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In this paper, an estimator for speech enhancement based on Laplacian Mixture Mode (L MM)has been
proposed. The proposed method, estimates the complex Discerete Fourier Transform(DFT) coefficients
of clean speech from noisy speech using the Minimum Mean Square Error(MMSE) estimator, when
the clean speech DFT coefficients are supposed mixture of Laplacians and the DFT coefficients of
noise are assumed zero-mean Gaussian distribution. Furthermore, the MM SE estimator under speech
presence uncertainty and the Laplacian mixture model were derived. It is shown that the proposed
estimator has better performance than three estimators based on single Gaussian and single Laplacian
models. Also under speech presence uncertainty the results become better.
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1. INTRODUCTION

In recent years there has been a lot of interest in the
enhancement of noisy speech for digita voice
communications, human-machine interfaces, automatic
speech  recognition systems and many  other
applications. Because, the presence of noise degrades
the performance of these systems. A lot of methods
have been proposed for speech enhancement, such as
the spectral subtraction[1, 2], the signal subspace[3, 4],
the dtatistical method [5-7] and so on, but it has been
reported that the dtatistical methods have better
performances compared with other methods [8]. In these
methods, the clean speech and noise are modeled by
proper digributions and then the clean speech are
estimated by an estimator such as Maximum Likelihood
(ML)[9], Minimum Mean Square Error (MMSE) [5, 6,
10] or Maximum A Posteriori (MAP)[10-12]. The first
statistical speech enhancement method in Discerete
Fourier Transform(DFT) domain was based on the
complex Gaussian distribution for DFT coefficients of
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speech and noise [5, 6]. The Gaussian assumption is
motivated by the central limit theorem. The Gaussian
assumption is valid when the analysis frame size islong
and the DFT length is longer than the span of
correlation of signa (more than 100ms for the speech
signal). Thusthis assumption isnot proper for the speech
DFT coefficients, estimated using relatively short
frames in the range of 10-40 ms, which is a typica
frame size inspeech applications, whereas, it might be
proper for the noise DFT coefficients [13].

For this reason, Gamma, Laplacian and Chi models
of the clean speech DFT coefficients were proposed.
Martin[10, 14] has proposed complex DFT coefficients
estimator with Laplacian and Gamma digtributions for
the clean speech. Lotter and Vary [11, 12] have
proposed a MAP spectral amplitude estimator with
Gamma digribution assumption for speech amplitude.
They provided histograms of speech DFT coefficients
using their own experiment and confirmed that the
Laplacian and Gamma densities provide a reasonabl e fit
to the experimental data. Chen and Loizou presented an
anadytical solution for MMSE estimating of the
magnitude spectrum, when the clean speech DFT

Please cite this article as:Z. Mohammadpoory, J. Haddadnia, Speech Enhancement using Laplacian Mixture Model under Signal Presence
Uncertainty, International Journal of Engineering (1JE), TRANSACTIONS C: Aspects Vol. 27, No. 9, (September 2014) 1367-1376



mailto:@yahoo.com

Z.Mohammadpoory and J. Haddadnia/IJE TRANSACTIONS C: Aspects Vol. 27, No. 9, (September 2014) 1367-1376 1368

coefficients are modeled by single laplacian distribution
[15].

Trawickiand Johnson propsed Chi statistical moddls
for the speech prior with Gaussian statistical models for
the noise likelihood [16].

Some researchers have proposed mixture of
distributions such as Gaussian Mixture Modde (GMM),
Rayleigh Mixture Model (RMM) and so on for speech
spectral  coefficients or magnitude [17-19].In some
papers the distribution of the noise spectrum are also
modeled by non-Gaussian distributions [14].

In many researches, statisticd method are used in
other domain, for example time domain, DiscreteCosine
Transform domain, Canonical Transform domain andso
on [20, 21].

In this paper, the Laplacian Mixture Model(LMM),
forclean speech DFT coefficients has been proposed,
due to its more accurate fit to the distributions of
complex speech DFT coefficients than single laplacian,
Gaussian or even mixture of Gaussian modd.
Furthermore, anaytical derivation of estimator with
proposed distributions is relatively simple. In the
proposed method, the real and imaginary parts of the
noises DFT coefficients are modeled by Gaussian
distribution.

This paper is organized as follows. next section is
about signal model and assumptions used in this work
and section 3 discusses about LMM distribution.
Section 4 presents the new MMSE estimator with
proposed models for speech and noise. In Section 5 the
explanation of Expectation-Maximization (EM)
algorithm for estimating the LMM parameters are given,
Section 6is about proposed estimator under signal
presence uncertainty (SPU) and Section 7 presents
experimental results.

2. BASIC ASSUMPTIONS IN THE PROPOSED
METHOD

We assume a signal model of the form:

y(i) = (i) + n(i) €

in which y(i), s(i) and n(i) denote noisy speech, clean
speech and noise signal at the sampling time index i,
respectively. It is assumed that s(i) and n(i) are
gtatistically independent. These signals are transformed
into the frequency domain by applying them short time
Discrete Fourier Transform (DFT) which can be written
as.

Y (kW) =Sk, W) +N(k , ) @

where k is the frequency bin index and p is the frame
index.

Another assumption is the decorrelation of spectral
components. Since the spectral components can

behaveindependently, the MMSE spectral estimator S(k
, W) can be derived from Y(k,u) only and MMSE
derivation are smplified [22].

For simplifying the following results, we will omit
our notations both the k and W, thus Yg,Y[,Sg,S;,
NgandN; denote real and imaginary parts of noisy
speech, clean speech and noise signal, respectively.

3. LAPLACIAN MIXTURE MODEL FOR COMPLEX
SPEECH DFT COEFFICIENTS

It was confirmed that the probability PDF of the complex
DFT coefficients for short frames in the range of 10-40
ms, is much better modeled by a Laplacian, Gamma or Chi
density rather than a Gaussian density [10, 14, 16].

We suggest the Laplacian Mixture Model for the PDF
modeling of the real and imaginary parts of the DFT
coefficients and we show LMM produces better results
than single Laplacian model.The Laplacian density is
usually represented by:

L(x.cam) = ce~2¢clx-ml 3

wherem represents the center (mean) and ¢ > 0 controls
the width of the density.The LMM is defined as
follows:

p(S) = 2:\1:1 oG L (SACiAmi) = 2:\1:1 oG Cie_zcils_mil (4)

where N is the number of Laplacians ando;, m;,c; are
the weights, means and variances of each Laplacian,
respectively and YN, o; = 1. A common method used
to tran a mixture mode is the  Expectation-
Maximization (EM) algorithm [23].

As it is mentioned, the real and imaginary parts of

the speech DFT coefficients are modeled byLMM.
Thus, they can be written as follow:

P(Sr) = 2:\1:1 o; c;e~ 2¢ilSr—mil )

P(S) = ZiL; el ©)

The LMM digtribution is selected because the
histograms of the real and the imaginary parts of the
clean speech DFT coefficients are not exactly zero-
mean Laplacian didributed, but we can get more
accurate fits to these histograms with combination of
several nonzero-mean Laplacian digtributions.

This result is confirmed by the estimation of
Kullback-Leibler discrimination information for the
histogram data py(x)and assumed densities p(x) such
as Laplacian, GMM and LMM. Kullback-Leibler
discrimination information is defined as follows:

I, = ZPu(x) log 45 @)
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For comparing two distributions (two different p(x)),
having smaller ly;, means more accurate fit to the
histogram of data py (x)[24].

We find that the Kullback—Leibler discrimination
information issmaller for theLMM distribution than the
GMM distribution with the same components. Ancther
result is that by increasing the number of LMM’s
components(N), g, becomes smaler and it seems
reasonable. After N=30, Ik, doesn’t have significant
variations and it shows that N=30 is a proper value for
number of the LMM's components.

4. MMSE SPECTRAL ESTIMATION WITH THE
PROPOSED DISTRIBUTION

For finding closed form solution to the estimation
problem, it is assumed that the real and the imaginary
parts are independent and identically distributed(i.i.d).
Because of these assumptions, the MM SE estimation for
the complex DFT coefficients (E(S]Y)) can be split into
the two estimations for the real and the imaginaryparts
which can be written as follows [10]:

E(SIY) = EGrlYr) +IE(YD) ®)

At firg,E(SglYR) andE(S;|Y,)are estimated, separately
and then, their results will be combined together.The
optimal MMS estimator of the real part is obtained as
follows:

SRP(YRISR)P(SR)dSR
P(Yr)

©)

E(SrlYr) =
By modeling the real and imaginary parts of the noise

DFT coefficients by zero-mean Gaussian distributions
as follow:

p( (NR)? ) 10

p(NR)—

p(Ny)=2—exp (<5°) (11)

in which %“denotes the variance of the real and
imaginary parts of the noise DFT coefficients, and
assuming the LMM speech prior, (Equations (5) and
(6)), the MM SE estimation of real part will be provided
asfollows:

ZiNzlaiCieXp(Cizoi)[

on(Lra(Yr—my)exp(2c;(Yr—mi))erfe(Ly (Yr—my)) Ly (Yr—mi)exp(~2Ci(Yr—my))erfc(Lpo(Yr—m;)) )+

(YR—SR)
E(SRlYR) = \[‘ P(Y ).r SRe p(Yi—nR)

2iL; aic; exp(—2¢;[sg — my|) dsg

(12

After some manipulations, and using a theorem
described in [25],the MM SE estimation of the real part
will be obtained as follows:

E(SrIYR) = 375 Zits aiciexp(cf 07) {on[Lrs (Yr =
m;)exp(2¢;(Yg — my)) erfe(Lg, (Yg —m;)) —

Lz (Ye — m;) exp(—2C;(Yg — m;) )erfc(Lp, (Yr — (13)
m;))1+m; [exp(2c;(Yg — my))erfc(Lg, (Yg — m;))

+eXp(—ZCi(YR - mi))erfC(LRz Yr — mi))]}

where

P(Yr)=/"" P(Sr) P(YxISr)dSg (14)
Also by using ancther theorem in [25], P(Yg) will be
calculated asfollows:

P(Ye) = 2, aiciexp(c?o?)

[exp(2¢;(Yg — my)) erfc(Lgy (Yg — m;)) (15)

+exp(—2c¢;(Yg — m;) )erfc(Lgo(Yg — my))]

In Equations (13) and (15) erfc(x) denotes the
complementary error function [25] and is defined as
follows:

erf(x) = \/% [ et dt = 1 —erfe(x) (16)
and

Lri(Yr —m;) =cCo, + an' (17)
Lz (Ye = M;) = oo, — (18)

On

The MMSE estimator for the imaginary part is
derived in the same method. Findly, the MMSE
estimator for the complex DFT coefficients is
calculated byE(SIY) = E(SrlYR) + JE(S;IY;) where
E(SglYr) and E(S;|Y,)are given in Equations (19) and
(20), respectively.

E(S.1Y.) = mi(exp(zci(YR—mi))erfc(LRl(YR—mi))+exp(—Zci(YR—mi))erfc(LRz(YR—mi))) (19)
(SrlYz) = ¥N ajciexp(c?o?)[exp(2¢i(Yr—m;))erfc(Lr; (YrR—m;))+exp(—2ci(Yr—m;))erfc(Lg,(Yr—m;))]
o‘n(LRl(YI—mi)exp(ZCi(YI—mi))el”fC(LRl(YI—mi))_LRz(YI_mi)eXP(_ZCi(YI_mi))erfc(LRz(YI_mi)))+
2, aiciexp(cfof) (20)
mi(exp(zci(YI—mi))erfc(LRl(YI—mi))+exp(—2ci(YI—mi))erfc(LRz(YI—mi)))
E(S 1Y) =

¥N ajciexp(c?o?)[exp(2¢i(Yi—m;))erfc(Lg, (Yi—m;))+exp(—2c;(Y;—my))erfc(Lg, (Y;—my))]
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5. TRAINING USING THE EM ALGORTHM

In this section, the EM agorithm [23] for estimating the
parameters of the LMM (used for calculating Equations
(19) and (20) ) from training data are described, based
on theliterature{26].

Considering Equation (4) and assuming T samples,
EM’s cost function for LMM isdefind asfollows:

Jeim)=Yi_, ?I=1(|0901 = 2¢i]sp, — my]). p(ilsy) (21)

where p(i|s,) describs the probability of s, beonging to
theith Laplacian. p(i|s,)anda;are updated as fol low:

o =120 Plsy) (22)

aicie_zci|5“_mi|

p(ils,) = SN aycye-Zaibn-mil )

For updating m;and c;, the Equations% =0and ;—CI =0
have to be solved. Then the updates are given as follow:

Zh-1 gy Pilsn) o
m=———n-"i
i ZE=1|s_nl—9i| p(ilsn) (24)
¢ = Ya=1  Plilsn)

T 23, Isa=0il plilsn) (29)

For initializing the EM algorithm, at first this
algorithm is ran with random initial values and then the
results of this EM are considered asinitial values for the
main EM.

6.DERIVATION OF MMSE ESTIMATOR UNDER
SPEECH PRESENCE UNCERTANTY

In order to further performance improvement of the
estimator, we alsoderive a Speech Presence Uncertainty
(SPU) edtimator and incorporate it into the spectra
estimator. SPU addresses the speech/silence detection
problem in terms of probability, and is derived using the
Bayes’ rule. After the spectral coefficients are estimated
by the method proposed above, the SPU estimator
refines the estimate of the spectra coefficients by
scaling them by the SPU probability.

We consider a two-state model for each frequency
bin of the speech, 1- Speech is present at a particular
frequency bin (k)(hypothesis HX) 2- Speech is not present
(hypothesis HY).This is expressed mathematically using the
following binary hypothesis model:

HX : speech absence: Yy = Ny (26)

HX: speech present: Yj= S +Nj )

To incorporate the above binary model to an MM SE
estimator, we can use a weighted average of two
estimators: one that is weighted by the probability that

speech is present, and one that is weighted by the
probability that speech is absent. So, if the origina
MMSE estimator had the form E(Si|Yy), then the new
estimator has theform

N
Sk = E(Sili HI)PHE i) + E(SiclYic HE)P(HG Vi) (29)

where P(HX]Y,) denotes the conditional probability that
speech is present in frequency bin k given the noisy
speech spectrum. Similarly, P(HE|Y,) denotes the
conditional probability that speech is absent given the
noisy speech spectrum. The term E(Sy|Yy, HE) in the
above equation is zero since it represents the average
value of Sy, given the noisy spectrum Y, and the fact that
speech is absent. Therefore, the MMSE estimator in
Fauation (28) reduces to:

N
Sk = E(SklYi, HYP(HX| Yy ) (29

The MMSE estimator of the spectra component at
frequency bin k is weighted by the probability that
speech is present at that frequency. Bayes’ rule can be
used to compute P(H¥|Y,):
p(Yi[HY)p(HY)

k —
P10 e 1+ p (v [P T

(30)

where p(H§) denotes the a priori probability of speech
absence and p(HY)is the a priori probability of speech
presence, for frequency bin k. It is clear that p(HX) =
1 - p(Hg).

Under hypothesis HE, Y, = Nyand given that the
noise is complex Gaussian with zero mean and variance
o2, it follows that p(Y, [HY) will also have a Gaussian
distribution with the same variance.

p(YIHE) = =5-exp () (3D)

If S, follows a Mixture of Laplacian distribution,
we need to compute p(Y,|HX). Assuming independence
between real and imaginary components, we have;

p(Yk|H]1‘) =Py, (Yx) = Py (yr) Py, (vi) (32

wherey,. = Re{Yy }, and y; = Im{Y, } .Under hypothesis
HX, we need to derive the PDF of Y= S+ N, , where
Sk =S+ jS; and Ny = N+ jN;. The PDFs of S, and S;
are assumed to be Mixture of Laplacian and the PDFs of
N, and N; are assumed to be Gaussian with variance
02/2 and zero mean. The derivation of Equation (32) is
given in Appendix A. The solution for Equation (32) is
given by:

Py, (Yr) = YL, oiciexp (5121(012 + 2mici))

(33
exp(—Ciy,) + exp(ciyy) + exp(—C;y;) )

erf(ci(yr — o)) + exp(ciy)erf(ci(y, + o))

Py, (yi) = (34)

L aiciexp(of(cf +
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exp(—cyy;) + exp(cyy;) + exp(—cyy;)
erf(ci(y; — o)) + exp(ciyyerf(ci(y; + 03))

Simply substituting Equations (33) and (34) into
Equation (32), and Equations (32) and (31) into
Equations (30) and (29),we obtain the Speech Presence
Uncertainty (SPU) estimator [27].

2m;c;))

7. EXPRIMENTS AND RESULTS

7. 1. Experimental Setup The TIMIT database
has been used in our experiments. We used 200
sentences from 100 male and 100 female (about 11
minutes) for training the LMM models with EM
algorithm and 10 sentences from 5 males and 5 females
for evaluating our proposed method.

White noise, babble noise, and F-16 cockpit
noiseare added at 0, 5 and 10 dB SNR to 10 mentioned
sentences. Then the proposed method is applied to noisy
sentences. To determine the variance of these noises
(used for calculating Equations (19) and (20) ), a Voice
Activity Detection (VAD) method is employed to noisy
sentences. Indeed, the clean speech LMM modd
parameters are found off-line using training data and
EM agorithm and noise variance are estimated on-line
using noisy test data VAD method.VAD refers to the
ability of distinguishing speech from noise, and
estimating the parameter of noise from noise
frameg[28].

The proposed estimator are applied to 32ms frams,
with 50% overlap, which are multiplied by Hamming
window. For obtaining the enhanced speech signal,
these frames are transform to the time domain by IDFT
and the Overlap-Add method is applied to them.

7. 2. Performance Evaluations Three objective
measures, segmental SNR, log-likdlihood ratio (LLR)
and PESQ (Perceptua Evaluation of Speech
Quality),were applied for performance evauation of
proposed method. The segmental SNR is computed as
follows:

M Lf+L-1 2
10 Ynrr S°(n)
SNRseg = —Z 10910 [ Lf LTi—l y N (35)
M&e Yl s () - s

where M is the total number of frames, L is the frame
size, s(n)is the clean signal and §(n) is the enhanced
signal. AsSNR,,, does not have strong correlation with
subjective evaluation methods, we use LLR and PESQ
measures which have stronger corrdations with
subjective evaluation methods.

The LLR measure is one of the most common all-
pole-based measure for evaluating speech enhancement
algorithms. The log-likelihood ratio (LLR) for each
frameis computed as follows:

T
LLR=|og(—Zz§i:z) (36)

wherea, and a, are the prediction coefficients of the
clean and enhanced signals, respectively, and R, isthe
autocorrelation matrix of the clean signal. For LLR
values, being lower shows that the enhanced signal is
more similar to the clean signal [29-31]. The PESQ is
an objective measurement tool thatpredicts the results of
subjective listening tests. PESQ uses a sensory model to
compare the original, unprocessed signal with the
enhanced signal. The PESQ scores are calibrated using
a large database of subjective tests and it is between -
0.5-4.5.The higheePESQ means the higher quality of
enhanced signal [30]. Figurel shows the output
SNRgeg(in dB) measure of the enhanced speech, for
different values of N(number of Laplacian components),
under different input SNR conditions and white noise.

It isimportant to find areasonable N that the proposed
method provides an acceptable performance
andcomplexity. It is clear that larger N has better
performance.Beacause  higher number of Laplacian
components leads to better PDF matching of the clean
signal. But larger N causes increasing the computational
complexity. As it was mentioned before, after N=30,
I and subsequently the assumed LMM didributions,
do not have significant changes. Thus the results based
on assumed distributions, do not have considerable
variations. For this reasons, N=30 is selected as proper
valueAs Figure 1 shows, N has been increased until
N=50, and after N=30 the results do not havesignificant
variations, while computational complexity is increasing
and proposed method becomes very time consuming.
For comparative purposes, the performance of the
Gaussian-based MMSE edtimator [5], Log-MMSE
estimator [6] and Laplacian based MMSE spectra
estimator [10] are evaluated. They are indicated as
MMSE, Log-MMSE and Lap-MMSE, respectively.
The proposed method is dso indicated as LMM-MMSE
andLMM-MM SE-SPU estimator.

—&— 0dB —i— 5dB 10dB
9 -
8 -
o 7
& 6
85 1
5 | g —p—a—a—a——a—a
E 3
%2_._*__._._.—*-*'*_‘
1 -
0

N=1 N=4 N=7 N=10 N=20 N=30 N=40 N=50
Number of LMM's Components

Figure 1. SegSNR of the enhanced speech signdat different
Ns and different input SNRs for additive white noise
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Table 1 and 2 show the segmental SNR and LLR
values obtained by mentioned estimators for babble and
F-16 cockpite noise at different SNRs, and Table 3
shows the PESQ values. As can be seen, the SNRseg
values (Table 1) obtained withthe Laplacian estimators
(LMM-MM SE, Lap-MM SE) are significantly higher than
the SNRseg values obtained with the Gaussian
estimators (MMSE and Log-MMSE), in dl
SNRconditions and two noises. It confirms that
Laplacian estimators have better performance in
reducing the additive noise than Gaussian
estimtorsTable 1 shows that for the babble noise at
different SNRs, theproposed methods provide more than
1dB improvement in SNRseg compared to Gaussian-
based estimators. As Table 2 shows, the LLR values
obtained with thelaplacian-based estimators (LMM-
MMSE, Lap-MMSE)were also significantly smaller
than the values obtained by the Gaussian estimators
(MMSEand Log-MMSE) in al SNR conditionsand
NOi Ses.

Higher PESQ values (Table 3) are obtained by
theLaplacian estimators compared to the Gaussian-

1372

based estimators for all noises and SNR conditions. It
means that the enhanced signal with Laplacian
estimators has higher quality than Gaussian estimators.
Thus, better results (higher segmental SNR, higher PESQ,
and lowerLLR at different SNRs and differentnoises)
were obtained by the Laplacian-based estimators.
Comparing the results of two Laplacian-based
methods, Lap-MMSE (based on single Laplacian) and
LMM-MMSE (based on Mixture of thirty
laplacians),shows that better results in term of
allmeasures, at different SNRs andnoises, areobtained
by the LMM-MMSE estimator. Beacause the use of
higher number of Laplacian components causes better
PDF matching of the clean signa and thusbetter
results. Also comparing the results of two LMM-
basedmethods, LMM-MMSE and LMM-MMSE-SPU,
shows that better results in term of all objective
measures, a different SNRs and different noises,
areobtained by the LMM-MMSE-SPU egtimator. It
showsproposed estimator under SPU has better
performance, while the complexity increases.

TABLE 1.Comparative performance, in terms of segmental SNR of the Gaussian-based MMSE, Gaussian-based LogMMSE
Laplacian based MM SE gpectral, LMM-based MM SE and LMM-based MM SE with SPU estimators

Noises Babble noise F-16 Cockpitnoise

Estimators -9.48/0 dB 5.48/5 dB- -1.4/10 dB 9.1/0 dB- 6.1/5 dB- -2.1/10dB
MM SE [5] 1.341 3.892 6.42 1.57 4.132 6.731
Log-MMSE [6] 1.773 4251 7.123 1.873 4,052 6.69
Lap-MMSE [11] 2.874 4.808 7.582 2.81 4613 7.288
LMM-MMSE 2.912 4915 7.916 2.849 4671 7.623
LMM-MM SE-SPU 3.043 4,992 7.98 2.976 4,703 7.692

TABLE 2.Comparative performance, interms of LLR of the Gaussian-based MM SE, Gaussian-based LogMM SE , Laplacian based
MM SE spectral, LMM-based MM SE and LM M-based MM SE with SPU estimators

Noises Babble noise F-16 Cockpitnoise

Estimators 0dB 5dB 10dB 0dB 5dB 10dB
MM SE [5] 0.981 0.751 0.572 1.021 0.812 0.619
Log-MMSE [6] 1.213 0.984 0.852 1.196 0.935 0.734
Lap-MMSE [11] 0.81 0.644 0.507 0.879 0.696 057
LMM-MMSE 0.793 0.612 0.503 0.861 0.663 0532
LMM-MM SE-SPU 0.734 0.594 0.487 0.806 0.637 0.515

TABLE 3.Comparative performance, in terms of PESQ of the Gaussian-based MM SE, Gaussian-based LogMM SE, Laplacian based
MM SE spectra, LMM-based MM SE and LMM -based MM SE with SPU egtimators

Noises Babble noise F-16 Cockpit noise

Estimators 0dB 5dB 10dB 0dB 5dB 10dB
MM SE [5] 2114 2.456 2.781 2.081 2.396 2712
Log-MMSE [6] 2172 2.487 2.833 2.035 2.19 2.585
Lap-MMSE [11] 2.183 252 2.857 2.136 2.314 2.508
LMM-MMSE 2.225 2576 2.89 217 251 2.841
LMM-MM SE-SPU 2481 2.612 2911 2.198 2.524 2.849
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Figure2. A TIMIT sentence corporates with babble noise a¢ SNR=-5dB enhanced by MMSE, Lap-MMSE, LMM- MMSE LMM-
MM SE-SPU egtimators. From top to bottom, the clean signd, the noisy signal,the signal enhanced by the LMM- MM SE-SPU, the
signal enhanced by the LMM- MM SE, the signa enhanced by the Lap-MMSE and the signal enhanced by the MM SE estimator.

Figure 2 shows a TIMIT sentence enhanced by the
LMM-MMSE-SPU, LMM-MMSE, Lap-MMSE and
MMSE methods. The Babble noise is added to this
sentence at -5 dB SNR. It is clear that the residual
noise in the sentence enhanced by the proposed methods
is less than the others. Also proposed methods,
especialy LMM-MMSE-SPU, remove main signal
instead of noise, less than the others. Therefore this
method does not create significant perceptible distortion
in the speech signa comparing the others.

As the results of experiment, it is credible that the
LMM based MMSE estimator can be considered as an
effective method for speech enhancement.

8. CONCLUSION

An MMSE edtimator was derived for the speech
spectral estimation from noisy signal based on the LMM
for the speech DFT coefficient and the Gaussian model
for the noise DFT coefficients.Results, in term of the
objective measures, indicate that the better performance
are obtained with the increment ofN, but after N=30
thereis not significant difference between results. Also,
the proposed LMM-based MMSE estimator, provides
better performance than Gaussian-basedMMSE, Log
MM SE and Laplacian-based MM SE spectral estimators.

Also under speech presence uncertainty the results
become better. The improvement in performance shows
that the PDF of clean speech DFT coefficients in
MMSE clean speech estimation is better modeled using
the LMM.
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APPENDIX

In this appendix, we derive the PDF of Y,= S+ N, ,
where S, = S+ jS; and N = N+ jN;. The PDFs of S,
and S; are assumed to be Mixture of Laplacian and the
PDFs of N, and N; are assumed to be Gaussian with
variance ¢2/2 and zero mean. Let Y=Y+ jY; , thenY, =
S+ N, and Y; = S;+ N;. The PDF of Yr can be
computed by the convolution of the Mixture of
Laplacian and Gaussian densities, and is given by:

I:’Yr (yr):f_woo PSr (yr - nr) PNr(nr)dnr = :\1=1(

Vr 204Cj n2—cin;c3+203y,ci—262m;c;
—exp(— dn
—o0 Vo, p( o2 )dn, (37)
+foo 204 exp( nE+cinroﬁ—20ﬁyrci+20ﬁmici) dn,)
Yr \/;Gn 0% r

After using a theorem based on the literature [26], we
gEet:

Py, (Vr) =

I aiciexp(o3(c? + 2mic;)) [exp(—ciyy) +
exp(ciyr) + exp(=ciyy) erf(ci(y, — o)) +

exp(ciynerf(ci(y, + on))]

The probability density for the imaginar y part, has
exactly the same form as that of Py_(y,). Assuming
independence between y,. and y; we get the following
expression for the conditional density p(Y|HY) a
frequency bin k:

p(Yk| H]f) =Py (yr)Py, (Vi) (39

(39)
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