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A B S T R A C T  
 

 

In this paper, we focus on the application of reinforcement learning to obstacle avoidance in dynamic 
environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is 
developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor 
network models the danger of the area under coverage as obstacles, and has the property of adoption of 
itself against possible changes. The proposed protocol can integrate the reward computation of the 
sensors with information of the intended place of robot so that it guides the robot step by step through 
the sensor network by choosing the safest path in dangerous zones. Simulation results show that the 
mobile robot can get to the target point without colliding with any obstacle after a period of learning. 
Also, we discussed about time propagation between obstacle, goal, and mobile robot information. 
Experimental results show that our proposed method has the ability of fast adoption in real applications 
in wireless sensor networks. 
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1. INTRODUCTION1 
 
We use reinforcement learning under so-called 
“dynamic reinforcement” in wireless sensor network to 
guide mobile robot through the dynamic obstacles. 
Reinforcement learning dates to early days of 
cybernetics and work in statistics, psychology, 
neuroscience, and computer science. In the past 20 
years, it has attracted rapidly increasing interest in 
machine learning and artificial intelligence communities 
[1]. In reinforcement learning, each agent repeatedly 
interacts with an unknown environment, receives a 
reward or punishment, and updates the probabilities of 
its next action based on its own previous actions and 
received values. 

Autonomous mobile robots have a wide range of 
application, such as in hospitals, houses, industries, 
space exploration, etc. Generally, obstacle avoidance is 
the main aspect of mobile robot. The purpose of 
obstacle avoidance is to enabling mobile robots to get to 
the target point without colliding with any obstacle in 
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unknown or dynamic environments. The conventional 
control technique is model based called planning 
architecture and artificial potential fields and cell 
decomposition belong to this type of controller [2]. 
However, this model needs a long time to execute an 
action and also is limited to known environments. 
Moreover, weak robustness is a problem in this model. 
Behavior-based architecture [3] is different from 
planning architecture which has many advantages, such 
as better robustness and quickness. In order to adopt this 
architecture to complex and dynamic environments 
without the further intervention, learning ability should 
be adopted to improve the autonomy of mobile robots. 
Reinforcement learning [4-8] is used widely and can be 
applied to the behavior-based architecture. In [9] discuss 
about the reinforcement learning in complex multi-agent 
learning problem. 

In this paper, distributed algorithms based on 
reinforcement learning is developed for sensor network 
to guide mobile robot through the dynamic obstacles 
like burning area in real world. A series of operating 
sensors which have been networked together can follow 
the movements of robot in dangerous environment and 
direct it to desired point.  By assuming dangerous places 
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as obstacles, we calculate the reward or punishment 
based on obstacles that will be in tune with current 
system's status. Base on these values, safest path to goal 
will produce which means it evades the least number of 
traces of danger. 

The rest of paper is as follows: in section 2 we 
briefly explain important ideas in reinforcement 
algorithm. In section 3, proposed method is fully 
described and simulation results are presented in section 
4. Finally, conclusion comes in section 5. 
 
 
2. REINFORCEMENT LEARNING MODEL 
 
Reinforcement learning is used to learn the internal 
structure of the behaviors by mapping the perceived 
states to control actions while maximizing the 
accumulated reinforcement reward. In reinforcement 
learning process, the agent perceives the state of the 
environment and receives an input that describes the 
state. Then, the agent chooses an action from the action 
set to execute immediately and agent possibly moves to 
a new state. After that, the agent receives an evaluation 
feedback called reinforcement as well as perceives the 
new state. The purpose of the learning system is to find 
a control policy that maximizes the expected amount of 
reward during the whole learning period. The value 
function can be described as Equation (1):   (  ) ≡   +  .     +   .    + ⋯  (1) 

where,    is the reward received in transition from state    to state      and γ (0<γ<1) is the discount factor.  (  ) is the discounted amount reward received by the 
learning system since time t . It depends on the 
sequence of chosen action which is determined by the 
strategy of control. The system has to find a control 
strategy that maximizes  (  )for each state. The model 
of RL(Reinforcement Learning) is shown in Figure 1. 

Once the target function in Equation (1) is 
determined, the optimal behavior policy can be 
expressed as Equation (2):  ∗ =          (  )  (2) 

 
 
 

 

 
Figure 1. Model of Reinforcement Learning 

Reinforcement learning obtains its optimal policy 
based on its feedback. Unlike supervised learning, RL 
needs no training sequences. In [1, 4, 5] more discussion 
about Q-learning based on Markov Decision Process is 
presented. 
 
 
3. PROPOSED DISTRIBUTED ALGORITHM FOR 
SENSOR NETWORK 
 
Sensors collect information from different areas. They 
can store information locally or route them to a base 
station for further analysis and use. Sensors can also use 
communicative facilities to integrate their sensed values 
with the rest of the sensor landscape. We will discuss a 
method to distribute the information about the 
environment redundantly across the entire network. 
Robot can use this information as they traverse the 
network. It’s also guided across the network along a 
safe path, away from the type of danger that can be 
detected by the sensors. 

The dangerous areas in the sensor network will be 
defined as obstacles. Danger may include overheating, 
fire, hazardous gasses, thick fume, etc. It is supposed 
that each sensor can sense the presence or absence of 
such types of danger. An iterative danger configuration 
protocol running across all the nodes of the network 
creates the danger map. We do not envision that the 
network will create accurate geometric map, distributed 
across all the nodes. Instead, we wish to provide some 
information about how far from danger each node is in 
network. If the sensors are uniformly distributed, the 
smallest number of communication hops to a sensor that 
triggers "yes" to danger is a measure of the distance to 
danger. The idea is to find a path for a robot that avoids 
the dangerous areas. We suppose that the user ask the 
network regularly for where to go next. The nodes 
within broadcasting range from the user supply to the 
next best state. 

In order to supply obstacle information for the 
planning algorithm, we use reward and punishment 
computing process. In reinforcement learning process, 
agent moves under the actuation of rewards from one 
state to another. In this way, we assume each fix sensor 
as a state and the mobile robot as an agent. Usually, the 
goal generates a reward which pulls the object to the 
goal and obstacles generate punishments which push the 
object away. The gradient of them defines the action of 
the object or in other word the current best direction of 
motion. In figure 2, the solid black circles shows 
sensors that sense dangers and those of white are 
sensors that doesn’t sense it. The dashed line shows the 
guiding path across the area covered by the sensor 
network. It should be noted that this direction crosses 
from one sensor to another and preserves the maximal 
distance from areas of danger while approaching the 
exit point. 
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Figure 2. A typical example of navigation guiding task. 
 
 
 
Algorithm 1 shows the reward computation protocol. 

The reward is computed as each sensor whose triggers 
danger diffuses some information to its neighbors in a 
message that includes its source node id, the reward 
value, and the number of hops from the source of the 
message to the current node. When a node receives 
multiple messages from the same source node, it keeps 
only the message with the smallest number of hops. The 
message with the least hops is kept because that 
message is likely to travel along the shortest path. The 
current node will compute the new reward value from 
this source node. Then, the node broadcasts a message 
with its own reward value and number of hops to its 
neighbors. 

After this configuration procedure, nodes may have 
several rewards from multiple resources; to compute its 
current danger level information each node adds all the 
rewards. 

 
Algorithm 1: The Reward Computation Protocol. 
1 for all sensors iS  in the network do 

2 ipun = 0, jhops = ∞ for any danger j 

3 if sensed-value = danger then 

4 ihops  =  0, ipun  =  Infinity 

5 Broadcast message (i, hops = 0) 
6 if receive (j, hops) then 

7 if 1+> hopshopsj  then 

8 1+= hopshopsj  

9 Broadcast message (j; jhops )
 

10 for all received j do 

11 Compute the punishment jpun of j using 21 j
j hopspun =  

12 
Compute the reward & punish at iS  using all jpun , ipun  = 

ipun  + jpun , ii punrew 1=  

It is to be noted that the reward protocol provides 
distributed repositoryof information about the area 
covered by the sensor network. It can be applied in an 
initialization phase, continuously or intermittently. The 
sensor network can self-organize adaptively to the 
current landscape. It updates its distributed information 
content by running the reward computation protocol 
regularly. In this way, the network can adapt to sensor 

failure and to dynamic danger sources that can move 
across the network. 

The reward value stored at each node can be used to 
guide robot equipped with a sensor that can establish an 
online interaction with the network. The safest path to 
the goal can be computed by using algorithm 2. The 
goal node initiates a dynamic programming computation 
of this path using broadcasting. 

 
Algorithm 2: The safest path to goal computation protocol. 
1 Let G be a goal sensor 
2 G broadcasts msg=( idG , idmy (G), hops=0, 

reward=gv) //gv is a great value 
3 for all sensors  do 

4 Initially 
ghops =  ∞ and gr = 0 

5 if receive (g, k, hops,reward) then 
6 Compute the reward integration from the goal to here 
7 if ig rewrewardr +<  then 

8 ig rewrewardr +=  

9 1+= hopshopsg  
10 kpriorg =  
11 Broadcast ( idG , idmy ( iS ),

ghops , gr )
 

The goal node broadcasts a message with the danger 
degree of the path, which is zero for the goal, you can 
find it by great value of goal node reward. When a 
sensor node receives a message, it adds its own reward 
value to the reward value provided in the message, and 
broadcasts a message updated with this new reward to 
its neighbors. If a node receives multiple messages, it 
selects the message with the greatest reward 
(corresponding to the least danger) and remembers the 
sender of the message. 

 
Algorithm 3: The navigation guiding protocol. 
1 if iS  is a user sensor then 

2 while Not at the goal G do 
3 Broadcast inquiry message ( idG ) 

4 for all received messages m = ( idG , idmy ( kS ), hops, 
reward, prior) do 

5 Choose the message m with maximal reward then 
minimal hops. 

6 Let )( kid Smy  be the id for the sender of this message 

7 Move toward idmy ( kS ) and prior. 

8 if iS  is an information sensor then 

9 if receive ( idG ) inquiry message then 

10 Reply with ( idG , idmy (
iS ), ghops , gr , gprior ) 

iS
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A robot in the sensor network can rely on the 
information computed using Algorithms 1 and 2 to get 
continuous feedback from the network on how to 
traverse the area. Algorithm 3 shows the navigation 
guiding protocol. The robot asks the network for where 
to go next. The neighboring nodes reply with their 
current values. The robot's sensor chooses the best 
possibility from the returned values. Note that this 
algorithm requires the integrated reward value 
computed by Algorithms 1 and 2 in order to avoid 
getting stuck in local minima. 
 
3. 1. Some Notes for Implementation        Our 
navigation algorithm has an implicit assumption that the 
communication paths in the network are bi-directional. 
Since based on reinforcement learning structure the 
safest path is computed backward from the goal, 
messages have to able to flow in the opposite direction 
to lead the user to the goal. However, all attachment is 
not always manipulated as bi-directional in sensor 
network. In [10, 11] discussed about the distribution of 
symmetric and asymmetric links in sensor network. As 
an additional protocol run by each node can perform 
neighbor profiling to find all stable one-hop neighbors 
bi-directionally;  these neighbors should be reachable to 
and from the node with high probability. A side effect 
of neighbor profiling is the removal of many of the 
transient links that are active for a very short time.  

Algorithms 1 and 2 ask each sensor upon receiving a 
message to broadcast with fewer hops to the dangerous 
area or with greater reward integration to the goal. 
Many of the broadcasts may not be necessary since only 
the message with the least hops to the danger node 
location or the maximal reward integration to the goal is 
useful. To reduce the message broadcasts, we let each 
sensor wait for some time before it broadcasts. The 
waiting time for sensor 

iS  is proportional to hop in 
Algorithm 1 and the value irew  in Algorithm 2. By this 
way, only the messages that carry the optimal value will 
be broadcasted and those carrying the non-optimal value 
will be suppressed. It can prove that the number of 
message broadcasts for each sensor is 1 in each 
algorithm using this technique [12]. 
 
3. 2. Accuracy of Protocol     Our protocols can 
correctly determine the safest path to the goal without 
getting stuck in the local minima. 

Theorem 1: Algorithm 3 will always give the robot 
sensor a path to the goal. 

Proof: In Algorithm 2, the prior link of a node points 
to a node that has reward value more than that of the 
current node. So, for each node other than the goal, 
there must be a neighboring node that has a greater 
reward value. This proves that there are no local minima 
in the network. 

The robot's sensor can always find a node among its 
neighbors that leads to a greater reward value. If the 
process continues, the node will end up with the goal 
that has the greatest reward value. Therefore, Algorithm 
3 can always give the mobile robot sensor a path to the 
goal. 
 
3. 3. Communication Capabilities      Two natural 
questions arise about the protocols we described 
previously:  
• How much time does it take to propagate the 

obstacle and goal information? 
• Is the network capable of transmitting all the 

information?  
In this section, we answer the two questions in the 

context of our current implementation. 
We assume that each node has fixed transmission 

range and nodes in a node's neighborhood (say k nodes) 
should be silent to avoid contention when that node 
broadcasts. For the obstacle information propagation, 
assume the number of the concerned obstacles is O; i.e., 
on average, each node has to process the information of 
O obstacles. Let the transmission rate for each node be b

spackets . Then, time for obstacle information 
propagating to a node is bokl  where ( )olLl ,min= , L 
is the distance for the reward value to become 
maximum, and ol  is the distance between the node and 
the obstacle, both in number of hops.  

The formula is for the case when we add waiting 
time for each broadcast; i.e., each node only broadcasts 
obstacle information propagation once. In this case, 
each node needs to wait for bk time before 
broadcasting the best value. This waiting time allows 
enough time for each of the node's neighbors to 
broadcast the packet if they hold the same value as this 
node, so that they do not collide. For the case without 
explicit waiting time scheme, the MAC protocol 
enforces this delay to make sure all the packets go 
through smoothly. On the other hand, suppose we do 
not have the waiting time scheme, each node may 
broadcast multiple times because the least number of 
hops is unlikely to be obtained by the first received 
message so that the node needs to broadcast several 
packets before the best value is propagated. In this case, 
we must multiply the propagation time by another 
parameter m, which is the average messages broadcast 
for each node. Similarly, we can evaluate the 
propagation time for the goal information. 

The transmission rate of the some Mote sensors is 
approximately b=40 spackets , so for k=8, the added 
waiting time to each node is s2.0408 = . Regardless of 
how many obstacles there are in this system, if each 
node is in the proximity of only one obstacle, it takes 
0.2*10=2 seconds to propagate the information up to 10 
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hops away. When the obstacles are static, and we do not 
care about the time, the network is capable of 
transmitting this amount of bits. If we have some 
constraints on the time, say, we have moving obstacles 
and the location of an obstacle must be known to the 
network within a distance resolution d, the network may 
not be able to carry all the information. Suppose the 
maximal speed of the obstacle is v. In the worst case, an 
obstacle generates dv  packets per time unit, so each 
node needs to process dov  packets, which should be 
less than kb , i.e., kbdov < . If we do not have the 
waiting time, we expect more packets be generated and 
the precision about the mobile agent represented by the 
network will be low. 

Suppose a flame of fire is moving at a speed of 1
sm , the maximal transmission rate for a node is 40

spackets , the number of concerned obstacles is 1, and 
the number of the concerned neighbors of a node is 8. 
The network can sustain updates at a resolution of 0.2 
meters. If we have the same network, but the mobile 
agent is a vehicle moving at a speed of 30 hmiles , the 
vehicle updates can happen every 2.7 meters. 

 
 

4. IMPLEMENTATION 
 
Visual-Sense [13] from Ptolemy II simulation software 
package was used for simulation. 

 
4. 1. CORRECTNESS VALIDATION     Algorithms 1, 2, 
and 3 were simulated by using Visual-Sense. In 
simulation, we asked both the goals and the obstacles to 
generate the reward or punishment value and propagate 
it to the entire network periodically. This demonstrates 
that the goals and the obstacles can be added to the 
network at any time. 

The goal is represented with a composite-wireless-
actor. As shown in Fig. 3, the nodes in the network that 
can sense the danger (obstacle) are represented with 
components that have two concentric circles where 
internal green circle represents node and external blue 
circle represent transmission range. The robot that 
routes in the network is represented with another 
component. 

A grid containing 7*7 nodes was used to simulate 
experimenting the performance and accuracy of 
protocols. We assume that sensors deployed on a 
building previously so these nodes were deployed 
symmetrically grid and all neighbors are within 
communication range. With this assumption, energy of 
the sensors can supply from the building energy source, 
but due to possibility of fire, it is better that sensors 
equipped with backup battery. The application is run by 
iterating a request for the next step by the user, a 
response by the network, and a move to the direction of 

the network response. To implement this last part, we 
assume that the nodes know their location and it can be 
transmitted to the moving user. This can be done by 
augmenting nodes with a GPS location, or via 
triangulation. Since we have not done this augmentation 
of the hardware yet, we simulate location knowledge by 
placing the nodes in a grid pattern and supplying 
coordinates. The reward and goal-path computations are 
run by the network continuously, so it updates 
distributed information content, and the network can 
adapt to sensor failure and to dynamic danger sources 
which can move across the network. 

When an obstacle or goal broadcasts, the receiving 
network node checks its list of known goals, and 
replaces the old data with the new broadcast if the new 
broadcast has a lower hop count. When a node receives 
a broadcast, it degrades the value of the broadcast based 
either on a linear function on the number of hops for 
goals or by the squared number of hops for obstacles. If 
the new value is not below a cutoff  threshold, the 
packet is transmitted to its neighbors. When a user 
requests reward estimates, all nodes can hear it respond. 
The user chooses the node with the largest reward value 
(that is greater than the value of the current node). The 
user moves toward this node. 
 
 

 
Figure 3: Simulation with 7*7 sensor nodes in a network by 
means of Visual-Sense 
 
 

 
Figure 4: Results after the completion of simulation: Green 
nodes are those which have not sensed any danger but the red 
nodes just the opposite 
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Figure 5. The comparison between the measured real distance 
and the hops counted using the presented algorithm 

 
 
This Simulation proved that a user with a sensor 

node actually went around the obstacles and got to the 
goal, via the correct path. We observed that the network 
adapted to introducing of a new obstacle nodes quickly 
and robustly. 

When a new obstacle is inserted in the network, the 
obstacle starts broadcasting its danger information 
which affects the information held by each node. At this 
point, Algorithms 1 and 2 cause the local information to 
change. We call the total time for the network to 
identify the new distances from danger and to the goal 
for each node the “time for the network to stabilize” . In 
other words, the time for the network to stabilize is the 
information propagation time in the network, which 
depends on the maximal hops from the goals or the 
obstacles to any node in the network. When an obstacle 
is added to the system online, it takes an identical 
amount of time to diffuse the information to the whole 
network. 

Figure 5 shows the comparison between the 
measured real distance and the hops counted using our 
algorithm. The data was collected in our 7×7 grid 
network. We can see that the measured real distance is 
approximately linear in the number of hops. 
 
4. 2. Some Notes on Hardware Implementation        
Several interesting aspects of these experiments can be 
observed. The time for network stabilization (that is, the 
time for all the nodes to get the shortest distance to the 
danger source and the time for all the nodes to get the 
safest path to the goal) may take much longer than we 
expected. In our algorithms, we made two typical 
assumptions: (1) a node broadcasts the message 
received immediately and (2) each node gets the packet 
traveling through the shortest path. We observed that on 
the hardware test none of these assumptions was held. 
The network stabilization takes a long time because of 

network congestion and transitory link status. Often, 
nodes seemingly out of range hear each other for brief 
moments of time. It seems that the following items are 
within the bounds of hardware implementation: 
• Data loss: Data lose is not rare in sensor network. 

This is due to network congestion, transmission 
interference, and garbled messages. 

• Asymmetric connection: It is observed that the 
transmission range in one direction may be quite 
different from that in the opposite direction. Thus, 
the assumption that if a node receives a packet from 
another node, it can send back a packet is too 
idealistic. In routing algorithm design, the existence 
of a route that can carry a packet from the source to 
a node does not guarantee a reverse route from that 
node to the source. 

• Congestion: Network congestion is very likely when 
the message rate is high. This is aggravated when 
the nodes in proximity of each other try to send 
packets at the same time. For a sensor network, 
because of its small memory and simplified protocol 
stack, congestion is a big problem. 

• Other unpredictable network conditions: In our 
sensor network nodes that should be several hops 
away from each other occasionally come in direct 
communication range. We expect many transitory 
links (on and off) in an unstable network due to the 
impact of unpredictable conditions. 

 
 
5. CONCLUSION 
 
We used reinforcement learning in sensor networks for 
better cooperation and adoption in dynamic 
environments. We have dealt with sensor networks for 
guiding the robot across the area of network on the 
safest path. Safety is measured as the distance between 
danger and detecting sensors. 

In this paper, protocols based on reinforcement 
learning are suggested and have implemented on a 
distributed repository of information which can be 
retrieved efficiently whenever is needed. We have 
simulated these protocols on a 7×7 network of sensor 
nodes by using the Visual-Sense software from Ptolemy 
II package. 

The contribution of our experimental evaluations is 
the time delay which is needed to network adapts itself 
to new situation such as detecting a moving object, 
detecting a new obstacle, adding a new sensor in the 
network, and removing a sensor from the network. 
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  چکیده
  

  

ما در این مقاله به کاربرد یادگیري تقویتی در راهنمایی ربات متحرك ضمن ممانعت از موانع پویا در شبکه سنسور بیسیم 
شبکه سنسور سطح خطر منطقه اي که تحت پوشش دارد به صورت مانع مدل می کند و این قابلیت را دارد که . پرداختیم
الگوریتم ارائه شده نتایج محاسبات پاداش و خطا در سنسورها را با اطلاعات مکان . با تغییرات احتمالی وفق دهدخود را 

ربات در حال حرکت تلفیق می نماید تا بتواند ربات را قدم به قدم در شبکه سنسور ضمن تعیین امن ترین مسیر در مناطق 
پس از دوره یادگیري، ربات بدون گیر کردن در خطرات می تواند به  نتایج شبیه سازي نشان داد. خطرناك راهنمایی کند

ضمنا در خصوص زمان مورد نیاز براي انتشار اطلاعات مقصد و موانع و ربات متحرك و شناسایی آنها بحث . مقصد برسد
  .تهاي واقعی برخوردار اس آزمایشات نشان میدهد روش پیشنهادي از دقت خوبی در محیط. و بررسی شده است
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