). Literature review 

indicates that BRD problem in JS problems, by using 

different suitable dispatching rules on each machine is 

NP-Hard. In spite of the mentioned fact, in such 

problems, the way a BR is defined and an easily 

implemented method is designed for BRD is still 

challenging and interesting area for the researchers of 

this issue. Being dynamic and multi-objective for these 

environments adds to their computational complexities. 

Literature review indicates that Bottleneck Resources 

Detection (BRD) problem in the ―Multi-Objective and 

the Dynamic conditions of job-shop‖ is an important 

issue which has not been studied before, due to its 

computational complexity. In this paper, by using 

Taguchi method, a prior-to-run BRD method namely, 

TA-MODJS has been developed. Simulation results of 

the TA-MODJS in a static and single-objective case of 

this type of problems, and the existing three methods in 

BRD literature (MWL, SBD, and BD-OE methods) for 

different size samples of problem indicate that the four 

mentioned methods have the same results most of the 

times; however, the efficiency of TA-MODJS method, 

in contrast to the three existing methods in BRD 

literature (MWL, SBD, and BD-OE methods), 

especially in scheduling results is greater. Moreover, the 

TA-MODJS method can detect BR(s) before setting up 

a MODJS system. Planning the material flow and 

combining it with scheduling in MODJS is among the 

issues for further research. 
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 هچكيد
 

 
کبرّبی هْن در ایي سهیٌِ،  شَد. یکی اس راُ ّب هحسَة هی گیزی جَیی در اًزژی یکی اس ٍجَُ اسبسی در تصوین اهزٍسُ صزفِ

بکی ّبی سبخت ٍ تَلیذ ٍاقعی ح گزفتِ در سیستن ّبی صٌعتی است. هطبلعبت اًجبم ثزداری کبرآ اس هٌبثع تَلیذی در هحیط ثْزُ

ًوبیٌذ. اس  ( عول هیBRّب ثِ عٌَاى گلَگبُ ) ای اس هبشیي ّب ٍ در اغلت هَاقع، یک یب هجوَعِ اس ایي است کِ در ایي هحیط

ّبی تَلیذی ثز اسبس ظزفیت  گیزی کبرآهذ اس هٌبثع تَلیذی در سیستن ( ثْزTOCُّب ) ثز اسبس تئَری هحذٍدیت ،سَیی دیگز

ّبیی، ثبیستی اقذام ثِ شٌبسبیی، ارسیبثی ٍ  هٌظَر ثْجَد عولکزد چٌیي سیستنِ رٍ ث َد. اس ایيش هٌجع/ هٌبثع گلَگبّی هحذٍد هی

ثْجَد عولکزد )تب حذ هوکي( چٌیي هٌبثع ارسشوٌذی ًوَد. هطبلعبت حبکی اس ایي است کِ هسئلِ شٌبسبیی هٌبثع گلَگبّی در 

ِ دلیل پیچیذگی هحبسجبتی کوتز در ادثیبت هَرد ثزرسی ّبی کبرکبرگبّی پَیبی چٌذّذفی، اس جولِ هسبئلی است کِ ث هحیط

ّبی کبرکبرگبّی پَیبی چٌذّذفی،  هٌظَر شٌبسبیی گلَگبُ)ّب( در هحیطِ رٍ تَسعۀ رٍیکزدی کبرآهذ ث اًذ. اس ایي قزار گزفتِ

ّبی  ای هحیطثبشذ. در ایي هقبلِ، یک رٍش شٌبسبیی هٌبثع گلَگبّی هجتٌی ثز رٍش تبگَچی ثز ّذف ایي تحقیق علوی هی

( تَسعِ دادُ شذُ است. رٍش هذکَر اّذاف هسئلِ را ثِ عٌَاى TM-MODJSکبرکبرگبّی پَیبی چٌذّذفی )تحت عٌَاى 

ای را ثب تزکیت قَاعذ تَسیعی هختلف ثزای حل هسئلِ شٌبسبیی  شبخص ثزآٍردی درًظز گزفتِ ٍ آسهبیشبت هحذٍد ٍ ًوًَِ

دّذ. هقبیسۀ ًتبیج رٍش پیشٌْبدی حبکی اس کبرآهذی  َیبی چٌذّذفی، ارائِ هیّبی کبرکبرگبّی پ هٌبثع گلَگبّی در هحیط

 ثٌذی در یک سهبى هعقَل است ثبلای آى اس ثعُذ هعیبرّبیی ًظیز ًزخ ثْجَد در ًتبیج سهبى
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