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A B S T R A C T  
 

 

The present work mainly studies the free vibration of circular magneto-electro-elastic (MEE) nano-
plates based on Kirchhoff’s plate theory within the framework of nonlocal elasticity theory to account 

for the small scale effect. The MEE nano-plate studied here is considered to be fully clamped and 

subjected to the external magnetic and electric potentials. Using nonlocal constitutive relations of MEE 
materials, the governing equations are derived by applying Maxwell’s equation and Hamilton’s 

principle. By employing Galerkin method, the eigen matrix form of the governing equation is obtained. 

The effect of magneto-electric potential on instability of the system is investigated and consequently 
critical values of applied potentials are calculated. A detailed numerical study is conducted to study the 

influences of the small scale effect, thickness and radius of the nano-plate and piezoelectric volume 

fraction of the MEE material on the natural frequencies of nano-plate. Furthermore, the effects of the 

applied magnetic and electric potentials on the size-dependent natural frequencies are investigated 

numerically.  

 

doi: 10.5829/idosi.ije.2015.28.12c.15 
 

 

NOMENCLATURE   

c  Elastic constant (GPa) 0e a  Nonlocal parameter 

e  Piezoelectric constant (C/m2) Greek Symbols  

f  Piezomagnetic constant (N/Am)   Normal strain component 

k  Dielectric constant (C/Vm)   Shear strain component 

d  Magneto electric constant (Ns/VC)   Normal stress component 

D  Electric displacement   Magnetic permeability (Ns2/C2) 

E  Electric field   Electric potential 

B  Magnetic induction   Magnetic potential 

H  Magnetic field   Mass density (Kg/m3) 

h  
Nano-plate thickness 2  Laplacian operator 

R  Nano-plate radius   

 
1. INTRODUCTION1 
 

In recent years, nano-scale structural elements such as 

nano-beams, nano-membranes, nano-plates, nanotubes 

and so others have attracted a great deal of attention. 

                                                           

*
Corresponding Author’s Email: ahadamiri69@yahoo.com (A. Amiri) 

Such nano-structures are used in different fields of 

nano-technology including nano-sensors, nano-

oscillators, nano-actuators and nano-composites. It 

should be pointed out that nano-structures play an 

important role in nano-electromechanical (NEM) 

systems [1-5]. Due to the fact that the classical 

continuum elasticity is scale-independent theory, it may 

give inaccurate results in the analysis of nano-scale 
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structures. In such structures, in order to predict an 

accurate behavior of them, small-scale effects should be 

taken into account. Various types of size-dependent 

theories such as couple stress theory, strain gradient 

theory and nonlocal elasticity theory have been 

developed by researchers in order to modify the 

classical continuum theory. Among all of these scale-

dependent theories, the nonlocal elasticity theory 

developed by Eringen, has been used most commonly 

for analyzing mechanical behavior of nano-scale 

structures with good accuracy [6-9]. 

Because of their intrinsic coupling effects and 

adaptive properties, smart engineering structures 

constructed from the intelligent materials playing an 

important role in different fields of science such as 

nanotechnology. The MEE materials are a class of new 

smart materials which have attracted much attention of 

investigators in recent years. Due to the fact that the 

MEE materials are made from both piezoelectric and 

piezomagnetic phases, their mechanical properties can 

be affected by applying magnetic and electric potentials. 

In the other words, they can exhibit three phase 

coupling effects between magnetic, electric and 

mechanical fields. Therefore, they are able to convert 

energy among magnetic, electric and mechanical 

energies to each other. Compared with the single phase 

smart materials such as piezoelectric and 

piezomagnetic, the MEE composite materials include 

new properties of magneto-electricity with secondary 

pyro-electric effects. These properties allow them to be 

more sensitive and adaptive. It is worth mentioning that 

the obtained magneto-electric effects of MEE composite 

materials will be hundred times larger than that of a 

single phase piezoelectric or piezomagnetic material. 

These new properties can be useful to design more 

efficient sensors and actuators used in the smart or 

intelligent structures [10-15]. 

To date, some works have been done to study the 

mechanical behavior of MEE plates. Using Mindlin 

theory, Li [16] investigated buckling of MEE plate 

resting on Pasternak elastic foundation. Alaimo et al. 

[17] presented an isoparametric four-node finite element 

method for multilayered MEE plates. Equivalent single-

layer plate theory was employed in their study 

considering quasi-static behavior of electric and 

magnetic fields based on first order shear deformation 

theory. Free and deterministic vibrations of a fluid-

contacting isotropic MEE rectangular plate were 

investigated by Chang [18]. Liu [19] obtained closed 

form expressions for bending of MEE rectangular 

plates. Furthermore, they presented exact solutions for 

deformation behavior of BaTiO3-CoFe2O4 MEE 

composites. Using the von Karman plate theory, Xue et 

al. [20] investigated large deflection of a rectangular 

MEE thin plate. In their work, Bubnov-Galerkin method 

was used for transforming the obtained nonlinear 

equation to a third-order algebraic equation. Li et al. 

[21] studied buckling and free vibration of MEE 

rectangular nanoplate based on the nonlocal theory, 

considering Mindlin plate theory. In their analysis, 

effects of magneto-electric potential, spring and shear 

coefficients of Pasternak foundation on buckling load 

were investigated.  

To date, no literature has been reported for the 

detailed study of vibration characteristics of MEE 

circular nano-plates model incorporating the size effect 

which become more significant and must be considered 

for thin nano-plates. To the authors best knowledge, this 

is the first attempt on the free vibration analysis of 

circular MEE nano-plates based on the Kirchhoff’s plate 

theory considering nonlocal elasticity theory. 

Employing Hamilton’s principle, governing equations 

are obtained and, subsequently, to obtain the natural 

frequencies, eigen matrix form of the equation is solved. 

Numerical results reveal the effects of the nonlocal 

parameter, thickness, radius and external magneto-

electric potential on the size-dependent natural 

frequencies. Moreover, the effect of piezoelectric 

volume fraction percentage on vibration and natural 

frequency is determined and results are considered to 

highlight the behavioral difference of classic nano-

plates with nonclassic ones. 

 

 

 

 

Figure 1. MEE circular nano-plate under magneto-electric 

loading.  

 

 
2. NONLOCAL MEE NANO-PLATE MODEL 
 

According to Kirchhoff’s plate theory, the displacement 

field in cylindrical coordinates is expressed as follows: 
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 (1) 

where, ,ru u  and 
zu  are displacement components in 

radial, circumferential and transversal directions of the 

micro diaphragm, respectively (see Figure 1). Using the 

displacement components and neglecting the normal 
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strain in the thickness direction of the plate, the strains 

can be written as:  

2 2

2 2 2

1 1
, ( ),

1
2 ( )
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w w w
z z

r r r r
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 (2) 

Due to axisymmetric deflection of the circular plates, 

the strains expressed in Equation (2) can be denoted as 

following: 

2

2

1
, , 0.r r

w w
z z

r r r
   

 
    

 
 (3) 

For a circular MEE plate structure, the nonlocal 

constitutive relations are given as [22, 23]: 

2 2

0 11 12 13 31 31(1 ( ) ) r r z z ze a c c c e E f H           (4) 

2 2

0 12 11 13 31 31(1 ( ) ) r z z ze a c c c e E f H            (5) 

2 2

0 31 31 33 33 33(1 ( ) ) z r z z ze a D e e e k E d H          (6) 

2 2

0 31 31 33 33 33(1 ( ) ) z r z z ze a B f f q d E H         
 

(7) 

2 2

0 15 11 11(1 ( ) ) r rz r re a D e k E d H      (8) 

2 2

0 15 11 11(1 ( ) ) r rz r re a B f d E H       (9) 

2 2

0 15 11 11(1 ( ) ) ze a D e k E d H       
 

(10) 

2 2

0 15 11 11(1 ( ) ) ze a B f d E H        
 

(11) 

where, e0a is specified as the parameter showing the 

small scale effect on the response of the structure and 

may be determined from experiments or by matching 

dispersion curves of plane waves with those of atomic 

lattice [24].The strain energy of the system is written as: 

(1

)2

r r r r z z z z

e

r r r rV

D E B H
U

D E B H D E B H dV

   

   

         


    (12) 

According to Maxwell’s equation, the electric and 

magnetic fields can be expressed as: 

,z zE H
z z

  
   

 
 (13) 

Due to the fact that the nano-plate is thin, the in-plane 

magnetic and electric field is neglected and it is 

supposed that the nano-plate is polarized in the z 

direction. Therefore, substituting Equations (3) and (13) 

into Equation (12) leads to: 

2

2

1 1

2
e r z z

V

w w
U z z D B dV

r r r z z


 
 

    
     

    
  (14) 

Bending moments are given by: 

/2 /2

/2 /2

,

h h

r r

h h

M zdz M zdz  
 

    (15) 

Considering Equation (15), the strain energy can be 

rewritten as: 
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 (16) 

The kinetic energy of the nano-plate because of its 

vibration can be expressed as follows: 

21
( )

2
T

A

w
U h dA

t





  (17) 

The boundary conditions of the applied external electric 

and magnetic potentials are assumed to be as: 

0( / 2) , ( / 2) 0h V h     (18) 

0( / 2) , ( / 2) 0h h     (19) 

The applied magnetic and electric potential can induce 

radial and circumferential loads which can be calculated 

from Equations (20) and (21) [16, 21]. 

31 0

r

e eN N e V   (20) 

31 0

r

m mN N f    (21) 

The external virtual work due to the magnetic and 

electric loads is described as: 

2

2

1
(( ) )r r

F m e

A

w w
U N N wdA

r r r
 

  
   

  
  (22) 

The Hamilton’s principle is considered as follows: 

0

( ) 0

t

T F eU U U      (23) 

By employing Hamilton’s principle, the following 

equations are resulted: 

2
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Satisfying Equations (25) and (26), one can obtain the 

following equations: 

2 2
2

31 33 332 2
0e w k d

z z

  
   

 
 (27) 

2 2
2

31 33 332 2
0f w d

z z

 


 
   

 
 (28) 

where, 

2
2

2

1

r r r

 
  

 
 (29) 

Solving Equations (27) and (28) leads to the following 

results: 

2 2
2 2

1 22 2
,M w M w

z z

  
     

 
 (30) 

in which, 

2

1 31 33 33 31 33 33 33( ) / ( )M e d f k d     (31) 

2

2 33 31 33 31 33 33 33( ) / ( )M k f d e k d    (32) 

Finally, solving Equation (30) results in: 

2

1 0M z w
z
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2 0M z w
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Considering Equations (4) and (5), and using Equation 

(15) yields: 

3 2 3
2 2

0 11 122

1
(1 ( ) )

12 12
r
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e a M c c

r r r
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3 2 3
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0 12 112
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 (36) 

in which, 

11 11 31 1 31 2c c e M f M    (37) 

12 12 31 1 31 2c c e M f M    (38) 

Substituting Equations (35) and (36) into Equation (24), 

the dynamic motion equation takes the following form: 
3

4 2 2

11 0
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where, 

4 3 2
4

4 3 2 2 3

2 1 1

r r r r r r r

   
    

   
 (40) 

According to Galerkin based reduced order model, 

deflection ( , )w r t of the circular plate can be 

approximated in terms of linear combinations of 

suitable shape functions with time dependent 

coefficients: 

1

( , ) ( ) ( ), 1,2,3,...n n

n

w r t q t r n




   (41) 

0 0 0 0( ) ( ) ( ) ( ) ( )n n n n nr J r I R J R I r       (42) 

where, ( )n r  are the natural vibration mode shapes of a 

circular plate and ( )nq t  are the generalized time 

coordinates. The eigenvalues of fully clamped circular 

plates are given in Table 1. 

Now, by substituting Equation (41) into Equation (39) 

the following equation is obtained: 
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 (43) 

According to Galerkin method, multiplying Equation 

(54) by ( )nr r  ,integrating the result in domain

 0r b and using the orthogonality of Bessel  

functions, it yields as: 

       

   

1 1
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where, 
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 (45) 

In conclusion, the eigen matrix form of the governing 

equation is: 

    0nl nl

f fM M q K K K q            (46) 

 

 

3. NUMERICAL RESULTS AND DISCUSSIONS 
 
For numerical investigation of the problem, a fully 

clamped circular nano-plate with geometrical properties 

defined by R=10 nm and h=0.335 nm is considered. It is 

assumed that the nano-plate is constructed from the two-

phase BaTiO3-CoFe2O4 composite material. 

Characteristics of the mentioned material for different 
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values of the volume fraction (V.F.) of piezoelectric 

phase are given in Table 2. 

 

 
TABLE 1. Radial eigenvalues of clamped circular plate 

m, n 1 2 3 4 5 6 

nR  3.196 6.306 9.434 12.587 15.740 18.843 

 

 
TABLE 2. Properties of BaTiO3- CoFe2O4 composite material 

[22] 

Type 1 2 3 4 5 

V.F. 0% 25% 50% 75% 100% 

C 11 286 245 213 187 166 

C 12 173 139 113 93 77 

C 13 170 138 113 93.8 78 

C 33 269.5 235 207 183 162 

C 44 45.3 47.6 49.9 52.1 43 

e 31 0 -1.53 -2.71 -3.64 -4.4 

e 33 0 4.28 8.86 13.66 18.6 

e 15 0 0.05 0.15 0.46 11.6 

k 11 0.08 0.13 0.24 0.53 11.2 

k 33 0.093 3.24 6.37 9.49 12.6 

µ 11 5.9 3.57 2.01 0.89 0.05 

µ 33 1.57 1.21 0.839 0.47 0.1 

q 31 580 378 222 100 0 

q 33 700 476 292 136 0 

d 11 0 -3.09 -5.23 -6.72 0 

d 33 0 2334.15 2750 1847.49 0 

ρ 5300 5430 5550 5660 5800 

Unit: elastic constants, cij, in 109 N/m2, piezoelectric constants, eij, in 

c/m2, piezomagnetic constants, fij, in N/Am2, dielectric constants, kij, 

in 10-9 c2/Nm2, magnetic constants, μij, in 10-4 Ns2/c2 , magneto-

electric coefficients, dij, in 10-12 Ns/Vc and density, ρ, in Kg/m3. 

 

When magnetic and electric potentials are applied to 

the nano-plate, the axial compressive and tensile forces 

will be generated in the system, in which the axial 

compressive force may cause the instabilities. Axial 

compressive force is generated by applying positive 

electric or negative magnetic potential. It should be 

mentioned that imaginary part of eigenvalue is the 

natural frequency of the system. In instability point 

(divergence), fundamental natural frequency of the 

system tends to be zero. In Figures 2 and 3, the variation 

of imaginary parts of first two eigenvalues with applied 

electric and magnetic potentials is shown for third type 

MEE nano-plate. These figures also show the points 

where the fundamental natural frequency becomes zero 

and therefore instability takes place. Critical values of 

magnetic and electric potentials for different types of 

MEE nano-plates considering various nonlocal 

parameters are calculated and presented in Tables 3 and 

4. 

 

 

Figure 2. Divergence instability of third type nano-plate under 

electric potential V0, with e0a=2 nm and Ω0=0.  

 

 

 

Figure 3. Divergence instability of third type nano-plate under 

magnetic potential Ω0, with e0a=2 nm and V0=0. 

 

 
TABLE 3. Calculated critical magnetic potentials for different 

volume fractions, with V0= 0 

e0a V.F.= 0% V.F.= 25% V.F.= 50% V.F.= 75% 

0.5 -0.00026 -0.0003425 -0.000505 -0.00099 

1 -0.00023 -0.0003025 -0.00045 -0.0008775 

1.5 -0.000195 -0.000255 -0.0003775 -0.00074 

2 -0.00016 -0.00021 -0.00031 -0.0006075 

 

 
TABLE 4. Calculated critical electric potentials for different 

volume fractions, with Ω0= 0 

e0a V.F.= 25% V.F.= 50% V.F.= 75% V.F.= 100% 

0.5 0.08475 0.0415 0.027 0.01975 

1 0.07525 0.0365 0.024 0.01775 

1.5 0.06325 0.031 0.0205 0.01475 

2 0.052 0.0255 0.0165 0.01225 
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Figure 4 shows the first six natural frequencies of 

the MEE circular nano-plate with 50 % volume fraction 

of BaTiO3, when different values of the nonlocal 

parameter are considered. The external magnetic and 

electric potentials are set as zero (V0= Ω0= 0). It is 

observed that for higher/lower values of nonlocal 

parameters the natural frequencies of the system are 

decreased/increased. From the data of this figure, it can 

be clarify that, as the mode number increases, the 

influence of size effect on natural frequencies increases. 

It is indicated that size dependence of the material 

properties decreases the stiffness of the nano-plate and 

hence decreases the values of frequencies.  

 

 

 

Figure 4.  First six natural frequencies of the third type MEE 

circular nanoplate for various values of e0a, with V0= Ω0= 0. 

 

 

Figure 5. Effect of nonlocal parameter on the third type MEE 

nano-plate’s natural frequencies for different mode numbers 

(V0= Ω0=0). 

 

 

Figure 6. Effect of nonlocal parameter on the third type MEE 

nano-plate’s natural frequencies for different mode numbers 

(V0= Ω0=0). 

The variations of the first six natural frequencies of 

the nano-plate versus the nonlocal parameter for various 

mode numbers are indicated in Figures 5 and 6. As 

expected, the natural frequencies decrease with an 

increase in the nonlocal parameter. Obviously, as the 

nonlocal parameter increases, the natural frequencies of 

different modes converge to each other. 

The variations of the first natural frequency of the 

nano-plate versus the radius of the nano-plate, for 

different values of the nonlocal parameters are plotted in 

Figure 7. It is considered the radius of the nano-plate to 

be changing from 5 to 14 nm.  Because of decreasing in 

stiffness of the plate, it is obvious that the natural 

frequencies of the system decrease with the increase of 

the radius. Besides, one can understand from these 

figures that the decrease rate of the natural frequencies 

is more considerable in smaller radius. Consequently, it 

can be easily concluded that for the bigger radius 

values, the effect of nonlocal parameter on the natural 

frequency will be vanished and is negligible. In other 

words, for larger enough values of the radius, there is 

not seen any difference between the classical and 

nonclassical nonlocal theories. When the radius of the 

nano-plate exceeds a specified value, the natural 

frequencies decrease by the same rate. Furthermore, it is 

clear that for larger values of the radius, the effects of 

the nonlocal parameter on the natural frequency 

decrease. Changing of the first natural frequency of the 

nono-plate with the volume fraction of the BaTiO3 

phase in the MEE composite material is depicted in 

Figure 8, when various values of the nonlocal 

parameters are applied. The volume fraction changes 

from 0 to 100 %. When the volume fraction is 0 %, the 

composite material is pure piezomagnetic and when the 

volume fraction is 100 %, the composite material is pure 

piezoelectric material. The data would seem to suggest 

that, the natural frequencies of the nano-plate decrease 

while the volume fraction rises from 0 to 100 %. The 

reason is that by increasing the volume fraction in the 

MEE material, the effective Young’s modulus of the 

nano-plate decreases.  

 

 

 

Figure 7. Variations of the first natural frequency versus the 

radius value of the third type MEE nano-plate (h=0.335 nm), 

for different values of nonlocal parameter. 
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Figure 8.Variations of the first natural frequency of the MEE 

nano-plate with the volume fraction of piezoelectric phase, for 

different values of the nonlocal parameters. 

 
 

Decreasing of the effective Young’s modulus makes 

the stiffness of the nano-plate to decrease. Therefore, 

the natural frequencies of the nano-plate decrease. 

Figure 9 plots first natural frequency for nano-plate 

as a function of thickness for given values of 

nonlocality when no external magnetic and electric 

potentials are applied. The thickness of the nano-plate is 

taken to be in the range between of 0.2 to 1 nm. The 

most prominent result can be seen from this figure is 

that the natural frequencies increase linearly with the 

increase of thickness of the nano-plate. Second, as the 

nonlocal parameter increases, the slope of the diagrams 

decreases. Third, the natural frequencies predicted by 

the present non-classical fully clamped plate model are 

always lower than those by classical plate model. 

Besides, the increase of the plate thickness can lead to 

the increase the difference between classic and 

nonclassic nonlocal theories. The effects of the external 

electric potential V0 on the natural frequencies of the 

first three modes of the nano-plate is presented in Figure 

10. The MEE nano-plate is constructed from 50 % 

volume fraction of BaTiO3. The nonlocal parameter is 

set to be 2 nm. The applied electric potential changes 

from -0.009 to 0.009 volt.  

 

 

 

Figure 9. The effect of the thickness h on the first natural 

frequency of the third type MEE nano-plate with R= 10 nm, 

V0= Ω0=0. 

It is clear that the electric potential has a 

considerable effect on the natural frequencies of the 

MEE nano-plates.  

This figure reveals that the natural frequencies of the 

MEE nano-plate decrease when the electric potential V0 

increases. The reason of this phenomenon is that when a 

negative/positive electric potential is applied to the 

system, the tension/compressive radial forces are 

generated in the nano-plate. These forces influence the 

stiffness of the nano-plates. For example, when the 

positive electric potential increases, the generated 

compressive force increases and therefore the stiffness 

and consequently natural frequencies of the nano-plate 

decrease. The diagram of the variations of the first three 

natural frequencies of the third type of MEE circular 

nano-plate with external magnetic potential Ω0, 

considering nonlocal parameter equal 2 nm, is plotted in 

Figure 11. The applied magnetic potential is taken to be 

in the range of -0.09 to 0.09 mA. It is obvious that the 

natural frequencies are considerably influenced by the 

external magnetic potential. One can understand from 

this figure that increasing of the external magnetic 

potential reduces the natural frequencies of the nano-

plate. This is due to this fact that compressive and 

tension radial forces are generated respectively when 

negative and positive magnetic potentials are applied to 

the nano-plate. Therefore, it can be concluded that the 

stiffness and consequently the natural frequencies of the 

MEE nano-plate are affected by the external magnetic 

potential. 

Figure 12 plots variation of first natural frequency 

with respect to applied electric potential for several 

values of nonlocal factor. A prominent result found here 

is that the decreasing rate of the natural frequency 

versus the electric potential increases when the nonlocal 

parameter is set to be larger. Figure 13 indicates 

variation of first natural frequency with applied 

magnetic potential for various values of nonlocal 

parameter.  

 

 

Figure 10. The effect of the applied external electric potential 

V0 on the natural frequencies of the third type MEE nano-plate 

with Ω0=0 and e0a= 2 nm. 
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Figure 11. The effect of the applied external magnetic 

potential Ω0 on the natural frequencies of the third type MEE 

nano-plate with V0=0 and e0a= 2 nm. 

 

 

Figure 12. The effect of the applied external electric potential 

V0 on the first natural frequency of the forth type MEE nano-

plate with Ω0=0, for different values of nonlocal parameter 

e0a. 

 

 

Figure 13. The effect of the applied external magnetic 

potential Ω0 on the first natural frequency of the second type 

MEE nano-plate with V0=0, for different values of nonlocal 

parameter e0a. 

 

 
Similarly, it is seen that for higher values of 

nonlocal parameter, the increasing rate of the natural 

frequency with magnetic potential increases. At last, as 

can be observed from Figures 12 and 13, the difference 

between classic and size-dependent natural frequencies 

decreases by decreasing /increasing of the applied 

electric/magnetic potential. In other words, large enough 

tensional force leads the diagrams converge to each 

other. 

 

 

4. CONCLUDING REMARKS 
 
Coming to conclusion, this study set out in order to 

investigate the size-dependent free vibration of a 

circular fully clamped MEE nano-plate under external 

magnetic and electric potentials using Kirchhoff’s plate 

theory based on Eringen’s nonlocal elasticity. Nonlocal 

constitutive relations for MEE materials, Maxwell’s 

equation and Hamilton’s principle were used to derive 

the governing equation of the nano-plate. Using 

Galerkin approach, the obtained equation was 

transformed to an eigen matrix form and subsequently 

was solved numerically to find the natural frequencies. 

From numerical results, the following conclusions were 

obtained. Increasing the nonlocal parameter caused the 

natural frequencies to decrease. For larger values of 

nanolacal parameter, the influence of mode number on 

the natural frequencies decreased. When the radius 

value of the nano-plate exceeded a specific value, the 

effect of the nonlocal parameter vanished. Increasing of 

the piezoelectric phase’s volume fraction brings 

reduction in the natural frequencies. In thick nano-plates 

compared to the thin ones, effect of the nonlocal 

parameter was more considerable. Furthermore, 

increasing rate of the natural frequencies with the 

increase of thickness value was lower for the higher 

values of nanlocal parameter. Sensitivity of MEE 

circular nano-plates to the magneto-electric loadings 

was more considerable in which the results showed that 

the natural frequencies decrease with the increase of the 

applied electric potential. In contrast, the numerical 

calculation demonstrated that the applying magnetic 

potential has an increasing effect on the natural 

frequencies. Difference between classical and 

nonclassical natural frequencies increased/decreased 

with the increase of electric/magnetic potential. 

Decreasing/increasing rate of the natural frequencies 

with the electric/magnetic potential was higher for 

larger values of nonlocal parameter. 
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هچكيد
 

 

بر و  موضعیغیرالاستیسیته الاستیک، با استفاده از تئوری -الکترو-مگنتوصفحات مدور نانو  آزاد ارتعاشاتدر این مقاله 

نانوصفحه مورد مطالعه به صورت کامل گیردار بوده و در معرض . مطالعه می شود کیرشهف صفحهتئوری اساس فرضیه 

-می باشد. با در نظر گرفتن روابط بنیادی غیر موضعی حاکم بر مواد مگنتو پتانسیل های مغناطیسی و الکتریکی خارجی

با به کار گیری روش دست آمده است. ه بمعادلات حاکم ، اصل همیلتونماکسول و  همعادل اعمالبا الاستیک و -الکترو

یداری سیستم بررسی می گردد الکتریکی بر ناپا-اثر پتانسیل مغناطیسی. گلرکین، فرم ماتریسی معادله حاکم به دست می آید

اندازه، ضخامت و شعاع نانو صفحه و درصد  هایاثرو به تبع آن مقادیر بحرانی پتانسیل های اعمالی به دست می آیند. 

پتانسیل  هایاثر به علاوه. شده است فرکانس های طبیعی نانوصفحه به صورت تفصیلی مطالعه بر حجمی فاز پیزوالکتریک 

 می گیرد.مورد بررسی قرار بر فرکانس های طبیعی وابسته به اندازه تریکی های مغناطیسی و الک
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