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A B S T R A C T  
 

 

In this paper, the non-Fourier heat conduction in a semi-infinite body was examined. The heat wave 
non-Fourier heat conduction model was used for thermal analysis. Thermal conductivity was assumed 

temperature-dependent which resulted in a non-linear equation. The heat source was also considered 

temperature-dependent which resulted in a non-homogeneous equation. The Mac-Cormack predictor-
corrector numerical method was employed to solve the equations. It was concluded that, the non-linear 

analysis of the non-Fourier heat transfer problems is of great importance. Also, the case which 

assumed a temperature-dependent heat source had a considerable difference with the case in which a 
constant heat source was assumed. 
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 Nomenclature 

Vernotte number 

Space direction (m) 

Dimensionless space direction 
 

Greek symbols 

 
Thermal diffusivity (m2 s) 

Reference thermal diffusivity (m2 s) 
Dimensionless coefficient for taking into account of 

temperature-dependent heat source 

Dimensionless coefficient for taking into account of 
temperature-dependent conductivity 

Dimensionless heat source 

Density (kg m-3) 
Relaxation time (s) 

Reference relaxation time (s) 

Ve 

x 

   
 

 

 
α 

α0 

β 
 

γ 

 

η 

ρ 

τ 
τ0 

Reference speed of thermal wave (m s-1) 

Specific heat (J kg-1 K-1) 

Fourier number 
Heat source (W m-3) 

Reference heat source (W m-3) 

Thermal conductivity (W m-1 K-1) 
Reference thermal conductivity (W m-1 K-1) 

Characteristic length (m)  

Heat flux (W m-2) 
Dimensionless heat flux 

Temperature (K) 

Reference temperature (K) 

Dimensionless temperature 

Dimensionless surface temperature 

Time (s) 
Unit step function 

c0 

cp 

FO 
g 

g0 

k 
k0 

L 

q 

   

T 

T0 

   

  p 

t 
u(FO) 

 
1. INTRODUCTION1 
 

Conduction is a heat transfer mechanism in which, 

thermal energy transfers from a higher temperature 

region to a region with lower temperature. The 

constitutive equation to describe this mechanism was 

                                                           

* Corresponding Author’s Email: Mo.j.noroozi@gmail.com (M. J. 

Noroozi) 

first proposed in 1822 by the French physicist, Joseph 

Fourier, in a thesis entitled “Analytical Theory of Heat” 

[1]. The Fourier’s classical parabolic heat equation was 

being used in all analyses until 1950. However, it was 

well-established that assuming an infinite speed for 

thermal energy in a material is non-physical. Although 

this assumption is valid in most common applications, 

in some cases, such as heat transfer at very low 

temperatures [2], heat transfer in very small scales [3], 

mailto:Mo.j.noroozi@gmail.com


1803                                     S. Saedodin et al./ IJE TRANSACTIONS C: Aspects..Vol. 28, No. 12, (December  2015)  1802-1807 

 

 

and very high heat transfer rate in a short period of time 

[4], the Fourier’s law cannot correctly predict the 

thermal behavior of the material. 

In the mid-twentieth century, some scientists such as 

Morse and Feschbach [5], Cattaneo [6], and Vernotte 

[7], in different studies, achieved a new form of heat 

conduction equation to account for the effect of time lag 

between the heat flux vector and the resulting 

temperature gradient vector. This time lag is called the 

relaxation time, τ. Thus, a classical heat wave model 

was established which is known as the Cattaneo-

Vernotte heat conduction model. This modification in 

the Fourier’s model transformed the energy 

conservation equation, which assumed a parabolic heat 

conduction equation, into a hyperbolic wave equation. 

The hyperbolic heat conduction model shows the effects 

of heat transfer phenomena at small time scales on 

con entional spatial scales.  oseph and  re iosi [ ] and 

   is ik and Tzou [9] reviewed the thermal relaxation 

phenomenon in the thermal wave propagation theory. 

Several researchers have recently utilized the non-

Fourier Cattaneo-Vernotte heat conduction model. 

Bargmann and Favata [10] used the model to analyze 

the laser heating in polycrystals. Sasmal and Mishra 

[11] studied the non-Fourier heat transfer in the 

combined analysis of heat conduction and thermal 

radiation in a two-dimensional square enclosure. 

Rahbari et al. [12] studied the non-Fourier heat 

conduction in a finite body with insulated boundaries. 

Zhao et al. [13] conducted a non-Fourier analytical 

study on a spherical body under surface thermal 

disturbances. Mishra and Sahai [14] investigated the 

non-Fourier heat conduction and thermal radiation in a 

spherical shell.  In an analytical study, Fong and Lam 

[15] studied the phenomenon of thermal waves in a thin 

film. There are many other theoretical studies which are 

suitably established in the field of heat transfer [16-24]. 

In most studies that have been conducted on non-

Fourier heat conduction, due to constant thermal 

properties the resulting equations were linearized, and 

the nonlinear study of such problems is rare in the 

literature but as we know, the behavior of materials is 

inherently nonlinear in nature, and the study of 

nonlinear problems mentioned in some cases is very 

important. On the other hand, in most studies, the heat 

source has been assumed constant, while in some cases, 

such as nuclear or chemical reactions, heat generation in 

the system is temperature-dependent. 

In this study, the non-Fourier heat conduction 

problem in a semi-infinite body was studied. The 

Cattaneo-Vernotte thermal wave model was used. The 

thermal conductivity coefficient was assumed 

temperature-dependent which resulted in a non-linear 

equation. The heat source was also considered 

temperature-dependent. The numerical Mac-Cormack 

predictor-corrector method was used to solve the 

equations. The investigation of the effects of a variable 

thermal conductivity and a variable heat source in a 

non-Fourier heat conduction problem is the novelty and 

originality of this study. 

 

 

 

2. MATHEMATICAL MODELING 
 

Consider a 1-D semi-infinite body. Energy equation 

assuming the presence of a heat source is as follows: 

(1) 
( , ) ( , )

0
p

T x t q x t
c g

t x


 
  

 
 

where ρ is the density of the body, c is specific heat of 

the body, T(x,t) is temperature function and q(x,t) is the 

function of heat flux, g is the heat source, and x and t 

are spatial and temporal variables, respectively. The 

conduction heat flux constitutive equation governing 

othe problem based on the heat wave model [6, 7] can 

be written as follows: 

(2) 
( , ) ( , )

( , ) 0
q x t T x t

q x t k
t x


 

  
   

where τ is the thermal relaxation time and k is thermal 

conductivity. A variation in thermal conductivity is 

considered as a linear function of temperature, as 

follows: 

(3)  0 01 ( )k k T T    

The heat source can be also modeled as a linear function 

of temperature as the following equation: 

(4)  0 01 ( )g g T T    

The following dimensionless parameters are introduced:  

(5) 
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Thus the dimensionless form of Equations (1) and (2) 

are as follows: 

(6) 
( , ) 1 ( , )

1 ( , ) 0
T x FO q x FO

T x FO
FO Ve x

 
 

      
 

(7) 2 ( , ) ( , )
2 ( , ) 1 ( , ) 0

q x FO T x FO
Ve q x FO Ve T x FO

FO x


 
      

 

The initial and boundary conditions in the 

dimensionless form are also as follows: 

(8) 
( ,0) 0, ( ,0) 0, ( , ) 0,

(0, ) u(FO).P

T x q x q FO

T FO T
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3. NUMERICAL SCHEME 
 

The Mac-Cormack predictor-corrector numerical 

method is used to solve the equations. First, Equations 

(6) and (7) should be written in vector form, as follows: 

(9) 0
FO x

 
  

 

E F
H  

where, 

(10) 
2

( , )

( , )

T x FO

Ve q x FO

 
  
  

E  

(11) 

1
( , )

( , )(1 0.5 ( , ))

q x FO
Ve

VeT x FO T x FO

 
 
 

  

F  

(12) 
 1 ( , )

2 ( , )

T x FO

q x FO

   
  
  

H  

Then, by imposing Mac-Cormack scheme to above 

equations, finite difference formulations are resulted 

[25]: 

Predictor: 

(13) 
1

1

n n n n n

i i i i i

FO
FO

x






      

E E F F H  

Corrector: 

(14)  1 1 1 1 1

1

1
[ ]

2

n n n n n n

i i i i i i

FO
FO

x

    




    


E E E F F H  

In above equations, subscript i indicates the grid point 

in spatial domain, superscript n denotes the time level in 

time domain, tilde symbol indicates the predicted value 

in n+1 time level, x  and FO  are spatial and time 

steps, respectively. The forward finite differencing is 

used for predictor formulation and the backward 

differencing is used for corrector formulation.  

 

 

4. RESULTS AND DISCUSSION 
 

To evaluate the accuracy of the results obtained from 

the numerical method, the results were compared to 

Lewandowska and Malinowski [26], which is a linear 

analytical study (Figure 1). As can be seen in Figure 1, 

the employed numerical method was highly accurate. 

The acceptable agreement between the two graphs also 

confirms the accuracy of the numerical method. 

Quantitatively, there is a 0.85% average error for 

α=0.05 and 0.53% average error for α=0.005 between 

present study and analytical solution of Lewandowska 

and Malinowski [26]. The variations of various 

parameters and the resulting effects are discussed in the 

next sections. 

 

Figure 1. The comparison between present numerical solution 

and an analytical solution [26] 

 

 

Figure 2. The effects of variations in Vernotte number on the 

temperature profile (γ=0.1, α=0.05) 

 
 
 
4. 1. Variations in the Vernotte Number     Figure 2 

shows the effect of variations in the Vernotte number on 

the temperature profile. In the early parts of the body, at 

a certain point, the temperature increased with 

increasing the Vernotte number. An increased Vernotte 

number increased the difference between the diagrams. 

By moving forward in the body, an increasing trend was 

observed in all diagrams, and the diagrams reached to a 

maximum. This increase is due to the temperature-

dependency of the heat source. In fact, an increased 

temperature increased the energy amount of the heat 

source, which in turn, increased the temperature. This 

mutual feedback continued. However, energy 

dissipaters, such as heat resistance of the material 

prevent this trend from reaching an infinite temperature, 

and finally, at one point, i.e., the maximum point, the 

rising trend of temperature stops, and the temperature 

would then decrease. The declining trend of graphs 

became steeper and caused the three diagrams with 

lower Vernotte number coincide in one point (around 

  =4.2). The declining trends continued after this point, 

and finally, all the curves converged to   =0.35, which 

shows that the balance between temperature and heat 

source had been established. 
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Figure 3. The effects of  ariations in γ on the temperature 

profile (Ve=1, α=0.05) 

 

 

Figure 4. The effects of variations in β on the temperature 

profile (Ve=1, η=0.11, γ=0.1) 

 

 

Figure 5. The effects of  ariations in η on the temperature 

profile (Ve=1, β=0.9, γ=0.1)  

 

Another noteworthy issue in the diagrams is the 

oscillatory behavior of the diagrams by increasing the 

Vernotte number. This behavior is especially evident at 

the endpoint of the diagram corresponding to Ve=2 as 

well as the diagram corresponding to Ve=10. In fact, by 

increasing the Vernotte number, diagrams had a steeper 

slope in rises and declines and became more damped. 

The oscillatory behavior is a characteristic of the non-

Fourier heat transfer, and higher oscillatory behavior 

indicates the greater deviation of the material thermal 

behavior from the Fourier state. Increase in Vernotte 

number increased the maximum of the diagram which 

also occurred earlier. These behaviors can be justified 

considering the nature of the Vernotte number (

0 0 /Ve L  ). In fact, the materials with higher 

relaxation times, and consequently larger Vernotte 

numbers, show more evident non-Fourier behavior. This 

can be found in reference [27]. 

 

4. 2. Effect of Thermal Conductivity Variations 
with Temperature      Effect of thermal conductivity 

variations with temperature was also of interest. Figure 

3 shows the effect of thermal conductivity coefficient 

(γ) variations with temperature on the temperature 

profile. As can be seen in Figure 3, an increased γ 

decreased the temperature at a given point. An increased 

γ caused the maximum temperature occur at an earlier 

point. A smaller γ resulted in a more uniform and slower 

temperature variation and caused the temperature decay 

to the final temperature at a wider range. Figure 3 

represents the importance of considering the thermal 

conductivity as a variable and indicates how much this 

parameter is affected by the temperature variations.  

 

4. 3. Effect of Variation in Heat Source Coefficient 
with Temperature      Figure 4 shows the effect of 

variation in coefficient of heat source (β) with 

temperature on the temperature profile. In negative 

values of β, variation in this parameter did not 

significantly affect the temperature, and in fact, the 

effect of negative slope of variation in heat source with 

temperature was negligible on the temperature profile. 

However, in the positive values of β, variation in this 

parameter significantly affected the temperature and 

reduced the temperature at a given point. The reduction 

was particularly significant at endpoints, and constant 

endpoint temperatures were different for different 

values of β. The maximum temperature occurred when 

the heat source was assumed constant and independent 

of temperature (β=0). In fact, this figure shows that a 

constant heat source is acceptable only if the assumption 

is absolutely true and not an approximation to merely 

simplify the problem, because otherwise, the results 

would have significant error. 

 

4. 4. Effect of Variations in the Heat Source 
Magnitude      Finally, it is noteworthy to look at the 

effect of variations in the dimensionless reference heat 

source magnitude (η) on the temperature profile. Figure 

5 shows these variations. Figure 5 shows that, as 

expected, the temperature increased with increase in η. 

In fact, similar to the previous figure, the variations in 

the negative values of these parameters had much less 

effect on the temperature profiles compared to the 

positive values. The maximum temperature occurred at 

positive values of η and moved forward with increase in 
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η. Variations in η changed the final value of the constant 

temperature. 

 

 

5. CONCLUSION 
 

Non-Fourier heat transfer problem in a semi-infinite 

body was examined. The Cattaneo-Vernotte thermal 

wave model was employed. Thermal conductivity was 

assumed temperature-dependent which resulted in a 

non-linear equation. The heat source was also assumed 

temperature-dependent. The Mac-Cormack predictor-

corrector numerical method was utilized to solve the 

equations. In summary, the following results were 

obtained: 

1. An increased Vernotte number resulted in more 

significant non-Fourier effects and a more oscillatory 

behavior in the temperature profile. 

2. The importance of considering the thermal 

conductivity temperature-dependence was proved. It 

was shown that increase in the thermal conductivity 

coefficient (γ) decreases the temperature at a given 

point. 

3. It was concluded that the changes in heat source 

coefficient (β) significantly affects the temperature, and 

their increased values reduce the temperature at a given 

point. 

4. The assumption of a constant thermal conductivity 

and constant heat source may result in a large error in 

the results. This issue should be carefully addressed. 
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هچكيد
 

نهایت مورد بررسی قرار گرفت. برای تحلیل ای در یک جسم نیمه بیانتقال حرارت غیر فوریهی در این مقاله مسأله

ای موج حرارتی استفاده شد. ضریب هدایت حرارتی متغیر با دما فرض حرارتی مسئله از مدل هدایت حرارتی غیر فوریه

رت نیز متغیر با دما در نظر گرفته شد که ی غیر خطی بدست آمد. علاوه بر آن منبع تولید حراشد و بدین ترتیب معادله

اصلاحگر مک کورمک به کار گرفته شد. نتیجه -ای غیر همگن بدست آمد. برای حل معادلات، روش عددی پیشگومعادله

ای اهمیت زیادی دارند و همچنین متغیر فرض کردن منبع گرفته شد که تحلیل غیر خطی مسائل انتقال حرارت غیر فوریه

 آورد.ما، تغییرات زیادی را درنتایج نسبت به حالتی که منبع تولید حرارت ثابت فرض شود، به وجود میحرارتی با د

 
doi:10.5829/idosi.ije.2015.28.12c.14

 

 


