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A B S T R A C T  
   

In this research, at first, natural frequencies of a cracked beam are obtained analytically. Also, the 
location and the depth of a crack in the beam are identified by neural network method, in this study. 
This research is applied on a beam with an open edge crack for three different boundary conditions. 
For this purpose, firstly, the natural frequencies of the cracked beam are analytically obtained to get the 
examples for training the neural network. Then, inversely, the trained neural network is used for 
obtaining the location and depth of the crack. The effect of the numbers of the natural frequencies as 
input of the network was evaluated on the prediction accuracy. Results and measure of errors show that 
the neural network is a powerful method to determine the location and depth of crack. Also, increasing 
the numbers of the natural frequencies causes the prediction accuracy to be increased. 
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1. INTRODUCTION 1 

 
The study of the damage of the structures is an 
important prospect to evaluate structural systems in 
order to ensure their safety. Some structures such as 
large bridges are required to be continuously considered 
to detect possible damages (e.g., cracks) to make sure 
about the uninterrupted service. Finding out the crack 
location and depth has been identified as an “inverse 
problem”.  Nowadays, cracks are generally being 
detected by non-destructive testing methods (e.g., 
ultrasonic testing, X-ray, etc.). These methods are costly 
and time consuming specially for long components such 
as railway tracks and pipelines [1]. As a result, the 
analytical and numerical methods are being developed 
to determine the location and depth of the crack. These 
methods make the cost and time to be reduced. 

There are two general solutions for finding out the 
crack location and depth. The first one is involved with 
using of the natural frequencies whereas, other one is 
based on the dynamic response (applying the load and 
then finding out the crack location and depth, 
                                                        
*Corresponding Author Email: mpashaei@nit.ac.ir (M. H. Pashei) 

afterwards). In most cases, an auxiliary method is 
applied with the methods. For the purpose of finding out 
the crack location and depth, Taghi et al. have used the 
genetic algorithm [2]. Nahvi and Jabbari determined the 
location and depth of the crack using finite element 
method and have confirmed it by modal test [3] 
Nandwana and Maiti have used the natural frequencies 
for the same purpose as preceding researches [4]. Zhong 
and Oyadiji used stationary wavelet transform to find 
out crack location and depth [5]. Rrzos and Aspragathos 
performed it by vibration modes [6]. In this research, 
crack location and depth is achieved using natural 
frequencies and neural network. 

A number of methods can be found to model the 
cracked section. One of these methods uses the reduced 
section modulus of the cracked section as a model [7], 
while another one tries to estimate a local flexibility for 
cracked sections [8]. Replacing cracked section by a 
rotational spring is another method in which shear effect 
in bending has been neglected [9–11]. In this research, 
the crack is modeled as a rotational spring. 

In most previous studies the Euler– Bernoulli theory 
has been used, neglecting the effect of shear 
deformations. This theory has been applied to the 
cracked beams with different boundary conditions. Lele 
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and Maiti [12] proposed a new method based on 
Timoshenko beam theory considering shear effects. In 
that research, the characteristic equation for the 
cantilever cracked beam is derived. In this research, 
Timoshenko beam theory has been used, since the 
Euler-Bernouli theory is suitable for height to length 
ratio under 0.1. 

This study starts with analytical determination of the 
natural frequencies of Timoshenko beams including an 
open crack. It follows with a brief description of the 
Back-propagation neural network. The neural network 
will be trained by analytically obtained natural 
frequencies, afterwards. In the next step, the trained 
neural network is used to obtain the location and depth 
of the crack. Examinations of the trained neural network 
for different non-trained cases are presented. The effect 
of numbers of natural frequencies as input of the 
network is evaluated on the prediction accuracy. The 
proposed method is general and can be applied to any 
structure with any number of cracks. Finally, the 
uniqueness of the identification of the depth and 
location of the crack by neural network is discussed. 

Free and forced vibration analysis of a cracked beam 
was performed by Orhan [13] in order to identify the 
crack in a cantilever beam. Single- and two-edge cracks 
were evaluated. It has been cleared by the results that 
the free vibration analysis provides suitable information 
relating to the detection of the single and two cracks, 
whereas forced vibration can detect only the single 
crack condition. However, dynamic response of the 
forced vibration describes the changes in the crack 
depth and location better than the free vibration, since, 
the differences among the natural frequencies 
corresponding to a change in the crack depth and 
location has a minor effect on the free vibration. An 
analytical approach to evaluate the forced vibration 
response of the uniform Timoshenko beams with an 
arbitrary number of open edge cracks which is excited 
by a concentrated moving load is developed by Shafiei 
and Khaji [14]. For this purpose, the cracked beam is 
modeled using beam segments connected by rotational 
springs. These springs are assumed to be massless, 
linear elastic with sectional flexibility. An analytical 
approach for crack identification procedure in uniform 
beams with an open edge crack, based on bending 
vibration measurements is developed by Khaji et al. 
[15].The cracked beam is modeled as two segments 
connected by a rotational massless linear elastic spring 
with sectional flexibility. The Timoshenko beam theory 
has been used to model each segment of the continuous 
beam. Dynamic response of the functionally graded 
Timoshenko beams with an open edge crack resting on 
an elastic foundation subjected to a transverse load 
moving at a constant speed has been studied by Yan et 
al. [16]. It is assumed that the material properties follow 
an exponential variation through the thickness of the 

beam. The cracked beam is modeled as an assembly of 
two sub-beams connected through a linear rotational 
spring. Free vibration analysis of an elastically 
supported cracked beam is investigated by Matbuly et 
al. [17]. The beam is made of a functionally graded 
material and rested on a Winkler–Pasternak foundation. 
The linear spring model is employed to formulate the 
problem and method of differential quadrature is 
applied to solve the problem. The vibration of non-
uniform rectangular beams in the bending mode with 
multiple edge cracks along the beam’s height is 
investigated by Mazanoglu and Sabuncu [18]. The 
energy based method is used for defining the vibration 
of the beam with cracks along its height. 

Crack detection in beam structures based on kurtosis 
is presented by Hadjileontiadis et al. [19]. The 
fundamental vibration mode of the cracked cantilever 
beam is analyzed and both the location and size of the 
crack are estimated. The location of the crack is 
determined by the abrupt changes in the spatial variation 
of the analyzed response, while the size of the crack is 
related to the estimate of kurtosis. Crack identification 
in the beam structures based on wavelet analysis is 
presented by Douka et al. [20]. The fundamental 
vibration mode of a cracked cantilever beam is analyzed 
using continuous wavelet transform and both the 
location and size of the crack are estimated. The 
position of the crack is located by the sudden change in 
the spatial variation of the transformed response. To 
estimate the size of the crack, an intensity factor is 
defined which relates the size of the crack to the 
coefficients of the wavelet transform. A two-step 
approach based on the mode shape curvature and 
response sensitivity analysis for crack identification in 
the beam structures is presented by Lu et al. [21]. The 
location of the crack is identified from a modified 
difference between the mode shape curvatures of the 
cracked and intact beams in the first step. A response 
sensitivity based on the model updating method is 
utilized to identify the location and depth of the crack 
precisely, in the second step. Analytical approach to 
investigate natural frequencies and mode shapes of a 
stepped beam with an arbitrary number of transverse 
cracks and general form of boundary conditions is 
presented by Attar [22]. Also, an inverse problem of 
determining the location and depth of multiple cracks is 
given. 

In this work, identification of the depth and location 
of the crack in a beam is carried out using neural 
network method. For this purpose, at first an analytical 
method is presented to obtain natural frequency of the 
cracked Timoshenko beam. The obtained data are used 
to design a neural network. The location and depth of 
cracks for non-learn data of neural network is examined 
to show the applicability of the presented method, 
finally. 
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2. MATHEMATICAL MODEL 
 
Consider an elastic cracked Timoshenko beam of length 
L, uniform cross-section area A and moment of inertia I, 
with a crack at position of eL as shown in Figure 1. The 
crack can be modelled as a massless torsional spring 
with stiffness cK .The strain and kinetic energies and 
the work of rotational spring with stiffness cK  for 
Timoshenko beam with open crack can be determined 
as follows [23]: 
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where ( , )w x t  is the transverse deflection and ( , )x tψ  is 
the slope of the deflection curve due to the bending. E, 
G and ρ  indicate the Young’s modulus, the shear 
modulus and mass density per unit lenght, respectively. 
k represents the shear correction factor and is assumed 
to be 5/6. 

It is assumed that crack is located at the distance e 
from left end of the beam. Dividing beam into two 
segments and applying the extended Hamilton principle 
to Equations (1) and (2) gives: 
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Figure 1. Timoshenko beam with a single-sided open crack. 

For continuity of solution at location of the crack, it is 
necessary to have: 
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Equation (6) gives the differential equations of motion 
and boundary conditions for w  and ψ governed on two 
segments of the beam as follows: 
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Also, at crack location: 
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Introducing the following non-dimensional quantities: 
2
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Substituting the above dimensionless quantities in 
Equations (7) and (8) gives: 
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Assuming a harmonic solution in the following form: 
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in which ω  is dimensionless natural frequency. 
Obtaining ( )ξΨ  in terms of ( )ξΧ  gives: 
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Accordingly, the boundary conditions will be: 
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The cracked section may be modelled as a local 
flexibility in order to study the effects of the crack. In 
this manner the crack is regarded as a rotational spring. 
The discontinuity in the slope of beam at the cracked 
section may be implemented as done in ([24]). Equating 
the structural bending moment of two sides of the crack 
with the bending moment due to crack which is 
modelled by rotational stiffness of cK , gives: 
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where cK  is the rotational stiffness and is given by [24] 
as follows: 
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In Equation (19), cbK  is the dimensionless crack 
sectional flexibility and depends on the extension of the 
crack. The equation of a single-sided open crack may be 
written [25] as: 
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in which, η  is a dimensionless crack-depth ratio with 
/a hη = . 

 
 
3. BACK-PROPAGATION NEURAL NETWORK 
 
Back-propagation neural network is a well-established 
method to multiple-layer networks and nonlinear 
differentiable transfer functions. Input vectors and the 
corresponding target vectors are used to train a network. 
The trained network should be capable of 
approximating a function, also, associate input vectors 
with specific output vectors, as well as classifying input 
vectors in an appropriate way. Properly trained Back-
propagation networks tend to give reasonable answers 
when presented with inputs which have been never 
seen. The general structure of this network is shown in 
Figure 2.  

To simulate the network, a static network (a network 
with no delay and no feedback) is required. Also, since 
the network needs to be trained with different examples, 
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a supervised network is required. It means that the 
network needs examples of target which is related to 
input (input/target pairs) to understand the ruling 
regularity of the network. Back-propagation is a static, 
supervised [26] neural network. This network has a 
great performance regardless of increasing or decreasing 
of the data. There is such datum regarding this study. 
For example, in a special crack location, natural 
frequencies decrease as the crack depth increases. This 
network, also, makes a balance between memorization 
and generalization. All these characteristics lead us to 
use Back-propagation among different types of neural 
networks to find out the location and depth of the crack. 

Since the errors are fed backward in the network to 
correct the weights and again the input repeats the path 
to the output in the network, the term “Back-
propagation” has been used. The amounts of the weights 
of the network are supposed to be determined randomly. 
In each step, the output is calculated and the weights are 
corrected according to their difference with the desired 
output. Assume that jiw  is the weight between the input 
layer and the hidden one. Therefore: 

( )
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,j i ji
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A w wx x
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=

= ∑  (23) 

Assuming the output function as sigmoid ( )sgm x  
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An study on the above equation reveals that any change 
in the weights causes the output to be changed. To 
achieve the desired output, error function of each 
neuron should be calculated as follows: 

( ) ( )( )2
, ,j j jE w O wx x d= −  (25) 

where jO  is the real output and jd  is the desired 
output. Therefore, the total error of the network will be 
the sum of the error of each neuron. So,  

( ) ( ), , , ,j jw d Ex x w d= ∑E  (26) 

The relation between error and input, also, between 
error and output as well as between error and weights 
need to be considered. The purpose is to change the 
weights in order to minimize the error function. There 
are different methods to achieve this goal. Standard 
Back-propagation neural network uses a gradient 
descent algorithm. According to the parabolic and 
positive behaviour of the error function, it is required to 
move along the negative path of the gradient of the 
function to achieve the minimum amount of the error.  

 
Figure 2. The general structure of a Back-propagation neural 
network with 3 layers.

 

 
 

Therefore, the gradient of the error function with 
respect to weights is necessary to be computed. The 
weights should be changed in such a way that the error 
become minimize. After some simple manipulations, the 
change in weights is given by the following formula: 

( ) ( )1 12 1ji j j j j i
ji

Ew O d O O x
w

η η
∂

= − = − − −
∂

Δ  (27) 

where 1η is a selective constant to modify the weights. 
The above formula is used for modifying the 

weights of a network consisting of two layers (input-
output). Supposing a hidden layer, two kinds of weights 
are needed to be modified on each step in the Back-
propagation neural network algorithm i.e., weights that 
relate the input layer to the hidden one, v , and weights 
which relate the hidden layer to output layer, w . Under 
this condition, the error depends on both jkv  and the 
weights that relate the hidden layer to the output layer, 

jiw . Using the gradient descent algorithm and the same 
process, jkvΔ  is: 

( )1 1 1ji i j i jk
jk i

E Ev x O x v
v x

η η
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= − = − −
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Δ  (28) 

In a 3 layer network, the input of the output layer is 
output of the hidden layer, therefore: 

( ) ( )2 1j j j j ji
ji

E O d O O w
w
∂

= − −
∂  (29) 

Some input and output patterns can be easily learned by 
single-layer neural networks. However, these single-
layer neural networks cannot learn some relatively 
simple patterns, since those are not linearly separable. A 
multi-layered network overcomes this limitation, since, 
it can create internal features and learn each layer. Each 
prior layer learns more abstract features. Each layer 
finds patterns in its below layer. Creation of internal 
features that are independent of input is the power of the 
Back-propagation neural network. The goal and 
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motivation for developing the Back-propagation 
algorithm is to find out a way to train multi-layered 
neural networks such that it can create the appropriate 
internal features to allow it to learn any arbitrary 
mapping of input to output. It can be proved that a 
Back-propagation neural network with more than 3 
layers has an efficiency close to a 3-layer network. 
Therefore, use of a Back-propagation neural network 
with more than three layers does not have remarkable 
efficiency rather than a three layer one. On the other 
hand, it takes much more time and CPU usage. So, it is 
common to use a 3-layer Back-propagation neural 
network. Complete discussion can be observed in [26]. 
 
 
 
4. PROCEDURE OF IDENTIFYING THE CRACK BY 
NEURAL NETWORK 
 
The natural frequencies of the cracked beam are directly 
determined through solving the equation of the cracked 
beam. An inverse problem makes use the known natural 
frequencies to obtain the crack location /x L  or 1l  and 
crack depth /a H  or η . Indeed, in an inverse problem, 
we try to find out the unknown parameters of the 
problem by both the measured natural frequencies and 
the other properties of the structure. In this problem, the 
unknown parameters are the location and depth of the 
crack. The term /i nω ω  is defined as the dimensionless 
natural frequency where    is the ith natural frequency 
of the cracked beam of length L and inω  is the ith 
natural frequency of intact beam of the same length. To 
determine the location and depth of the crack by neural 
network, a lot of examples should be provided for 
training the neural network. With the known 1l  and η , 
as well as boundary conditions, one can obtain the 
natural frequencies of the cracked beam. In this method, 
the first four natural frequencies are obtained for 
different crack locations and depths. At the next step, 
this data is used for training the neural network. 

In current work, the cracked beam models are 
assumed to be made of mild steel with the following 
material properties: Young’s modulus 210 GPaE = , 
material mass density 37860 kg / mρ =  and Poisson's 
ratio 0.3ν = . The value of the Timoshenko shear 
coefficient  ′ for the rectangular cross-section of the 
present research is taken as 5/6. The geometric data of 
the beam are: beam depth 25 mmH = , beam thickness 

12.5 mmB =  and beam length 125 mmL =  [15]. The 
natural frequency of the cracked beam is a function of  

1l  (dimensionless crack location) and θ ; crack 
sectional flexibility which is function of η  
(dimensionless crack depth). For providing examples to 

train the neural network, the first four natural 
frequencies may be obtained by solving the Equations 
(17), (18) along with applying the boundary conditions 
according to different crack location and depth. For this 
purpose, 1l  and η  are changed from 0 to 1 by a specific 
step. Then, the first four natural frequencies related to 
each pair of 1l  and η  are obtained. Here, 1l  is changed 
from 0.05 to 0.95 by step 0.015 (61 conditions). 
Simultaneously, η  is changed from 0.1 to 0.91 by step 
0.015 (55 conditions) and the dimensionless natural 
frequencies are obtained. This operation made 
61 55 3355× =  pairs of dimensionless crack location 
and depth with related natural frequencies. They are 
used for training the neural network. Solving the 
problem inversely (using natural frequencies in order to 
determine the crack location and depth), the 
dimensionless frequencies are given as input layer and 
crack location and depth are given as output layer to the 
network. 
 
 
 
5. RESULTS AND DISCUSSION 
 
5. 1. Validity of Equation of Motion      In this 
section, we study the validity of presented equation of 
motion. For this purpose, the first three natural 
frequencies of the beam with different boundary 
conditions are calculated. These results have been 
compared with those presented by Khaji et al. [15]. 
Both the results i.e. results of this study and those of 
[15] are presented in Table 1 in order to make a 
comparison between them. It is clear that there are very 
good conformity between these two sets of results. Also, 
some of the results that show the changes in natural 
frequencies due to the effect of varying the parameters 
of the beam are presented in this table. The first three 
natural mode shapes of the beam with different 
boundary conditions are shown if Figures 3a, 3b and 3c. 
These figures make clear that the slope experiences the 
change when there is not any node in the mid of the 
beams for different boundary condition. Now after 
presenting the validity of equations of motions, the 
necessary data for training the neural network is 
prepared. These data will be obtained according to [15].  
 
5. 2. Prediction of Crack Location in a Beam with 
Different Boundary Conditions       Training the 
neural network was performed in three conditions: 
condition 1: with 3 dimensionless frequencies as input, 
condition 2: with 4 dimensionless frequencies as input 
and condition 3: with 5 dimensionless frequencies as 
input. 
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TABLE 1. Comparison of the three first natural frequency of cracked Euler-Bernoulli beam models for various boundary conditions 
( 100 , / 4, 0.5L L h e= = =mm ) 

Boundary 
conditions 

Dimensionless crack depth 
ratio /a hη =  

( )1f Hz  
2 ( )f Hz  

3 ( )f Hz  

Ref. [15] Present work Ref. [15] Present work Ref. [15] Present work 

Simply supported 

0.2 4911.8 4911.85099 17,603.8 17,603.7887 30,952.5 30,952.57562 

0.3  4474.18306  17,603.7887  29,679.53566 

0.4  3956.26216  17,603.7887  28,414.2587 

Simple-clamped 

0.2 7139.0 7139.0115 19,600.2 19,600.1452 32,236.1 32,236.1366 

0.3  6787.02786  19,570.45638  30,938.0554 

0.4  6390.63396  19,535.74335  29,659.60941 

Clamped-
clamped 

0.2 9408.6 9408.6129 21,397.5 21,397.5208 33,378.1 33,378.1168 

0.3  9054.879  21,397.5208  32,006.0543 

0.4  8663.457  21,397.5208  30,660.9051 

Simple-free-shear 

0.2 1361.7 1361.66519 10,575.5 10,575.48692 24,196.6 24,196.612137 

0.3  1286.136444  10,192.12776  23,6104.79146 

0.4  1185.84391  9,7587.108628  23,009.23042 

Clamped-free-
shear 

0.2 3007.7 3007.69978 12,697.3 12,697.2838 26,038.2 26,038.15901 

0.3  3002.53633  12,197.9082  25,594.80291 

0.4  2996.15096  11,642.40153  25,136.41062 

Cantilever beam 

0.2 1948.2 1948.205 9393.7 9393.6829 22,962.3 22,962.30567 

0.3  1893.79564  8722.531  22,859.6366 

0.4  1812.83689  7974.77909  22748.2826 

 
Back-propagation neural network is selected to 

determine crack location and depth. As mentioned, the 
input layer contains 3, 4 or 5 neurons which include 
condition 1 (training with 3 dimensionless frequencies) , 
2 (training with 4 dimensionless frequencies) or 3 
(training with 5 dimensionless frequencies) and the 
output layer contains 2 neurons which includes crack 
location and depth. 70 neurons were selected to be in 
the hidden layer (middle layer). Because of the 
existence of the symmetry in the beam, the number of 
epochs was chosen 2500 for simply-supported and 
clamped-clamped boundary conditions. On the other 
hand, the number of epochs was 3000 due to the 
asymmetric property of the cantilever beam. 
Convergence of the number of neurons in hidden layer 
and epochs were tested by choosing different number of 
neurons and epochs. Besides, Bayesian algorithm was 
used to train the neural network. 
 
5. 2. 1. Determination of Crack Location in a 
Simply Supported Beam        Due to the symmetry of 
the beam, half of its length is considered and analysed, 
namely, ( )10 / 0.5l x L≤ = ≤ . So, a number of 

31 55 1705× =  pairs of crack location and depth with the 
related natural frequencies are used to train the neural 
network. The dimensionless natural frequency 4 4/ nω ω  
for three selective crack depths ( )η  is shown in Figure 
4. The term 3 3/ nω ω  is related to training neural 
network with the first three dimensionless frequencies 
(condition 1), 4 4/ nω ω  is related to training neural 
network with the first four dimensionless frequencies 
(condition 2) and 5 5/ nω ω  is related to training neural 
network with the first three dimensionless frequencies 
(condition 3). Figures 5, 6 and 7 show the error 
percentage in prediction of the crack location by the 
neural network. Firstly, as may be seen, the more 
distance from the boundary conditions, the less will be 
the errors. Furthermore, the maximum error for 
condition 1 (training with 3 frequencies), is about 10 
percent, while the error for condition 2 (training with 4 
frequencies) and condition 3 (training with 5 
frequencies) is about 4 and 3 percent, respectively. It means that using more natural frequencies to train the 
neural network make the error to be decreased more. 
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Figure 3. The first three mode shapes of beams with 
different boundary conditions a) first mode shape, b) 
second mode shape and c) third mode shape (SS- simply-
simply, CC: clamped-clamped, CF: clamped-free, CS: 
clamped-simply, C-FS: clamped-free sliding, S-FS: 
clamped-free sliding).

 

 

 Figure 4. ω /ω   versus crack location in three selective 
crack depths: a) η = 0.1, b) η = 0.4, c) η = 0.7. 
 
 

 Figure 5. Percent of error in crack location of a simply-
supported beam for condition 1(training with 3 frequencies). 
 
 

 
Figure 6. Percent of error in crack location of a simply-
supported beam for condition 2 (training with 4 frequencies). 
 
 

 
Figure 7. Percent of error in crack location of a simply-
supported beam for condition 3 (training with 5 frequencies). 
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Figure 8 shows the performance plot of the network 
for a simply-supported beam for condition 2 (training 
with 4 frequencies) for 0.1η = . However, due to the 
low differences in errors, the performance plots of the 
network for different boundary conditions are similar in 
conditions 1, 2 and 3. 

If the step of changing 1l  is chosen 0.02 instead of 
0.015, there are 31 41 1271× =  pairs of dimensionless 
crack location and depth with related natural 
frequencies. Also, if both 1l  and η  are changed by step 
0.02 instead of 0.015, there are 23 41 943× =  pairs. 
These errors (1271 pairs and 943 pairs) for a simply-
supported beam for condition 2 (training with 4 
frequencies) are shown in Figures 9 and 10, 
respectively. The error percentage for training with 
1271 and 943 pairs is about 6 and 14 percent, 
respectively, while the maximum error corresponding to 
1705 pairs is about 4 percent. If the errors more than 6 
percent not to be acceptable, one can conclude that the 
step of length 0.015 is good and reliable. 

 
 

 
Figure 8. Performance plot of the network for a simply-
supported beam for condition 2 (training with 4 frequencies) 
in η = 0.1. 
 
 

 
Figure 9. Percent error in crack location of a simply-
supported beam for condition 2 (training with 4 frequencies), 
for the combination of 31 41 1271× =  pairs. 

 
Figure 10. Percent error in crack location of a simply-
supported beam for condition 2 (training with 4 frequencies), 
for the combination of 23 41 943× =  pairs. 
 
 
 
5. 2. 2. Determination of Crack Location in a 
Clamped-clamped Beam    The location and depth of 
the crack in the clamped-clamped beam may be 
determined in the same manner as applied on a simply-
supported beam, previously. In simply-supported beam, 
it was mentioned that an increase in the number of the 
dimensionless frequencies to train the neural network, 
makes the prediction error to be decreased. It is also true 
for a beam with any other boundary conditions. Because 
of the symmetry, half of the beam is considered. In this 
case, Figure 11 shows the error percentage in crack 
location of this beam in conditions 2 (training with 4 
frequencies).  
 
5. 2. 3. Determination of Crack Location in a 
Cantilever Beam     In this case, the number of 
provided examples to train the neural network is 3355 
because whole length of the beam is considered. Figure 
12 shows error percentage of the neural network in 
crack location prediction of a cantilever beam for 
condition 2 (training with 4 frequencies). 
 
5. 3. Prediction of Crack Depth in Different 
Boundary Conditions     Here, the capability of the 
proposed neural network for prediction of the crack 
depth of the beams with different boundary conditions is 
investigated. The error percentage of the prediction of 
the crack depth of a simply-supported, clamped-
clamped and cantilever beam for condition 2 (training 
with 4 frequencies) are shown in Figures 13, 14 and 15, 
respectively. For better understanding of the error in 
prediction of the location and depth of a crack simply-
supported beam of condition 2 (training with 4 
frequencies) has been studied. In this study a number of 
random frequencies have been used. The error 
percentages between real and predicted location and 
depth of the crack are computed and along with the 
random frequencies are presented in Tabel 2. 
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TABEL 2. Some random first four frequencies given to the network and computing errors. 

First four dimensionless frequencies 
Real Predicted Error percentage 

Crack depth Crack location Crack depth Crack location Crack depth Crack location 

0.977859785 
      

0.998238588 2.75 6.875 2.8047 6.9258 
1.99% 0.07% 

0.988428635 (0.11) (0.55) (0.1122) (0.546) 

0.995997529 
      

0.595446392 
      

0.659468287 20.75 26.25 20.7557 26.252 
0.03% 0.01% 

0.861820767 (0.83) (0.21) (0.8298) (0.21) 

0.96928069 
      

0.57859434 
      

0.848450939 16.25 45 16.259 45.0701 
0.06% 0.16% 

0.984904873 (0.65) (0.36) (0.6504) (0.3606) 

0.859121407 
      

0.819637274 
      

0.986317317 8.75 56.25 8.7533 56.2555 
0.04% 0.01% 

0.917921335 (0.35) (0.45) (0.3499) (0.45) 

0.973222096 
       

 

 Figure 11. Percent error in crack location of a clamped-
clamped beam for condition 2. 
 
 

 Figure 12. Percent error in crack location of a cantilever beam 
for condition 2. 

 Figure 13. Percent error in crack depth of a simply-supported 
beam for condition 2. 
 

 

 
Figure 14. Percent error in crack depth of a clamped-clamped 
beam for condition 2. 
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Figure 15. Percent error in crack depth of a cantilever beam 
for condition 2. 
 
 
 
 
6. UNIQUENESS OF THE CRACK LOCATION AND 
DEPTH 
 
The process of the prediction of the location and depth 
of a crack by the neural network or application of 
vibrational data in an inverse problem conducted a good 
feature. This feature is the uniqueness of the obtained 
data in the inverse problem. This feature makes ensure 
that the neural network can exactly determine the 
location and depth of the crack. Here there is a question; 
if the different cracks with different location and depth 
may result in similar natural frequencies? This 
similarity may take place for the first and second natural 
frequencies of the cracks at different location and depth, 
but for the next natural frequencies, such as their third, 
fourth and other natural frequencies the similarity will 
not happen. Hence, using more than two natural 
frequencies, the uniqueness of the answer will be 
satisfied. However, the uniqueness of the answer when 
using the first or the first two dimensionless frequencies 
has not been guaranteed. 
 
 
7. CONCLUDING REMARKS 

 
In this research, the location and depth of the crack of a 
beam are obtained by neural network. According to the 
results, it is shown that the neural network is a trustable 
and powerful method to obtain the crack location and 
depth. Also, the results show that, increasing the 
number of natural frequencies to train the neural 
network causes the errors to be reduced. It means, 
obtaining more accurate results implies using more 
number of natural frequency to train the neural network. 

]۱-۲۶[  
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 چکیده

 
  

بدنبال آن موقعیت و عمق ترك در تیر با . روش تحلیلی بدست آمده است هاي طبیعی تیر ترکدار به در این تحقیق ابتدا فرکانس
جام این مطالعه بر روي یک تیر با یک ترك باز و در سه شرایط مرزي مختلف ان. استفاده از روش شبکه عصبی تعیین گردیدند

روش تحلیلی تعیین و براي آموزش شبکه عصبی بکار گرفته  هاي طبیعی تیر ترکدار در ابتدا به براي این منظور فرکانس. گرفت
شبکه عصبی آموزش دیده جهت تعیین موقعیت و عمق ترك مورد استفاده قرار   در ادامه و در عکس حالت قبل،. شدند
نتایج . بعنوان ورودي شبکه عصبی روي دقت کار مورد ارزیابی قرارگرفت هاي طبیعی همچنین اثر تعداد فرکانس. گرفت
بعلاوه با . باشد آمده و مقادیر خطا نشان میدهد که شبکه عصبی روشی توانمند در تعیین محل و عمق ترك در تیر می بدست

  .ابدی بینی افزایش می هاي طبیعی یا همان افزایش محدوده تحلیل دقت پیش افزایش تعداد فرکانس
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