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A B S T R A C T  

   

Low weight and high load capacity are remarkable advantages of sandwich panels with corrugated 
core, which make them more considerable by engineering structure designers. It is important to 
consider the limitations such as yielding and buckling as design constraints for optimal design of these 
panels. In this paper, multi-objective optimization of sandwich panels with corrugated core is carried 
out by minimizing two supposed objective functions, the structure’s weight and deflection. The finite 
element model of structure is created using the commercial software ANSYS, which is employed to 
calculate the deflection of panel in different problem conditions. A NSGA-II code prepared in 
MATLAB, is used to perform the optimization process in a gradual evolution trend, which leads to 
obtain the Pareto front consisting a set of design vectors and optimal objective function vectors. Two 
conventional methods are then used to select the trade-off optimal point among the Pareto non-
dominant optimal set. 
 
 

doi: 10.5829/idosi.ije.2014.27.03c.06 
 

1. INTRODUCTION1 
 
Sandwich panels with open and continuous cells are 
modern and important structures that are widely used in 
the industry recently [1-3]. Having low weight with 
specific strength is an important property that makes 
these panels more useful in engineering [4]. Also, other 
properties of sandwich panels such as energy 
absorption, acoustic, thermal and cooling and durability 
lead to increase in their application [5]. 

There are some limitations which are necessary to be 
considered in engineering designing. In many cases, it is 
desired to reduce the product’s weight. It has different 
benefits related to the designing case. For example, 
reduction of the constitutive material and consuming 
fuel are some of these benefits. In this paper, it is 
desired to reduce the panel’s weight as an objective. 
Furthermore, the deflection of panel under a vertical 
loading case is desired to be reduced. Hence, the 
stiffness of the structure must be increased. Therefore, 
                                                        
1*Corresponding Author Email: ab_khalkhali@iust.ac.ir (A. 
Khalkhali) 

to consider all of such criteria simultaneously, a 
complex multi-objective optimization problem (MOP) 
must be solved. Non-dominated Sorting Genetic 
Algorithm (NSGA-II) proposed by Srinivas and Deb 
[6], which is a Pareto based approach is one of the 
efficient algorithms for solving MOPs. It generates a set 
of non-dominated solutions (Pareto solutions) [7], 
where a non-dominated solution performs better on at 
least one criterion than the other solutions. Genetic 
algorithm is one of evolutionary algorithms and has a 
wide range of use in optimization problems. Also 
because of favorable application in unspecific search 
spaces and direct use of function values without any 
need to their derivatives, Genetic algorithm has 
experienced an impressing growth of usage in modeling 
and optimization problems and has a wide range of 
applications in single-objective and multi-objective 
problems [8-10]. 

Many researches have been done by scientists on 
sandwich panels in the recent years. For example, Wang 
et al. [11] performed a study to design a sandwich panel 
with a balance of acoustical and mechanical properties 
at minimal weight. Furthermore, Hou et al. [12] 
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performed a crashworthiness optimization of corrugated 
sandwich panels. They optimized the configuration of 
trapezoidal and triangular core cells to maximize the 
absorbed energy by the panel. Also, a single objective 
optimization of panel’s weight was performed by 
Valdevit et al. [4] by Genetic algorithm on sandwich 
panels with corrugated core. They found an optimum 
geometry of these panels which lead to the minimum 
possible weight under different loading cases, 
considering the panel as a cantilever beam. In this 
situation, the maximum deflection of this panel seems to 
be an important parameter for design. But the higher 
weight of the panel, the lower is the deflection of 
panel’s end. Hence, it requires a multi-objective 
optimization to find optimum design points which are 
suitable considering both weight and deflection. 

In this paper the finite element method and modified 
NSGAII algorithm are used for multi-objective 
optimization of sandwich panels with corrugated core 
simultaneously. Weight and deflection of the panel, are 
considered as opposed objective functions, and panel’s 
geometrical specifications are considered as design 
variables. Indeed, it is desired to minimize both weight 
and deflection of the sandwich panel but the conflict 
between these two objectives, makes it impossible to 
minimize both of them simultaneously. Here is the 
usage of Genetic algorithm which finds a set of design 
variables which lead to corresponding sets of optimum 
deflections and weights. These obtained optimum sets 
will form the Pareto front as well. It is desired to select 
some trade-off optimum points among the Pareto points 
as suggested design points. Several methods are 
investigated in this study to find these compromising 
points. The break point method and the nearest to ideal 
point method are employed in this paper. 

  
 

2. SANDWICH PANELS WITH CORRUGATED CORE 
 
Figure 1 shows typical view of sandwich panels with 
corrugated core. Design variables are shown in Figure 2, 
including d as the face thickness, dc as the core member 
thickness and H as the distance between face sheets. All 
probable types of loading on such structures are shown 
in Figure 3. For the lateral loading case, the non-
dimensional loading index which is based on the 
maximum values of shear force can be shown in the 
following equation [1]: 

EM
V

=Π  (1) 

In this equation, V and M are maximum values of the 
shear force and moment, both per unit width. E is 
Young modulus of the constituent material. The 
structure’s weight per unit width “W”  can be shown in 
non-dimensional form [1]: 

2l
W
ρ

ψ =  (2) 

where ρ denotes the density of constituent material. 
Another characteristic, parameter “l”  is defined as 

V
Ml =  which has a direct relation with the loading 

length. According to the length of loading and different 
boundary conditions, the values of l  are shown in 
Figure 3 [1]. 
 
 
 

 
Figure 1. A sandwich panel with corrugated core 

 
 

 
Figure 2. Geometrical variables of sandwich panels 

 
 

Figure 3. " l " value for different structures [1] 
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When yielding or buckling occurs for the core or 
face sheets, the structure is failed. It is assumed that all 
bending will be tolerated by face sheets and all shear 
forces by the core. The normal stress in the face sheets 
and core are calculated using static equilibrium in 
related sections [13]: 

)()( dHd
Vl

dHd
M

f −
=

−
=σ  (3) 

c
c d

V
θ

σ
sin

1
=  (4) 

where d, cd  and H are geometrical design variables 
which are introduced in the first paragraph of the 
current part.  The parameter θ  is core sheet's angle as it 
is depicted in Figure 2. 

Critical buckling load in core face is obtained using 
fK  correction factor that applied to Euler’s critical load 

relation, as like as the columns constrained with elastic 
supports in two ends [13]. Critical tensions in the 
structure are found as: 

yf σσ =  The face sheet yielding (5) 
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yc σσ =  The core yielding (7) 
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where fI  and cI are the area moment of inertia for 

face sheet and core sheet, respectively. Also, fK  and 

cK are Euler’s equation correction factors and fλ , cλ
are length values related to the face sheets and the core 
sheets surfaces which will be calculated using the 
following equations [13]: 
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In non-dimensional form we can rewrite the 
Equations (5) to (8) using the Equations (3) and (4) in 
the following way: 
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3. SANDWICH PANELS’ FINITE ELEMENT MODEL 
 
3D beam element (BEAM 189) is used in finite element 
modeling of the panel using commercial software 
ANSYS. Figure 4 shows the sandwich panel’s finite 
element model. 

Constitutive material of panel is considered as 
Aluminum with elasticity modulus of E=70GPa and 
yielding tension of MPay 490=σ  [14]. 

To verify accuracy of the FE model, five different 
simulations are performed. A vertical load is applied to 
one end of the sandwich panel and deflection of this 
point is compared to corresponding values in reference 
[4]. 

The face sheets’ thickness, the core face’s thickness 
and the face sheets’ distance are considered 4.3 mm, 
0.93 mm and 37 mm respectively. Root mean square 
error of such comparison is obtained equal to 0.0039, 
which shows acceptable accuracy of modeling and we 
can use this model to calculate the panel’s deflection in 
multi-objective process. 

  
  
  

 
Figure 4. Sandwich panel’s finite element model 
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4. MULTI-OBJECTIVE OPTIMIZATION 
 

In multi-objective optimization we are looking for the 
design vector of T

nxxxX },...,,{ **
2

*
1

* =  element nR  which 
optimizes the objective functions 

T
k XfXfXfF )}(),...,(),({ 21=  element kR  under m 

unequal constraints: 
0)( ≤Xg t    t=1, 2, …, m (17) 

and p equal constraints 
0)( =Xh j

   j=1, 2, …, p (18) 

Without reducing generality of the problem, we suppose 
that all objective vectors should be minimized. This 
multi-objective minimization problem that is 
categorized as Pareto problems is defined as follows. 

 
4. 1. Pareto Dominance      Vector ],...,,[ 21 nuuuU =  
is dominated to vector ],...,,[ 21 nvvvV =  where )( VU p , 
if and only if: 

jjii vukjvuki ≤∈∃∧≤∈∀ },,...,2,1{},,...,2,1{  (19) 
 

4. 2. Pareto Optimality      A point such as Ω∈*X  (
Ω  is an acceptable design region which satisfies 
Equations (17) and (18)) is an optimum Pareto if and 
only if )()( * XFXF p . Or in other words: 

)()(}{},,...,2,1{ 1
*

1
* XfXfXXki ≤−Ω∈∀∈∀  

)()(:},...,2,1{ * XfXfkj jj ≤∈∃∧  
(20) 

 
4. 3. Pareto Set    In multi-objective optimization 
problem; a Pareto set )( *Ρ  contains all optimized Pareto 
vectors: 

)}()(:|{* XFXFXX p′Ω∈∃Ω∈=Ρ  (21) 

Evolutionary algorithms have been widely used for 
multi-objective optimization because of their natural 
properties suited for these types of problems. This is 
mostly because of their parallel or population-based 
search approach. Therefore, most of difficulties and 
deficiencies within the classical methods in solving 
multi-objective optimization problems are eliminated. 
For example, there is no need for either several runs to 
find all design vectors. In this way, the original non-
dominated sorting procedure given by Goldberg [10] 
was the catalyst for several different versions of multi-
objective optimization algorithms. However, it is very 
important that the evolutionary algorithm and 
distribution of optimized vectors to be preserved by 
population of sufficient diversity.  

NSGA-II algorithm [6] which is a Pareto-based 
approach has a wide range usage in multi-objective 
problems. But density scale which is used in this 
algorithm for distribution of design vectors and 

preventing population accumulation has deficiencies in 
solving multi-objective problems with more than two 
objective functions. In this paper, we used NSGA-II 
modified algorithm [15, 16] which is usable for the 
optimization problem with infinite objective functions. 

 
 

5. METHODS TO FIND THE TRADE-OFF OPTIMUM 
POINT 

 
The Pareto front obtained by modified NSGAII 
optimization algorithm, prepares a set of non-dominated 
design points. But all of these points are not appropriate 
to be chosen as the final design point. Now, it is 
necessary to employ some methods to choose the trade-
off optimal design point through the Pareto front. Two 
methods are introduced in this section which is used in 
the present work. 

 
5. 1. Break Point Method     In a Pareto front which 
contains non-dominant optimum design points with two 
conflicting objective functions, some important data 
could be seen. The two ends of Pareto front represent 
the single-objective optimization results for each axis 
separately. But if we consider both objective functions, 
the end points of Pareto front are not suitable choices; 
because, in conflicting objective function cases, one 
objective function gives bad results near by the single-
objective optimization point of the other objective 
function. Hence, the middle part of Pareto front is a 
better area to look for the trade-off design point. One of 
the attractive zones in Pareto front is the break point of 
the curve. This point usually contains interesting results 
comparing to the other points of Pareto. 

 
5. 2. Nearest to Ideal Point Method (NIP)   In this 
method, values of the objective functions, will be 
mapped to [0, 1] interval, in order to make these 
functions comparable. The ideal point which is not 
accessible in real is the point where projected objective 
functions have their most desirable values there. Then, 
the distance between all non-dominated points of the 
Pareto front to the ideal point is calculated separately. 
Finally, the trade-off optimum design point is simply 
the one with minimum distance to the ideal point. It 
should be noted that for the case of minimization of all 
objective functions, the ideal value for each mapped 
objective function is zero. For example, in the case of 
two objectives minimization, the ideal point is (0, 0). 
 
 
6. RESULTS AND DISCUSSION 
 
The optimization aim is to find geometrical design 
variables which lead to simultaneous reduction in 
weight and deflection of the structure. In this process, 
modified NSGA-II algorithm [13, 15] is used and the 



399                                                A. Khalkhali et al. / IJE TRANSACTIONS C: Aspects   Vol. 27, No. 3, (March 2014)  395-402 
 

Pareto curve will be obtained. In this way, the finite 
element method and Genetic algorithm are used 
simultaneously for multi-objective optimization. In this 
method, MATLAB and ANSYS software have been 
coupled together during the run time. NSGA-II code has 
been written in MATLAB and the deflection calculator 
code has been written in ANSYS using APDL2 
language. In each generation, design vectors are 
produced by NSGA-II code and are sent to ANSYS. 
Then after calculation of deflection for each design 
vector, the obtained values will be returned to 
MATLAB and the optimization process will be 
continued. Finally, the non-dominated optimum values 
of objective functions and the corresponding design 
vectors will be obtained. 

In the present study, the sandwich panel with 
corrugated core is fully supported in one end and is 
loaded in the other end. The core sheets’ angle θ is 
supposed to be   = o7.54 ; while, the structure’s shear 
strength in this angle will be maximized [17]. 
Geometrical variables are, the face sheets’ thickness (d), 
the core sheets’ thickness ( cd ) and the face sheets’ 
distance (H) as introduced in section 2, paragraph 1. 
According to Figure 3, for the cantilever condition, 
variable l  is equal to the panel’s length. In this paper, 
the sandwich panel’s length is supposed to be constant 
and equals to 1 m.  The structure’s weight in none 
dimensional form will be calculated using the following 
equation: 

l
d
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d

l
W c

θρ
ψ
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2

+==  (22) 

The design constrains for yielding and buckling of 
the structure’s elements in a transverse loading case 
according to the Equations (15) to (18) will be found 
using the following relations: 
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Penalty function is used to apply the constraints in 
objective functions and the constraints with great weight 
factor will be added to related objective function and 
new objective functions will be introduced as follow: 

)(10)( 10
11 xGfxF +=  (24) 

)(10)( 10
22 xGfxF +=  (25) 

where: 

∑=
4

1

)()( xgxG iiω  (26) 

 
 
 
 
 
In the multi-objective optimization case, both the 

weight and deflection will be supposed as objective 
functions simultaneously. In this case, a group of points 
which all are optimal and apparent, no one has any 
advantage to the others will be found. Figure 5 shows 
Pareto front for the former condition derived by 
minimization of defined objective functions 
simultaneously. In this figure, the optimum points A, B 
can be obtained by single-objective optimization. If the 
structure’s weight is considered as objective function in 
the single-objective optimization process, point B will 
be obtained and if the structure’s deflection is 
considered as objective function in the single-objective 
optimization, point A will be the answer. 

It is now desired to find some trade-off optimum 
points to be used for designing. In this way, two special 
methods are explained. There can be found a break 
point shown by C in the figure. As it is clear in Figure 5, 
a small amount of reduction in weight of the structure 
relative to break point’s weight, will lead to a huge 
increment in deflection of the structure. The key point is 
here that increasing the weight of structure relative to 
the break point’s weight will not lead to a remarkable 
increment in deflection of the structure. Hence, it will 
be concluded that the trade-off Pareto point should be 
around the break point’s zone. Each method proposes a 
point around this area. The proposed point of this 
method is point C. Figures 6 to 8 show the variation of 
weight and deflection with the face sheets’ distance, the 
face sheets’ thickness and the core sheet’s thickness 
respectively. Figure 6 exposes the fact that increasing 
the face sheet distance will be useful while this distance 
is less than the value of h in the break point. Regarding 
to this figure, the mentioned point looks a desired 
designing point, because decreasing the face sheet 
distance from this value leads to a huge increase in 
deflection which is not acceptable and increasing the 
face sheet distance from this value will lead to growth in 
weight. 

< )(xgi >=0, if the ith constraint is satisfied 
 

< )(xgi >=1, if the ith constraint is not satisfied 
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Figure 5. Pareto front and trade-off design points for single 
and multi-objective optimization-A (minimum deflection), B 
(minimum weight), C (break point), D (nearest to ideal point) 
and [4] (Valdevit minimum weight point) 
 
 

 
Figure 6. Relationship between weight and face sheets 
distance in optimal condition, according to Pareto front curve- 
A (deflection), B (weight), C & D (nearest to ideal point), E & 
F (break point) 
 
 

 
Figure 7. Relationship between weight and face sheets 
thickness in optimal condition, according to Pareto front 
curve- A (deflection), B (weight), C & D (nearest to ideal 
point), E & F (break point) 

 
Figure 8. Relationship between weight and core sheets 
thickness in optimal condition, according to Pareto front- A 
(deflection), B (weight), C & D (nearest to ideal point), E & F 
(break point) 
 
 

 
Figure 9. Deformed shape of the sandwich panel in NIP best 
compromising design point 

 
 
 
The impressing characteristic of this point as it is 

apparent in Table 1 is that the weight of panel from 
point A to point C is decreased about 63% of total 
variations in weight with an increment in panel’s 
deflection about 3% of total variations in deflection. 
Also, if we move from point B to point C, a remarkable 
reduction will appear in the panel’s deflection (about 
96%) without any considerable increase in structure’s 
weight (about 37%). 

 The nearest to ideal point, shown in Figure 5 looks 
another good designing point, because both the weight 
and deflection of the panel are in a relative minimum 
value in this point. Figures 7 and 8 demonstrate the 
general direct relation between weight and the sheet 
thicknesses as we expected before. The conflict between 
weight and deflection of the structure is overt in these 
figures.  

The ideal point of this optimization is (0, 0). The 
point D which is shown in Figure 5 has the least 
distance to the ideal point among all Pareto points. 
Therefore, the nearest to ideal point method proposes 
this point as the trade-off Pareto point. The values of 
design variables and objective functions related to this 
point are shown in Table 1. 
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TABLE 1. Design variables and objective functions for points A, B, C and D 

Optimum design point H (m)   (m)   (m) 2lW ρ=ψ  Panel’s deflection(m) 

A 0.1 0.0089 0.0029 0.0230 0.0089 

B 0.0383 0.0043 0.001 0.0102 0.1283 

C 0.0830 0.00585 0.0018 0.015 0.0132 

D 0.0970 0.0055 0.0020 0.0144 0.0177 
 
 
The characteristic of this point as apparent in Table 

1 is that the weight of panel from point A to point D is 
decreased about 67% of total variations in weight with 
an increment in panel’s deflection about 7% of total 
variations in deflection. Also, if we move from point B 
to point D, a remarkable reduction will appear in the 
panel’s deflection (about 93%) without any considerable 
increase in structure’s weight (about 33%). 

  
 

7. CONCLUSION 
 
The finite element method and modified NSGAII 
algorithm were used simultaneously for multi-objective 
optimization of sandwich panels with corrugated core, 
considering two objective functions, weight and 
deflection of the structure. Then in a gradual evolution, 
the Pareto front of the structure was obtained. The 
Pareto front, not only includes the single-objective 
optimization problem solutions, but also gives a set of 
optimum design points to designers, which designers 
select one of them according to their needs. 

Using Pareto front makes it possible for us to study 
on the relation between objective functions, and select 
the suitable design point through all optimal points. A 
middle point of Pareto curve contains interesting 
information about both deflection and weight objective 
functions which are impossible to obtain using single-
objective optimization. In order to find a trade-off 
middle point in Pareto curve, two different methods 
were investigated. Each one had special characteristics. 
The trade-off optimal set found by nearest to the ideal 
point method leads to a higher weight and a lower 
deflection in comparison with proposed point by the 
break point method. Designer will be able to choose 
appropriate design set among the trade-off optimal sets 
comparing the characteristics of each set. 
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  چکیده

  
 

که موجب توجه  موج دار هستند هسته با هاي ساندویچی پانل توجه قابل بالا از مزیت هاي بار ظرفیت و کم وزن
 براي طراحی هاي قید عنوان به کمانش و بازده مانند هایی محدودیت گرفتن نظر در. می شوند سازه طراحان مهندسین
 حداقل به با موج دار هسته با هاي ساندویچی سازي پانل بهینه مقاله، این در .پانل ها داراي اهمیت است بهینه این طراحی
 افزار نرم از استفاده سازه با محدود المان مدل .است شده انجام است ساختار انحراف و وزن هدف شامل تابع، دو رساندن
 در که NSGA-II از کد .به کار می رود مختلف شرایط در پانل انحراف محاسبه براي ایجاد شده که ANSYS تجاري

MATLAB پارتو جبهه آوردن دست به به منجر که تدریجی، تکامل روند در سازي بهینه فرایند انجام تهیه شده براي 
غالب  غیر بهینه مجموعه میان سپس در .هدف است، استفاده شده است تابع بهینه و طراحی بردارهاي از اي مجموعه شامل
 .مورد استفاده قرار گرفت بهینه نقطه انتخاب براي متداول روش دو پارتو،
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