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A B S T R A C T  
 

 

The present study seeks to investigate the capacity of polyaniline/titanium dioxide (PAn/TiO2) and 
Polypyrrole/titanium dioxide (PPy/TiO2) nano-adsorbents to adsorb Congo red anionic dye (CR) from 

aqueous solution. The variables effective in CR adsorption, including adsorbent dose, pH of the 

solution, contact time, initial dye concentration, and temperature were examined. The study yielded the 
result that a decrease in pH increases the adsorption capacity of both nano-adsorbents. The adsorbent 

dose and optimum contact time of PAn/TiO2 and PPy/TiO2 nano-adsorbents were [0.1 gr and 20 min] 

and [0.2 gr and 60 min], respectively. The adsorption kinetics was studied with the pseudo-first-order, 
pseudo-second-order, and Weber–Morris equations. Kinetic studies showed that the CR adsorption 

process onto both nano-adsorbents followed the pseudo-second-order kinetics model, which indicates 

that the adsorption process is chemisorption-controlled. Langmuir, Freundlich, Temkin, and Dubinin–
Radushkevich Isotherms were applied to the adsorption data to estimate the maximum adsorption 

capacity as well as the intensity and energy of adsorption. The experimental data were best represented 

by Freundlich isotherm model compared to the other models. Analysis of data with Dubinin-
Radushkevich isotherm showed that the adsorption of CR onto both nano-adsorbents is a 

chemisorption process. Moreover, Thermodynamic parameters such as ∆G, ∆H, and ∆S were 

calculated. The results showed that the adsorption of CR onto both nano-adsorbents was spontaneous 
and exothermic.  

doi: 10.5829/idosi.ije.2016.29.12c.04 
 

 
1. INTRODUCTION1 
 

Dye is one of the pollutants posing dangerous threat to 

the environment and human health as well. They are 

widely used in different industries such as textile 

industry. Dye removal from industrial wastewater is a 

difficult process. In other words, dye is difficult to treat, 

consequently, these pollutants along with the other 

industrial wastewater find their way to the environment. 

15 to 20% of the dye used in textile factories enters the 

wastewater stream [1]. Dyes are organic compounds 

containing one or more benzene rings. Due to their 

toxicity and late hydrolysis, such materials cause 

irreparable damage to the environment and humans, 

namely cancer, mutagenesis, etc [2]. Therefore, 
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wastewater containing dyestuff is considered as one of 

the serious threats to humans' health and the 

environment [3, 4]. Due to their capacity to remove 

highly persistent pollutants efficiently, adsorption 

techniques have recently been taken into consideration. 

In so doing, pollutant removal was done through 

binding it to a solid organic material or inorganic 

matrix; the binding can be done by ion exchange, 

electrostatic, vander Waals, complexation, etc.. The 

process of dye removal from wastewater is dependent 

on different conditions such as adsorbent particle size, 

contact time, temperature, environment pH, and the 

presence of surfactants and metals [5]. The adsorption 

process is considered to be an effective method only if 

an efficient adsorbent with high adsorption capacity is 

used. Nano-sized materials, due to their high specific 

surface area, high reactivity, and high adsorption and 
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desorption capacity, have many applications in 

environmental remediation and adsorption of 

contaminants from wastewater [6-11]. Different 

adsorbents, including Mn-doped Fe3O4 nanoparticle-

loaded activated carbon (Mn-Fe3O4-NP-AC) [12], 

activated carbon/γ-Fe2O3 nanocomposite [13], 

Fe3O4/MgO nanoparticles [14], iron nanoparticles [15], 

Cu0.5Mn0.5Fe2O4 nanospinels [16], have been examined 

for the purpose of dye removal from wastewater. Since 

conductive polymers were identified, a great bulk of 

studies has been carried out in the realm of their 

applications. Such compounds can be used in 

rechargeable batteries and capacitors, sensors, and fiber 

coating as well [17-19]. Conductive polymers have 

recently been considered as adsorbents regarding the 

analysis of environmental pollutants [20]. Some of the 

conductive polymers such as polyaniline and 

polypyrrole are synthesized facilely and enjoy high 

environmental and thermal stability, conductivity, and 

bio-compatibility; that is why these compounds have 

come into the focus of many researchers [21-24]. 

Polyaniline and polypyrrole have ion exchange 

properties and are capable of removing various 

pollutants including heavy metals and dyes from 

aqueous solutions. Ion exchange properties of these 

polymers are dependent on different conditions, 

including polymerization conditions, the presence of 

stabilizer, the size and type of the dopant, and polymer 

size. Furthermore, conductive polymers feature 

considerable positive sites that can remove pollutants 

such as anionic dyes through Coulomb forces [25]. 

Combining polyaniline and polypyrrole with some 

materials including metallic nanoparticles increases its 

adsorption capacity. The results of the study conducted 

by Shanehsaz et al. showed that iron oxide nanoparticles 

covered by polypyrrole are highly efficient in adsorbing 

reactive blue 19 (RB19) dye. The maximum adsorption 

capacity was reported to be 112.36 mg/g [26]. In the 

study carried out by Salem et al., polyaniline-silver 

nanocomposite was used as an adsorbent for the 

removal of brilliant green dye from aqueous solution. It 

was also found that adsorption data fits the Langmuir 

isotherm [27]. Khalili et al. came to the result that 

polyaniline/Sb2O3 nanocomposite are capable of 

removing pb(II) from aqueous media [28].        

Titanium dioxide nanoparticles are regarded as one of 

the most widely used metal particles. TiO2 NPs can be 

used in membranes, gas sensors, solar cells, battery and 

catalyst, as well as dye degradation [29-34]. These 

particles, used as nano-fillers, lead to the modification 

of the polymeric network, which consequently, 

increases the surface area of the adsorbent allowing 

adsorbates to be adsorbed. Fabrication of conductive 

polymer composites (CPCs) through TiO2 has been 

reported [35, 36]. Congo red is one of the diazo dyes. It 

is soluble in water and exits in wastewater of some 

industries such as textile, leather, printing and paint. 

This dye is toxic, carcinogenic and mutagenic and 

causes some serious problems such as respiratory and 

gastrointestinal diseases and irritation of skin and eye. 

So removing this dye from water and wastewater is 

essential and necessary [37, 38]. Some characteristics of 

congo red is presented in Table 1. In this study, 

PAn/TiO2 and PPy/TiO2 nanocomposites were 

considered as two effective nano-adsorbents removing 

anionic dyes Congo red from aqueous solution. The 

impacts of different parameters, including adsorbent 

dose, pH of the solution, contact time, initial dye 

concentration, and temperature on CR adsorption were 

scrutinized. Moreover, Kinetic, Isotherm, and 

Thermodynamic studies of CR adsorption were also 

carried out for the purpose of gaining a better 

understanding of adsorption characteristics. 

 

 

2. EXPERIMENTAL 
 

2. 1. Synthesis of Nano-adsorbents     The procedure 

used for the synthesis of PPy/TiO2 nanocomposite has 

been previously reported [39]. In order to prepare 

PAn/TiO2, 2.5 g of ammonium peroxydisulfate, as an 

oxidizing agent, was added to 100 ml of 1M sulfuric 

acid containing Sodium dodecylbenzenesulfonates (0.4 

g) as a surfactant and 0.1 g of titanium dioxide 

nanoparticles. The solution was stirred by a magnetic 

stirrer for 30 minutes. Afterwards, 2 ml of aniline 

monomer, which was distilled once prior to use, was 

added drop-wise to the solution. The process of 

nanocomposite formation was characterized by the 

change of color to a dark solution. It was filtered after 5 

hr. The final product to be used as an adsorbent features 

beads connected to each other and changes into a fine 

powder.  
 

2. 2. CR Adsorption Experiment        Different 

parameters of the study, including adsorbent dose, pH of 

the solution, contact time, initial dye concentration, and 

temperature were changed, and their impacts on the 

efficiency of different nano-adsorbents in removing CR 

from the solution was investigated. The impact of 

different parameters on CR removal efficiency was 

investigated by keeping four parameters constant and 

changing one.  

 

 
TABLE 1. Some characteristics of Congo red [40] 

C₃₂H₂₂N₆O₆S₂·2Na Chemical formula 

 

Chemical structure 

696.66 g/mol Molecular weight 

496           
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Then, kinetic, isotherm, and thermodynamic studies of 

CR adsorption were also carried out. In all the 

experiments, solution volume was 50 ml and stirring 

speed was 500 rpm. Sulfuric acid and sodium hydroxide 

were used to change the solution pH and create acid-

alkalin environment, respectively. A certain amount of 

adsorbent powder was added to the initial solution with 

certain CR concentration. The mixture was next stirred 

using a magnetic stirrer for a specified time so that the 

adsorbent was fully exposed to the adsorbate. 

Afterwards, the solution was filtered, and the 

concentration of the remaining dye in solution was 

determined by a UV-Vis spectrophotometer at 496 nm 

maximum wavelength. CR removal efficiency was 

determined by the following equation:    

                             (1) 

where, Ci (mg/l) and Cf (mg/l) were the initial and final 

CR concentrations, respectively. qt (mg/g) and qe (mg/g) 

are CR adsorption capacity at time (t) and the amount of 

adsorption at equilibrium, respectively, which were 

calculated based on the formula:  

           
 

 
               

 

 
  (2) 

where, Ct is the concentration of the CR at time (t); V 

(ml) is the volume of the solution; m (gr) is the 

adsorbent mass, and Ce (mg/l) is the equilibrium 

concentration of the CR.  
 

 

3. RESULTS AND DISCUSSION 
 
3. 1. Characterization of Nano-adsorbents         The 

morphology of the synthesized nano-adsorbents were 

investigated using Scanning Electron Microscopy 

(SEM). Figures 1a and 1b depict the SEM images of 

PAn/TiO2 and PPy/TiO2 nano-adsorbents. As it is 

shown in the figures, the synthesized adsorbent particles 

feature nano-scaled size, uniform distribution, and 

spherical shape. The average size of PAn/TiO2 

nanocomposite was 58 nm and that of PPy/TiO2 

nanocomposite was found to be 102 nm. The produced 

adsorbent particles were very small due to the presence 

of stabilizers in the synthesis environment. The 

stabilizer can either form a chemical bond with polymer 

or be physically adsorbed, consequently preventing the 

excessive growth of the polymer chain and accumulated 

mass of particles during polymerization. Therefore, 

smaller adsorbent particles with more uniform 

distribution and spherical shape will be produced, which 

have higher specific surface area, and consequently 

higher adsorption capacity. Measurement software was 

used to measure the average particle size of PAn/TiO2 

and PPy/TiO2 nano-adsorbents. For this purpose, about 

35-40 particles of each nano-adsorbent was chosen and 

average particle size was calculated by software. Fourier 

Transform Infrared Spectroscopy (FTIR) was applied to 

ensure the formation of the nano-adsorbents and 

examine their chemical structure. Figures 2, 3a and 3b, 

respectively, present the infrared spectrum of TiO2 

nanoparticles and the synthesized PAn/TiO2 and 

PPy/TiO2 nano-adsorbents within the range of 450-4000 

Cm
-1

. The large peak at the wavelength 669 Cm
-1

 was 

ascribed to Ti-O bond (Figure 2). As Figure 3a shows, 

the FTIR spectrum of PAn/TiO2 features peaks at 

wavelength 1561, 1478, 1302, 1135, 809 Cm
-1

 ascribed 

to (C=C stretching vibration of the quinoid ring), (C=C 

stretching vibration of the benzenoid ring), (C-N 

stretching vibration), (C-H in-plane deformation), and 

(C-H out-of-plane deformation), and the FTIR spectrum 

of PPy/TiO2 (Figure 3b) involves peaks at wavelength 

1534, 1289, 1160, 1030, 887 Cm
-1

 attributed to pyrrole 

rings, (C-N stretching vibration), (C-H in-plane 

deformation), (N-H in-plane deformation), (C-H  out-of-

plane deformation). Furthermore, peaks at wavelength 

635 Cm
-1

 and 674 Cm
-1

 were ascribed to Ti-O bond, 

which indicates the presence of TiO2 nanoparticles in 

the above-mentioned nanocomposites. 
 
3. 2. The Effect of Adsorbent Dose on CR 
Adsorption       In order to investigate the effects of 

adsorbent dose, different amounts of nano-adsorbent 

(0.02-0.2 gr) were added to 50 ml of 30 mg/L dye 

solution. The effect of adsorbent dose on CR adsorption 

percentage was shown in Figure 4. 
 

 
Figure 1. SEM of (a) PAn/TiO2 and (b) PPy/TiO2 

 
 

 
Figure 2. FTIR of TiO2 nanoparticles 

 
 

 
Figure 3. FTIR of (a) PAn/TiO2 and (b) PPy/TiO2 
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As the figure shows, an increase in adsorbent dose leads 

to a rise in the adsorption efficiency of both nano-

adsorbents. CR adsorption percentage per 0.1 g 

adsorbent dose was measured 99.02% and 89.83% using 

PAn/TiO2 and PPy/TiO2 nano-adsorbents, respectively. 

When 0.2 g of PPy/TiO2 nano-adsorbent was used, 

adsorption percentage reached 98.12%. The optimum 

adsorbent dose of PAn/TiO2 and PPy/TiO2 

nanocomposites were considered to be 0.1 g and 0.2 g, 

respectively. 
 

3. 3. The Effect of pH on CR Adsorption      The 

present study investigated the effect of solution pH on 

CR adsorption percentage of the two nano-adsorbents. 

In so doing, the range of pH was considered to be 2-9.5. 

The results obtained from pH change and its effect on 

adsorption efficiency were illustrated in Figure 5. As it 

is shown in the figure, the adsorption percentage of both 

nano-adsorbents decreased in the solutions with higher 

pH. An increase in the solution pH (alkaline condition) 

leads to an increase in the negative charge density of the 

adsorbents surface area. The electrostatic repulsion 

between the negatively charged pigment and negatively 

charged surface of the adsorbents reduces CR 

adsorption. However, as the figure shows, decreasing 

the solution pH (from 9.5 to 2) and providing acidic 

condition increases the adsorption efficiency of both 

adsorbents; the reason might lie in the fact that at low 

pH, active sites in the structure of nano-adsorbents can 

be protonated. As a result, the positive charge density of 

adsorbents surface area increases, and consequently, CR 

adsorption efficiency increases due to electrostatic 

attraction.  As the figure shows, the adsorption 

efficiency of both adsorbents is high at pH less than 6. 

As in the range pH=2-6 no significant change occurs, 

further experiments were carried out at pH=6 (natural 

solution pH) as an optimum pH.  
 

3. 4. The Effects of Contact Time on CR 
Adsorption      Figure 6 illustrates the effect of contact 

time on CR adsorption efficiency of the two nano-

adsorbents. The contact time was changed from 1 to 60 

minutes. As the figure shows, an extended contact time 

leads to an increase in the adsorption efficiency of both 

nano-adsorbents. Regarding PAn/TiO2 nano-adsorbent, 

increasing the contact time from 1 min to 20 min causes 

the removal efficiency to increase from 94.14% to 

99.02% and remain constant afterwards. 
 
 

 
Figure 4. Effect of adsorbent dose on removal efficiency 

As a result, the optimum adsorption time of this nano-

adsorbent was determined to be 20 minutes. Moreover, 

98.29% of CR was adsorbed within 8 minutes, which 

demonstrate that this adsorbent is capable of adsorbing 

CR in a short period of time. Figure 7 depicts PAn/TiO2 

removing CR within different contact time, i.e. 1 min, 8 

min, and 20 min. As for PPy/TiO2, an increase in 

contact time from 1 min to 60 min increases removal 

efficiency of the nano-adsorbent from 85.6% to 98.12%. 

Thus, the optimum adsorption time of this nano-

adsorbent was considered to be 60 min. 

 

3. 5. Adsorption Kinetics         The study of 

adsorption kinetics describes the adsorbate uptake rate 

which controls the residence time of adsorbate uptake at 

the solid-solution interface. The adsorption kinetics was 

investigated using the pseudo-first-order, pseudo-

second-order, and Weber–Morris equations. The 

pseudo-first-order equation introduced by Lagergren in 

1898 [41], describes the adsorption of liquid-solid 

systems based on solid capacity. This model is based on 

the assumption that the rate of the change of adsorbate 

uptake with passing of time is straightly proportional to 

the difference in saturation concentration and the rate of 

solid uptake with time. pseudo-first-order equation is 

expressed as follows:     

                 (
  

     
)       (3) 

where,   (mg/g) and  
 
(mg/g) are the amount of CR 

adsorbed at equilibrium and at time (t); and K1 is the 

pseudo-first-order rate constant; Figures 8a and 8b 

depict the plots of the pseudo-first-order model for CR 

adsorption through PAn/TiO2 and PPy/TiO2.  

 

 

 
Figure 5. Effect of pH on Removal Efficiency 

 

 
Figure 6. Effect of contact time on Removal Efficiency 

 

 
Figure 7. CR solution (a) before adsorption, (b) after 

adsorption with contact time: 1min, (c) 8min and (d) 20 min. 
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The pseudo-first-order rate constants of CR adsorption 

were presented in Table 2. 

The kinetic data of CR adsorption were also 

investigated using pseudo-second-order model. This 

kinetic model assumes that the process of adsorption of 

adsorbate (CR) is chemisorption. Pseudo-second-order 

model is expressed  as follows [42]: 

 

  
 

 

    
 
 

 

  
   (4) 

where, K2 is the pseudo-second-order rate constant. The 

plots of pseudo-second-order model for CR adsorption 

through PAn/TiO2 and PPy/TiO2 nano-adsorbents were 

presented in Figures 9a and 9b. 

In order to determine whether intraparticle diffusion 

is a rate-controlling step in CR adsorption, intraparticle 

diffusion (Weber-Morris) model was applied for the 

analysis of the kinetic data. The intraparticle diffusion 

model introduced by Weber and Morris is expressed as 

follows [43]: 

         
          (5) 

where,     is the intraparticle diffusion rate constant; 

and C is a constant that gives an idea about the 

thickness of the boundary layer. 

 

 
TABLE 2. Kinetic constants for Congo Red adsorption 

Weber-Morris Pseudo-first order Pseudo-second order 

PAn/TiO2: 

Kid = 0.1014 

C=14.276 

R2 : 0.6811 

PAn/TiO2: 

K1: 0.2606996 

qe: 1.0413578 

R2 : 0.9715 

PAn/TiO2: 

K2: 0.6906154 

qe :14.925373 

qe
*:14.85347985 

R2 :1 

PPy/TiO2: 

Kid=0.1067 

C=6.2172 

R2 : 0.7223 

PPy/TiO2: 

K1: 0.0099029 

qe:0.928111171 

R2 : 0.8654 

PPy/TiO2: 

K2: 0.131356 

qe :7.23589 

qe
*:7.358974359 

R2 : 0.9953 

qe
*:Experimental 

 

 

 
(a) 

 
(b) 

Figure 8. Pseudo-first-order plot of CR adsorption on (a) 

PAn/TiO2 and (b) PPy/TiO2 

If the plot (qt vs.     ) is linear, the process of CR 

adsorption is controlled by diffusion resistance. The 

plots (qt vs.     ) for CR adsorption onto the two nano-

adsorbents were presented in Figures 10a and 10b. The 

slope and intercept of the plot can be used to derive 

values for the constants     and C, respectively. The 

values were shown in Table 2. The correlation      of 

the three kinetic models, i.e. pseudo-first-order, pseudo-

second-order, and Weber–Morris equations for 

PAn/TiO2 nanocomposite was measured as 0.9715, 1, 

and 0.6811, respectively. As for PPy/TiO2 

nanocomposite, the values were calculated as 0.8654, 

0.9953, and 0.7223, respectively (Table 2). The 

experimental data were well described by the pseudo-

second-order kinetic model, which indicates that the 

process of CR adsorption onto both nano-adsorbents is 

chemisorption-controlled. Furthermore, CR adsorption 

capacity of both nano-adsorbents obtained through 

pseudo-second-order kinetic model was very close to its 

experimental value.  

 
3. 6. The Effect of the Initial Concentration on CR 
Adsorption Capacity       In order to scrutinize the 

effect of the initial concentration on adsorption capacity, 

CR solutions with the initial concentration of 30-100 

mg/L were provided. The plot of the adsorption capacity 

based on the initial concentration of dye solution was 

presented in Figure 11. The adsorption capacity of both 

nano-adsorbents increased with increasing the initial 

concentration.  
 

 

 
(a) 

 
(b) 

Figure 9. Pseudo-second-order plot of CR adsorption on (a) 

PAn/TiO2 and (b) PPy/TiO2 
 

 

 
(a) 

 
(b) 

Figure 10. Weber-Morris plot of CR adsorption on (a) 

PAn/TiO2 and (b) PPy/TiO2 

-0.4

-0.2

0

0 10 20 30 40 50

lo
g
 (

q
e
-q

t)
 

t (min) 

-2

-1

0

0 5 10 15 20

lo
g
 (

q
e
-q

t)
 

t (min) 

0

10

0 10 20 30 40 50 60 70

t/
q

t 

t (min) 

0

5

0 10 20 30 40 50 60 70

t/
q

t 

t (min) 

6

8

0 2 4 6 8 10

q
t 

t0.5 

14

16

0 2 4 6 8 10

q
t 

t0.5 



M. Tanzifi et al. / IJE TRANSACTIONS C: Aspetcs  Vol. 29, No. 12, (December 2016)   1659-1669                            1664 
 

3. 7. Isotherm Models      Isotherm equations describe 

the relationship between dye concentration in solution 

and the amount of dye adsorbed on the solid phase at 

equilibrium. The present study assessed CR adsorption 

data using four isotherms, namely Langmuir, 

Freundlich, Temkin, and D-R. In Langmuir isotherm, 

adsorption energy is independent of surface coverage; 

there is a uniform surface with equivalent adsorption 

sites; and each adsorption site can simply adsorb one 

species. Moreover, the adsorption is limited to a 

monolayer. Langmuir isotherm is expressed as follows 

[44]: 

   
      

      
     (6) 

qe is the amount of CR adsorbed per unit weight of 

nano-adsorbent (mg/g); Ce is the equilibrium solution 

concentration (mg/l); qm is the maximum adsorption 

capacity; and KL is equilibrium constant. Langmuir 

isotherm can be linearized as follow: 

  

  
 

 

    
 

 

  
    (7) 

Linear Langmuir plot can be used to derive the values of 

maximum adsorption capacity and equilibrium constant. 

This plot for PAn/TiO2 and PPy/TiO2 nano-adsorbents 

was illustrated in Figures 12a and 12b, respectively. The 

value of the maximum CR adsorption capacity and 

equilibrium constant, obtained from the Linear 

Langmuir equation were presented in Table 3. As can be 

seen, CR adsorption data on PPy/TiO2 nanocomposite, 

does not fit to the Langmuir isotherm, because the slope 

of line is negative [45]. RL is a dimensionless constant 

and expresses the essential features of the Langmuir 

isotherm [46]:  

   
 

      
  (8) 

Ci is the initial concentration; and KL is Langmuir 

constant. As the RL values calculated in the range 0-1, 

adsorption process onto adsorbent is favorable. 

Freundlich isotherm is an empirical equation. It is 

used for heterogeneous surface energies and multilayer 

adsorption. This equation does not predict the maximum 

adsorption and is expressed as follows [47]:  

         
 

 ⁄      (9) 

where, KF is Freundlich constant; and 1/n is adsorption 

intensity which obtained from the intercept and the 

slope of the linearized plots of         versus        . 

 

 
Figure 11. Effect of Initial Concentration on adsorption 

capacity 

TABLE 3. Isotherm constants for Congo Red adsorption 

D-R Tempkin Freundlich Langmuir 

PAn/TiO2: 

=410-9 

Xm=94.94 

E=11.18 

R2: 0.816 

PAn/TiO2: 

B:17.77 

KT :6.5566 

R2: 0.9631 

PAn/TiO2: 

KF: 31.3834 

n:1.62285 

R2: 0.9759 

PAn/TiO2: 

KL: 0.6813 

qm(mg/g)= 80.645 

RL:0.014465- 0.046644 

R2: 0.945 

PPy/TiO2: 

=610-9 

Xm=50.14 

E= 9.128 

R2: 0.6644 

PPy/TiO2: 

B: 22.392 

KT : 
0.54182 

R2: 0.8643 

PPy/TiO2: 

KF: 2.10329 

n: 0.67024 

R2: 0.9301 

PPy/TiO2: 

KL: -0.08988 

qm(mg/g)= -29.154 

RL:(-0.58948)-   

(0.12518),   R2: 0.6444 

 

 

The plots of Freundlich model were presented in 

Figures 13a and 13b. Temkin Isotherm contains a factor 

that expresses adsorbent–adsorbate interactions. Temkin 

equation is described as follows [48]: 

   
  

  
            (11) 

The above equation can be linearized as: 

                     (12) 

 

 

 
(a) 

 
(b) 

Figure 12. Langmuir adsorption isotherm of Congo Red on 

(a) PAn/TiO2 and (b) PPy/TiO2 

 

 

 
(a) 

 
(b) 

Figure 13. Freundlich adsorption isotherm of Congo Red on 

(a) PAn/TiO2 and (b) PPy/TiO2 
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In which   
  

 
 is defined. Here, KT is Temkin 

isotherm equilibrium binding constant (L/g);    is 

Temkin isotherm constant;   is the universal gas 

constant                 ;   is temperature in Kelvin 

(293.15 K); and   is constant related to the adsorption 

heat (J/mol).   and    values can be calculated via  
 
 

versus         plot (Figures 14a and 14b).   and    

values for the two nano-adsorbents were shown in Table 

3.  

D-R isotherm [49] is used to express the type of CR 

adsorption (physical or chemical). The linear form of 

model is presented in the following equation: 

                   (13) 

where,  is the Polanyi potential;    is the maximum of 

adsorption capacity and  is the constant related to the 

adsorption energy;  is presented as:  

           
 

  
   (14) 

Figures 15a and 15b illustrate        vs.    plots for the 

two nano-adsorbents. Isotherm constant (), calculated 

by the slope of the plots. The average adsorption 

energy, E, (kJ/mol) obtained by  is calculated by the 

following equation:  

            (15) 

 

 
(a) 

 
(b) 

Figure 14. Temkin adsorption isotherm of Congo Red on (a) 

PAn/TiO2 and (b) PPy/TiO2 
 

 

 
(a) 

 
(b) 

Figure 15. D-R adsorption isotherm of Congo Red on (a) 

PAn/TiO2 and (b) PPy/TiO2 

If the magnitude of E is between 8 and 16 kJ/mol, the 

adsorption process is regarded as chemisorption 

whereas if it is less than 8 kJ/mol, the adsorption 

process is of physical nature.  

The results of the study confirmed that the process 

of CR adsorption onto both nano-adsorbents is 

chemisorption. The results obtained using isotherm 

studies are depicted in Table 2. It can be claimed that 

Freundlich adsorption isotherm shows a better fit to CR 

adsorption data than the other isotherms. 

 

3. 8. Thermodynamic Studies of Adsorption 
Process         In order to evaluate the effect of 

temperature on the adsorption of Congo red, adsorption 

experiments were carried out at 20-60C. The results of 

temperature change and its effect on CR adsorption 

efficiency were illustrated in Table 4. As the table 

shows, an increase in temperature decreases the 

adsorption efficiency of both nano-adsorbents. This 

result indicates that CR adsorption onto both nano-

adsorbents is exothermic in nature. The results of the 

experiments on the effect of temperature on CR 

adsorption as well as the Equations (16) to (18) were 

used to evaluate thermodynamic parameters, i.e. Gibbs 

free energy change     , the enthalpy change     , 

and the entropy change      [50]: 

   
  

    
  (16) 

       
   

  
 

  

 
    (17) 

                (18) 

where, Fe is the fraction of adsorbed dye at 

equilibrium;   is the universal gas constant         

      ;   is temperature in Kelvin; and    is 

thermodynamic equilibrium constant. The enthalpy 

change      and entropy change      values of CR 

adsorption for both nano-adsorbents were obtained from 

the slope and intercept of       ) vs. 
 

 
 plot, respectively 

(Figures 16a and 16b). The values were presented in 

Table 5. As the table shows, the negative value of the 

enthalpy change      is indicative of the exothermic 

nature of the CR adsorption. Furthermore, the negative 

value of Gibbs free energy change      implies the 

spontaneity of CR adsorption process.  

 
3. 9. Comparing PAn/TiO2 with the Other 
Adsorbents      The maximum CR adsorption capacity 

of PAn/TiO2 nano-adsorbent obtained from Langmuir 

isotherm model was compared with that of the 

adsorbents applied in the other studies. The results were 

presented in Table 6. As the table shows, the adsorption 

capacity of the nano-adsorbent used in the present study 

is comparable to that of the adsorbents applied in the 

other studies.  
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TABLE 4. Effect of temperature on adsorption of CR 

Removal efficiency (%) Temperature (C) adsorbent 

99.023 

96.215 

95.848 

20 

40 

60 

PAn/TiO2 

98.119 

88.608 

86.080 

20 

40 

60 

PPy/TiO2 

 

 
 

 
(a) (b) 

Figure 16.       ) vs. 
 

 
 for CR adsorption process on (a) 

PAn/TiO2 and (b) PPy/TiO2 

 

 

 

TABLE 5. Thermodynamic parameters of CR adsorption 

    
  

     
       

  

   
       

  

   
   

Temperature 

(C) 
adsorbent 

-0.06734 -30.5472 

-11.2572 

-8.4237 

-8.6953 

20 

40 

60 

PAn/TiO2 

-0.11905 -43.9569 

-9.6386 

-5.3406 

-5.0465 

20 

40 

60 

PPy/TiO2 

 

 

 

TABLE 6. Comparison of maximum adsorption capacity of 

various adsorbents obtained from Langmuir isotherm 

Adsorbent qm (mg/g) References 

Fe3O4/graphene composite 33.66 [51] 

Fe–Zn nanoparticles 28.56 [52] 

Iron-grafted clinoptilolite 36.70 [53] 

MnFe2O4 nanoparticles 41.99 [54] 

MnFe2O4/PW composite 86.96 [38] 

Hierarchically structured γ-AlOOH 99 [55] 

Luffa cylindrica cellulosic fibre 17.39 [56] 

Apricot stone activated carbon 32.852 [57] 

Cetyltrimethyl ammonium bromide 

modified pumice 
27.32 [40] 

ZrO2 hollow spheres 59.5 [58] 

PAn/TiO2 nanocomposite 80.645 This study 

4. CONCLUSION  
 

In this study, PAn/TiO2 and PPy/TiO2 nanocomposites 

were synthesized through chemical polymerization and 

used as adsorbents of Congo red from aqueous solution. 

The study yielded the result that CR adsorption was 

influenced by environment pH, that is, a decrease in pH 

increases the adsorption efficiency of both nano-

adsorbents. The adsorbent dose and optimum contact 

time of PAn/TiO2 and PPy/TiO2 were [0.1 gr, 20 min] 

and [0.2 gr, 60 min], respectively. When the initial 

concentration of the solution changed from 30 mg/L to 

100 mg/L, the adsorption capacity of PAn/TiO2 

increased from 14.85 to 48.99 mg/g, and that of 

PPy/TiO2 rised 7.35 to 23.78 mg/g. The kinetic data 

suggested that the adsorption process was controlled by 

pseudo-second-order equation, which indicates that the 

adsorption is chemisorption in nature. The constants of 

Langmuir, Freundlich, Temkin, and D-R isotherms were 

calculated for CR adsorption onto the two nano-

adsorbents. The results revealed that the experimental 

data were best represented by Freundlich isotherm 

model compared to the other models. The results 

obtained from D-R isotherm confirmed that the process 

of CR adsorption onto both nano-adsorbents is of 

chemical nature. Also, the results of thermodynamic 

studies demonstrated that CR adsorption onto both 

nano-adsorbents was exothermic and spontaneous.  
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 چكيده
 

 
دس پظيَش حاضش، تًاوایی واوًجارب َای پلی آویلیه/دی اکؼیذ تیتاویًم ي پلی پیشيل/دی اکؼیذ تیتاویًم دس جزب ػطحی 

اص محلًل َای آتی مًسد تشسػی قشاس گشفت. تاثیش متغیشَای مًثش تش فشآیىذ جزب  (CR)سوگضای آویًوی قشمض کىگً 

محلًل، صمان تماع، غلظت ايلیٍ سوگضا ي دما تشسػی شذ. وتایج حاصل اص  pHاص جملٍ مقذاس جارب،  CRػطحی 

ساوذمان جزب ػطحی سوگضا دس مًسد َش دي واوًجارب افضایش یافت. مقذاس جارب ي  pHپظيَش وشان داد کٍ تا کاَش 

گشم 0.1ي پلی پیشيل/دی اکؼیذ تیتاویًم تٍ تشتیة )صمان تُیىٍ جزب تشای واوًکامپًصیت َای پلی آویلیه/دی اکؼیذ تیتاویًم 

شثٍ مشتثٍ ايل، شثٍ مشتثٍ  ػیىتیک َای جزب ػطحی تًػط ػٍ معادلٍدقیقٍ( تذػت آمذ.  00گشم ي 0.2دقیقٍ( ي )20ي 

تش سيی َش دي  CRديم ي مًسیغ يتش مًسد مطالعٍ قشاس گشفت. مطالعات ػیىتیکی وشان داد کٍ فشآیىذ جزب ػطحی 

ب اص معادلٍ ػیىتیکی شثٍ مشتثٍ ديم تثعیت می کىذ کٍ تیان کىىذٌ ایه اػت کٍ فشآیىذ تٍ يػیلٍ جزب شیمیایی واوًجار

، جُت تخمیه حذاکثش ظشفیت جزب، شذت داتیىیه سادشکًیچ کىتشل می شًد. ایضيتشم َای لاوگمًیش، فشيوذلیچ، تمکیه ي

ایضيتشم فشيوذلیچ تُتشیه َمخًاوی سا تا دادٌ َای تجشتی ي اوشطی جزب تشای دادٌ َای جزب ػطحی تکاس گشفتٍ شذوذ. 

وشان داد کٍ جزب ػطحی  داتیىیه سادشکًیچآوالیض دادٌ َا تًػط ایضيتشم دس مقایؼٍ تا دیگش ایضيتشم َا اص خًد وشان داد. 

ي  H ،Gٍ تش سيی َش دي واوًجارب، فشآیىذ شیمیایی می تاشذ. َمچىیه پاسامتشَای تشمًدیىامیکی اص جمل CRسوگ 

S  محاػثٍ گشدیذوذ. وتایج وشان داد کٍ فشآیىذ جزب ػطحی سوگCR  تش سيی َش دي واوًجارب، خًد تٍ خًدی ي

 گشماصا می تاشذ.
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