
IJE TRANSACTIONS B: Applications Vol. 28, No. 2, (February 2015) 198-204

Please cite this article asF Yaghmaee, H Reza Koohi,Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning,
International Journal of Engineering (IJE), TRANSACTIONS B: Applications Vol. 28, No. 2, (February 2015) 198-205

International Journal of Engineering

J o u r n a l H o m e p a g e : w w w . i j e . i r

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement
Learning

F Yaghmaee*, H Reza Koohi

Electrical and Computer Engineering Department, Semnan University, Semnan, Iran

P A P E R I N F O

Paper history:
Received 02 July 2014
Received in revised form 07 October 2014
Accepted 13 November 2014

Keywords:
Reinforcement Learning, Sensor Network
Dynamic Obstacle Avoidance
Robot Navigation.

A B S T R A C T

In this paper, we focus on the application of reinforcement learning to obstacle avoidance in dynamic
environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is
developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor
network models the danger of the area under coverage as obstacles, and has the property of adoption of
itself against possible changes. The proposed protocol can integrate the reward computation of the
sensors with information of the intended place of robot so that it guides the robot step by step through
the sensor network by choosing the safest path in dangerous zones. Simulation results show that the
mobile robot can get to the target point without colliding with any obstacle after a period of learning.
Also, we discussed about time propagation between obstacle, goal, and mobile robot information.
Experimental results show that our proposed method has the ability of fast adoption in real applications
in wireless sensor networks.

doi: 10.5829/idosi.ije.2015.28.02b.05

1. INTRODUCTION1

We use reinforcement learning under so-called
“dynamic reinforcement” in wireless sensor network to
guide mobile robot through the dynamic obstacles.
Reinforcement learning dates to early days of
cybernetics and work in statistics, psychology,
neuroscience, and computer science. In the past 20
years, it has attracted rapidly increasing interest in
machine learning and artificial intelligence communities
[1]. In reinforcement learning, each agent repeatedly
interacts with an unknown environment, receives a
reward or punishment, and updates the probabilities of
its next action based on its own previous actions and
received values.

Autonomous mobile robots have a wide range of
application, such as in hospitals, houses, industries,
space exploration, etc. Generally, obstacle avoidance is
the main aspect of mobile robot. The purpose of
obstacle avoidance is to enabling mobile robots to get to
the target point without colliding with any obstacle in

1*Corresponding Author’s Email: f_yaghmaee@semnan.ac.ir (Farzin
Yaghmaee)

unknown or dynamic environments. The conventional
control technique is model based called planning
architecture and artificial potential fields and cell
decomposition belong to this type of controller [2].
However, this model needs a long time to execute an
action and also is limited to known environments.
Moreover, weak robustness is a problem in this model.
Behavior-based architecture [3] is different from
planning architecture which has many advantages, such
as better robustness and quickness. In order to adopt this
architecture to complex and dynamic environments
without the further intervention, learning ability should
be adopted to improve the autonomy of mobile robots.
Reinforcement learning [4-8] is used widely and can be
applied to the behavior-based architecture. In [9] discuss
about the reinforcement learning in complex multi-agent
learning problem.

In this paper, distributed algorithms based on
reinforcement learning is developed for sensor network
to guide mobile robot through the dynamic obstacles
like burning area in real world. A series of operating
sensors which have been networked together can follow
the movements of robot in dangerous environment and
direct it to desired point. By assuming dangerous places

RESEARCH
NOTE

mailto:f_yaghmaee@semnan.ac.ir

199 F Yaghmaee and H Reza Koohi/ IJE TRANSACTIONS B: Applications Vol. 28, No. 2, (February 2015) 198-204

as obstacles, we calculate the reward or punishment
based on obstacles that will be in tune with current
system's status. Base on these values, safest path to goal
will produce which means it evades the least number of
traces of danger.

The rest of paper is as follows: in section 2 we
briefly explain important ideas in reinforcement
algorithm. In section 3, proposed method is fully
described and simulation results are presented in section
4. Finally, conclusion comes in section 5.

2. REINFORCEMENT LEARNING MODEL

Reinforcement learning is used to learn the internal
structure of the behaviors by mapping the perceived
states to control actions while maximizing the
accumulated reinforcement reward. In reinforcement
learning process, the agent perceives the state of the
environment and receives an input that describes the
state. Then, the agent chooses an action from the action
set to execute immediately and agent possibly moves to
a new state. After that, the agent receives an evaluation
feedback called reinforcement as well as perceives the
new state. The purpose of the learning system is to find
a control policy that maximizes the expected amount of
reward during the whole learning period. The value
function can be described as Equation (1): () ≡ + . + . + ⋯ (1)

where, is the reward received in transition from state to state and γ (0<γ<1) is the discount factor. () is the discounted amount reward received by the
learning system since time t . It depends on the
sequence of chosen action which is determined by the
strategy of control. The system has to find a control
strategy that maximizes ()for each state. The model
of RL(Reinforcement Learning) is shown in Figure 1.

Once the target function in Equation (1) is
determined, the optimal behavior policy can be
expressed as Equation (2): ∗ = () (2)

Figure 1. Model of Reinforcement Learning

Reinforcement learning obtains its optimal policy
based on its feedback. Unlike supervised learning, RL
needs no training sequences. In [1, 4, 5] more discussion
about Q-learning based on Markov Decision Process is
presented.

3. PROPOSED DISTRIBUTED ALGORITHM FOR
SENSOR NETWORK

Sensors collect information from different areas. They
can store information locally or route them to a base
station for further analysis and use. Sensors can also use
communicative facilities to integrate their sensed values
with the rest of the sensor landscape. We will discuss a
method to distribute the information about the
environment redundantly across the entire network.
Robot can use this information as they traverse the
network. It’s also guided across the network along a
safe path, away from the type of danger that can be
detected by the sensors.

The dangerous areas in the sensor network will be
defined as obstacles. Danger may include overheating,
fire, hazardous gasses, thick fume, etc. It is supposed
that each sensor can sense the presence or absence of
such types of danger. An iterative danger configuration
protocol running across all the nodes of the network
creates the danger map. We do not envision that the
network will create accurate geometric map, distributed
across all the nodes. Instead, we wish to provide some
information about how far from danger each node is in
network. If the sensors are uniformly distributed, the
smallest number of communication hops to a sensor that
triggers "yes" to danger is a measure of the distance to
danger. The idea is to find a path for a robot that avoids
the dangerous areas. We suppose that the user ask the
network regularly for where to go next. The nodes
within broadcasting range from the user supply to the
next best state.

In order to supply obstacle information for the
planning algorithm, we use reward and punishment
computing process. In reinforcement learning process,
agent moves under the actuation of rewards from one
state to another. In this way, we assume each fix sensor
as a state and the mobile robot as an agent. Usually, the
goal generates a reward which pulls the object to the
goal and obstacles generate punishments which push the
object away. The gradient of them defines the action of
the object or in other word the current best direction of
motion. In figure 2, the solid black circles shows
sensors that sense dangers and those of white are
sensors that doesn’t sense it. The dashed line shows the
guiding path across the area covered by the sensor
network. It should be noted that this direction crosses
from one sensor to another and preserves the maximal
distance from areas of danger while approaching the
exit point.

F Yaghmaee and H Reza Koohi/ IJE TRANSACTIONS B: Applications Vol. 28, No. 2, (February 2015) 198-204 200

Figure 2. A typical example of navigation guiding task.

Algorithm 1 shows the reward computation protocol.

The reward is computed as each sensor whose triggers
danger diffuses some information to its neighbors in a
message that includes its source node id, the reward
value, and the number of hops from the source of the
message to the current node. When a node receives
multiple messages from the same source node, it keeps
only the message with the smallest number of hops. The
message with the least hops is kept because that
message is likely to travel along the shortest path. The
current node will compute the new reward value from
this source node. Then, the node broadcasts a message
with its own reward value and number of hops to its
neighbors.

After this configuration procedure, nodes may have
several rewards from multiple resources; to compute its
current danger level information each node adds all the
rewards.

Algorithm 1: The Reward Computation Protocol.
1 for all sensors iS in the network do

2 ipun = 0, jhops = ∞ for any danger j

3 if sensed-value = danger then

4 ihops = 0, ipun = Infinity

5 Broadcast message (i, hops = 0)
6 if receive (j, hops) then

7 if 1+> hopshopsj then

8 1+= hopshopsj

9 Broadcast message (j; jhops)

10 for all received j do

11 Compute the punishment jpun of j using 21 j
j hopspun =

12
Compute the reward & punish at iS using all jpun , ipun =

ipun + jpun , ii punrew 1=

It is to be noted that the reward protocol provides
distributed repositoryof information about the area
covered by the sensor network. It can be applied in an
initialization phase, continuously or intermittently. The
sensor network can self-organize adaptively to the
current landscape. It updates its distributed information
content by running the reward computation protocol
regularly. In this way, the network can adapt to sensor

failure and to dynamic danger sources that can move
across the network.

The reward value stored at each node can be used to
guide robot equipped with a sensor that can establish an
online interaction with the network. The safest path to
the goal can be computed by using algorithm 2. The
goal node initiates a dynamic programming computation
of this path using broadcasting.

Algorithm 2: The safest path to goal computation protocol.
1 Let G be a goal sensor
2 G broadcasts msg=(idG , idmy (G), hops=0,

reward=gv) //gv is a great value
3 for all sensors do

4 Initially
ghops = ∞ and gr = 0

5 if receive (g, k, hops,reward) then
6 Compute the reward integration from the goal to here
7 if ig rewrewardr +< then

8 ig rewrewardr +=

9 1+= hopshopsg
10 kpriorg =
11 Broadcast (idG , idmy (iS),

ghops , gr)

The goal node broadcasts a message with the danger
degree of the path, which is zero for the goal, you can
find it by great value of goal node reward. When a
sensor node receives a message, it adds its own reward
value to the reward value provided in the message, and
broadcasts a message updated with this new reward to
its neighbors. If a node receives multiple messages, it
selects the message with the greatest reward
(corresponding to the least danger) and remembers the
sender of the message.

Algorithm 3: The navigation guiding protocol.
1 if iS is a user sensor then

2 while Not at the goal G do
3 Broadcast inquiry message (idG)

4 for all received messages m = (idG , idmy (kS), hops,
reward, prior) do

5 Choose the message m with maximal reward then
minimal hops.

6 Let)(kid Smy be the id for the sender of this message

7 Move toward idmy (kS) and prior.

8 if iS is an information sensor then

9 if receive (idG) inquiry message then

10 Reply with (idG , idmy (
iS), ghops , gr , gprior)

iS

201 F Yaghmaee and H Reza Koohi/ IJE TRANSACTIONS B: Applications Vol. 28, No. 2, (February 2015) 198-204

A robot in the sensor network can rely on the
information computed using Algorithms 1 and 2 to get
continuous feedback from the network on how to
traverse the area. Algorithm 3 shows the navigation
guiding protocol. The robot asks the network for where
to go next. The neighboring nodes reply with their
current values. The robot's sensor chooses the best
possibility from the returned values. Note that this
algorithm requires the integrated reward value
computed by Algorithms 1 and 2 in order to avoid
getting stuck in local minima.

3. 1. Some Notes for Implementation Our
navigation algorithm has an implicit assumption that the
communication paths in the network are bi-directional.
Since based on reinforcement learning structure the
safest path is computed backward from the goal,
messages have to able to flow in the opposite direction
to lead the user to the goal. However, all attachment is
not always manipulated as bi-directional in sensor
network. In [10, 11] discussed about the distribution of
symmetric and asymmetric links in sensor network. As
an additional protocol run by each node can perform
neighbor profiling to find all stable one-hop neighbors
bi-directionally; these neighbors should be reachable to
and from the node with high probability. A side effect
of neighbor profiling is the removal of many of the
transient links that are active for a very short time.

Algorithms 1 and 2 ask each sensor upon receiving a
message to broadcast with fewer hops to the dangerous
area or with greater reward integration to the goal.
Many of the broadcasts may not be necessary since only
the message with the least hops to the danger node
location or the maximal reward integration to the goal is
useful. To reduce the message broadcasts, we let each
sensor wait for some time before it broadcasts. The
waiting time for sensor

iS is proportional to hop in
Algorithm 1 and the value irew in Algorithm 2. By this
way, only the messages that carry the optimal value will
be broadcasted and those carrying the non-optimal value
will be suppressed. It can prove that the number of
message broadcasts for each sensor is 1 in each
algorithm using this technique [12].

3. 2. Accuracy of Protocol Our protocols can
correctly determine the safest path to the goal without
getting stuck in the local minima.

Theorem 1: Algorithm 3 will always give the robot
sensor a path to the goal.

Proof: In Algorithm 2, the prior link of a node points
to a node that has reward value more than that of the
current node. So, for each node other than the goal,
there must be a neighboring node that has a greater
reward value. This proves that there are no local minima
in the network.

The robot's sensor can always find a node among its
neighbors that leads to a greater reward value. If the
process continues, the node will end up with the goal
that has the greatest reward value. Therefore, Algorithm
3 can always give the mobile robot sensor a path to the
goal.

3. 3. Communication Capabilities Two natural
questions arise about the protocols we described
previously:
• How much time does it take to propagate the

obstacle and goal information?
• Is the network capable of transmitting all the

information?
In this section, we answer the two questions in the

context of our current implementation.
We assume that each node has fixed transmission

range and nodes in a node's neighborhood (say k nodes)
should be silent to avoid contention when that node
broadcasts. For the obstacle information propagation,
assume the number of the concerned obstacles is O; i.e.,
on average, each node has to process the information of
O obstacles. Let the transmission rate for each node be b

spackets . Then, time for obstacle information
propagating to a node is bokl where ()olLl ,min= , L
is the distance for the reward value to become
maximum, and ol is the distance between the node and
the obstacle, both in number of hops.

The formula is for the case when we add waiting
time for each broadcast; i.e., each node only broadcasts
obstacle information propagation once. In this case,
each node needs to wait for bk time before
broadcasting the best value. This waiting time allows
enough time for each of the node's neighbors to
broadcast the packet if they hold the same value as this
node, so that they do not collide. For the case without
explicit waiting time scheme, the MAC protocol
enforces this delay to make sure all the packets go
through smoothly. On the other hand, suppose we do
not have the waiting time scheme, each node may
broadcast multiple times because the least number of
hops is unlikely to be obtained by the first received
message so that the node needs to broadcast several
packets before the best value is propagated. In this case,
we must multiply the propagation time by another
parameter m, which is the average messages broadcast
for each node. Similarly, we can evaluate the
propagation time for the goal information.

The transmission rate of the some Mote sensors is
approximately b=40 spackets , so for k=8, the added
waiting time to each node is s2.0408 = . Regardless of
how many obstacles there are in this system, if each
node is in the proximity of only one obstacle, it takes
0.2*10=2 seconds to propagate the information up to 10

F Yaghmaee and H Reza Koohi/ IJE TRANSACTIONS B: Applications Vol. 28, No. 2, (February 2015) 198-204 202

hops away. When the obstacles are static, and we do not
care about the time, the network is capable of
transmitting this amount of bits. If we have some
constraints on the time, say, we have moving obstacles
and the location of an obstacle must be known to the
network within a distance resolution d, the network may
not be able to carry all the information. Suppose the
maximal speed of the obstacle is v. In the worst case, an
obstacle generates dv packets per time unit, so each
node needs to process dov packets, which should be
less than kb , i.e., kbdov < . If we do not have the
waiting time, we expect more packets be generated and
the precision about the mobile agent represented by the
network will be low.

Suppose a flame of fire is moving at a speed of 1
sm , the maximal transmission rate for a node is 40

spackets , the number of concerned obstacles is 1, and
the number of the concerned neighbors of a node is 8.
The network can sustain updates at a resolution of 0.2
meters. If we have the same network, but the mobile
agent is a vehicle moving at a speed of 30 hmiles , the
vehicle updates can happen every 2.7 meters.

4. IMPLEMENTATION

Visual-Sense [13] from Ptolemy II simulation software
package was used for simulation.

4. 1. CORRECTNESS VALIDATION Algorithms 1, 2,
and 3 were simulated by using Visual-Sense. In
simulation, we asked both the goals and the obstacles to
generate the reward or punishment value and propagate
it to the entire network periodically. This demonstrates
that the goals and the obstacles can be added to the
network at any time.

The goal is represented with a composite-wireless-
actor. As shown in Fig. 3, the nodes in the network that
can sense the danger (obstacle) are represented with
components that have two concentric circles where
internal green circle represents node and external blue
circle represent transmission range. The robot that
routes in the network is represented with another
component.

A grid containing 7*7 nodes was used to simulate
experimenting the performance and accuracy of
protocols. We assume that sensors deployed on a
building previously so these nodes were deployed
symmetrically grid and all neighbors are within
communication range. With this assumption, energy of
the sensors can supply from the building energy source,
but due to possibility of fire, it is better that sensors
equipped with backup battery. The application is run by
iterating a request for the next step by the user, a
response by the network, and a move to the direction of

the network response. To implement this last part, we
assume that the nodes know their location and it can be
transmitted to the moving user. This can be done by
augmenting nodes with a GPS location, or via
triangulation. Since we have not done this augmentation
of the hardware yet, we simulate location knowledge by
placing the nodes in a grid pattern and supplying
coordinates. The reward and goal-path computations are
run by the network continuously, so it updates
distributed information content, and the network can
adapt to sensor failure and to dynamic danger sources
which can move across the network.

When an obstacle or goal broadcasts, the receiving
network node checks its list of known goals, and
replaces the old data with the new broadcast if the new
broadcast has a lower hop count. When a node receives
a broadcast, it degrades the value of the broadcast based
either on a linear function on the number of hops for
goals or by the squared number of hops for obstacles. If
the new value is not below a cutoff threshold, the
packet is transmitted to its neighbors. When a user
requests reward estimates, all nodes can hear it respond.
The user chooses the node with the largest reward value
(that is greater than the value of the current node). The
user moves toward this node.

Figure 3: Simulation with 7*7 sensor nodes in a network by
means of Visual-Sense

Figure 4: Results after the completion of simulation: Green
nodes are those which have not sensed any danger but the red
nodes just the opposite

203 F Yaghmaee and H Reza Koohi/ IJE TRANSACTIONS B: Applications Vol. 28, No. 2, (February 2015) 198-204

Figure 5. The comparison between the measured real distance
and the hops counted using the presented algorithm

This Simulation proved that a user with a sensor

node actually went around the obstacles and got to the
goal, via the correct path. We observed that the network
adapted to introducing of a new obstacle nodes quickly
and robustly.

When a new obstacle is inserted in the network, the
obstacle starts broadcasting its danger information
which affects the information held by each node. At this
point, Algorithms 1 and 2 cause the local information to
change. We call the total time for the network to
identify the new distances from danger and to the goal
for each node the “time for the network to stabilize” . In
other words, the time for the network to stabilize is the
information propagation time in the network, which
depends on the maximal hops from the goals or the
obstacles to any node in the network. When an obstacle
is added to the system online, it takes an identical
amount of time to diffuse the information to the whole
network.

Figure 5 shows the comparison between the
measured real distance and the hops counted using our
algorithm. The data was collected in our 7×7 grid
network. We can see that the measured real distance is
approximately linear in the number of hops.

4. 2. Some Notes on Hardware Implementation
Several interesting aspects of these experiments can be
observed. The time for network stabilization (that is, the
time for all the nodes to get the shortest distance to the
danger source and the time for all the nodes to get the
safest path to the goal) may take much longer than we
expected. In our algorithms, we made two typical
assumptions: (1) a node broadcasts the message
received immediately and (2) each node gets the packet
traveling through the shortest path. We observed that on
the hardware test none of these assumptions was held.
The network stabilization takes a long time because of

network congestion and transitory link status. Often,
nodes seemingly out of range hear each other for brief
moments of time. It seems that the following items are
within the bounds of hardware implementation:
• Data loss: Data lose is not rare in sensor network.

This is due to network congestion, transmission
interference, and garbled messages.

• Asymmetric connection: It is observed that the
transmission range in one direction may be quite
different from that in the opposite direction. Thus,
the assumption that if a node receives a packet from
another node, it can send back a packet is too
idealistic. In routing algorithm design, the existence
of a route that can carry a packet from the source to
a node does not guarantee a reverse route from that
node to the source.

• Congestion: Network congestion is very likely when
the message rate is high. This is aggravated when
the nodes in proximity of each other try to send
packets at the same time. For a sensor network,
because of its small memory and simplified protocol
stack, congestion is a big problem.

• Other unpredictable network conditions: In our
sensor network nodes that should be several hops
away from each other occasionally come in direct
communication range. We expect many transitory
links (on and off) in an unstable network due to the
impact of unpredictable conditions.

5. CONCLUSION

We used reinforcement learning in sensor networks for
better cooperation and adoption in dynamic
environments. We have dealt with sensor networks for
guiding the robot across the area of network on the
safest path. Safety is measured as the distance between
danger and detecting sensors.

In this paper, protocols based on reinforcement
learning are suggested and have implemented on a
distributed repository of information which can be
retrieved efficiently whenever is needed. We have
simulated these protocols on a 7×7 network of sensor
nodes by using the Visual-Sense software from Ptolemy
II package.

The contribution of our experimental evaluations is
the time delay which is needed to network adapts itself
to new situation such as detecting a moving object,
detecting a new obstacle, adding a new sensor in the
network, and removing a sensor from the network.

6. REFERENCES

1. Feng, Z., Tan, L., Li, W. and Gulliver, T.A., "Reinforcement

learning based dynamic network self-optimization for
heterogeneous networks", in Communications, Computers and

F Yaghmaee and H Reza Koohi/ IJE TRANSACTIONS B: Applications Vol. 28, No. 2, (February 2015) 198-204 204

Signal Processing, PacRim, Pacific Rim Conference on, IEEE.,
(2009), 319-324.

2. Chasparis, G.C. and Shamma, J.S., "Distributed dynamic
reinforcement of efficient outcomes in multiagent coordination
and network formation", Dynamic Games and Applications,
Vol. 2, No. 1, (2012), 18-50.

3. Brooks, R.A., "A robust layered control system for a mobile
robot", IEEE Journal ofRobotics and Automation, Vol. 2, No.
1, (1986), 14-23.

4. Gosavi, A., "A tutorial for reinforcement learning", Department
of Engineering Management and Systems Engineering, (2011).

5. Busoniu, L., Babuska, R. and De Schutter, B., "A
comprehensive survey of multiagent reinforcement learning",
Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, Vol. 38, No. 2, (2008), 156-
172.

6. Qiao, J., Hou, Z. and Ruan, X., "Application of reinforcement
learning based on neural network to dynamic obstacle
avoidance", in Information and Automation, 2008. ICIA 2008.
International Conference on, IEEE. Issue, (2008), 784-788.

7. Valiollahi, S., Ghaderi, R., Ebrahimzade, A., , "A q-learning
based continuous tuning of fuzzy wall tracking without
exploration", International Journal of Engineering-
Transactions A: Basics, Vol. 25, No. 4, (2012), 355-366.

8. Abdi, J., Khalili, G.F., Fatourechi, M., Lucas, C. and Sedigh,
A.K., "Control of multivariable systems based on emotional
temporal difference learning controller", International Journal
of Engineering-Transactions A: Basics, Vol. 17, No. 4, (2004),
363-376.

9. Mirmomeni, M. and Yazdanpanah, M., "An unsupervised
learning method for an attacker agent in robot soccer
competitions based on the kohonen neural network",
International Journal of Engineering- Transactions A: Basics,
Vol. 21, No. 3, (2008), 255-268.

10. Koohi, H., Nadernejad, E. and Fathi, M., "Employing sensor
network to guide firefighters in dangerous area", International
Journal of Engineering-Transactions C: Aspects,, Vol. 32,
No. 2, (2010), 191-202.

11. Ganesan, D., Krishnamachari, B., Woo, A., Culler, D., Estrin, D.
and Wicker, S., Complex behavior at scale: An experimental
study of low-power wireless sensor networks. (2002), Technical
Report UCLA/CSD-TR 02.

12. Aslam, J., Li, Q. and Rus, D., "Three power‐aware routing
algorithms for sensor networks", Wireless Communications and
Mobile Computing, Vol. 3, No. 2, (2003), 187-208.

13. Baldwin, P., Kohli, S., Lee, E.A., Liu, X. and Zhao, Y.,
"Modeling of sensor nets in ptolemy ii", in Proceedings of the
3rd international symposium on Information processing in
sensor networks, ACM. (2004), 359-368.

Dynamic Obstacle Avoidance by Distributed Algorithm based on
Reinforcement Learning

RESEARCH
NOTE

F Yaghmaee, H Reza Koohi

Electrical and Computer Engineering Department, Semnan University, Semnan, Iran

P A P E R I N F O

Paper history:
Received 02 July 2014
Received in revised form 07 October 2014
Accepted 13 November 2014

Keywords:
Reinforcement Learning, Sensor Network
Dynamic Obstacle Avoidance
Robot Navigation

 چکیده

ما در این مقاله به کاربرد یادگیري تقویتی در راهنمایی ربات متحرك ضمن ممانعت از موانع پویا در شبکه سنسور بیسیم
شبکه سنسور سطح خطر منطقه اي که تحت پوشش دارد به صورت مانع مدل می کند و این قابلیت را دارد که . پرداختیم
الگوریتم ارائه شده نتایج محاسبات پاداش و خطا در سنسورها را با اطلاعات مکان . با تغییرات احتمالی وفق دهدخود را

ربات در حال حرکت تلفیق می نماید تا بتواند ربات را قدم به قدم در شبکه سنسور ضمن تعیین امن ترین مسیر در مناطق
پس از دوره یادگیري، ربات بدون گیر کردن در خطرات می تواند به نتایج شبیه سازي نشان داد. خطرناك راهنمایی کند

ضمنا در خصوص زمان مورد نیاز براي انتشار اطلاعات مقصد و موانع و ربات متحرك و شناسایی آنها بحث . مقصد برسد
 .تهاي واقعی برخوردار اس آزمایشات نشان میدهد روش پیشنهادي از دقت خوبی در محیط. و بررسی شده است

doi: 10.5829/idosi.ije.2015.28.02b.05

