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A B S T R A C T  
   

The static and analytic scheduling approach is very difficult to follow and is not always applicable in 
real-time. Most of the scheduling algorithms are designed to be established in offline environment. 
However, we are challenged with three characteristics in real cases: First, problem data of jobs are not 
known in advance. Second, most of the shop’s parameters tend to be stochastic. Third, thousands of 
jobs should be scheduled in a long planning horizon. In this work we designed an expert model for 
achieving better performance of real-time scheduling tasks in a flexible manufacturing system (FMS). 
The proposed expert model is comprised of two sets of modules, namely FMS simulator and decision 
(control) modules. Information is translated from the first set of modules to the second in two phases. 
First, a feed-forward neural network as a supervised machine learning mechanism is set to capture the 
queueing attributes of the shop and train in initialization and pre-run mode. Second, system states (in 
real run) are interpreted to the control module which is comprised of interconnected online learning 
activation function and a feed-forward neural net, and finally the best strategy is selected. Therefore, an 
interactive discrete-event simulation model with control module is implemented in order to evaluate 
different scenarios and reduce the computational time and complexity. Eventually, the presented 
procedure is benchmarked through simulation modeling of a triple-stage-triple-machine flexible flow 
shop with some embedded stochastic concept. Results support our proposed methodology and follow 
our overall argument. 
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1. INTRODUCTION1 
 
In many flexible manufacturing systems (FMS), it is 
necessary to set up a set of competent techniques in the 
processing of jobs in order to keep up the pace of 
change in customer needs. Many of the systems used in 
our modern society ought to be such configured that 
they provide correct and on-time response to these 
changes. In case of schedulable real-time systems, the 
goal is to meet the deadline of every task by ensuring 
that each task can complete execution by its specified 
deadline. This deadline is adopted from environmental 
constraints imposed by the application of system in real-
time [1]. Moreover, we are faced with three important 
attributes of the tasks scheduling in real-time: shortage 
of tasks information in advance, stochasticity of the 
shop’s parameters, and long-term planning horizon. 
                                                        
1*Corresponding Author Email: sahraeian@shahed.ac.ir (R. 
Sahraeian) 

However, many researchers unanimously have 
concluded that there exists no certain rule, say 
sequencing rule, which is universally better than others. 
The most famous and simple rules are: shortest 
processing time (SPT), longest processing time (LPT), 
earliest due date (EDD) and first in queue (FIQ). The 
popular rules like SPT fail at light load levels and 
generous due date allowances [2] and as the complexity 
of problem increases, simple rules and respectively 
statically utilization of these rules don’t perform well 
with respect to dedicated objective function. One 
acceptable solution is to dynamically alternating these 
rules upon receiving undesirable signals from system 
and according to the system’s conditions such as shop 
congestion [3]. Many researchers (See for example [4-
6]) have suggested that dynamically alternating the 
sequencing policies can be highly effective. 

More flexible approaches are required for a FMS 
scheduling. In fact, most FMS scheduling problems are 
NP-Hard [7-9]. Due to the environmental constraints, 
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acquisition of knowledge can be very useful for tasks 
scheduling in real time. In such cases, the scheduling 
parameters have to be tuned very quickly so that the 
system will be able to continue to produce optimum 
performance quickly corresponding to the system state 
changes [10].  

In this study, we used a feed-forward neural network 
in the control module suggesting that parts of the 
information, acquired from initialization mode, remains 
unchanged and the rest are updated through an online 
transfer function in real-time simulation, which enables 
the system to learn efficiently in online mode in the 
context of discrete-event system. 

 
 

 
2. RELATED WORKS: A COMPARATIVE STUDY 
 
According to Maccarthy and Liu [7], three types of 
approaches can be used for FMS scheduling in real-
time: (1) Heuristics, priority rules and simulation, (2) 
Mathematical programming and (3) Artificial 
intelligence (AI) techniques. In the literature, various 
methods can be recognized according to these three 
approaches. These methods include composite priority 
rules, decomposition methods [11, 12], single-pass and 
multi-pass methods [13, 14], real time dispatching and 
dynamic selection of priority rules [4, 8], adaptive 
scheduling [14], discrete-event (stochastic) simulation 
[4, 5, 15, 16], neighborhood search [9] and machine 
learning techniques [3, 11, 17]. 

It Substantial number of priority rules (simple and 
composite) has been reported in the literature. 
Performance of some rules is better than others in 
particular cases; however, yet no rule has become 
known that universally outperforms the others. For 
example, rules such as weighted shortest processing 
time (WSPT), earliest modified operation due-date 
(EMODD), combination of critical ratio and shortest 
processing time (CR+SPT) and processing time plus 
work in queue of its next operation (PT+WINQ) have 
been reported to produce better performance in response 
to due-date embedded objective functions or reversely, 
they fail in other measures [16]. An advantage in 
applying simple or composite priority rules directly 
underlies in ease of implementation. However, many 
researchers have used these rules in conjection with 
other dynamic methods.   

One of the useful heuristics for scheduling tasks in a 
FMS, particularly in presence of uncertainty, is 
decomposition -partial sequencing- method. This 
technique consists of subdividing the original problem 
into equally sized and more manageable sub-problems 
which are optimized and then the best combination is 
taken as solution to the problem in hand [18]. Different 
forms of Decomposition methods exist in the literature: 

time-based, job-based and machine-based (for more 
information see [11]). In this study, a time-based 
decomposition approach is deployed to generate training 
samples.   

Supported by object-oriented programming, 
queueing structure and capability of analysis the 
stochastic procedures, discrete-event simulation 
modeling basically regarded as a last resort (if analytical 
methods fail) in the performance evaluation of a system. 
As an instance, Barrett and Barman [3] and Jeong and 
Kim [6] put forth a simulation model for scrutinizing 
the effects of candidate dispatching rules, Nakasuka and 
Yoshida [19] and  Li and Lin [9] used simulation as a 
knowledge acquisition tool, Kuo, et al. [8] and Vinod 
and Sridharan [20] also took advantage of simulation for 
testing different production scenarios and strategies. 
Since optimization of the parameters of decision module 
in an online control system is time-consuming [19], an 
interactive discrete-event simulation model with control 
module is implemented in order to evaluate different 
scenarios and reduce the computational time and 
complexity.  

There exist two basic techniques, namely reactive 
(dynamic) and robust approach, for dealing with 
uncertainties and stochastic nature of a shop in real-time 
according to the literature. Despite of time-based 
decomposition method in which the planning horizon 
are decomposed into equal or unequal periods, reactive 
approach by selecting priority rules may well be suited 
to the shop in real-time case. In contrast, it would be 
unfavorable to the manager to expect an undesirable 
event (triggering) and then react to it. Furthermore, one 
might establish the measuring of robustness [11].  
According to this, the probabilities of particular event 
can be estimated and the system will react with respect 
to the probability of the corresponding event in advance. 
There are also other efficient techniques for dealing 
with complex circumstance in the literature, e.g. single-
pass and multi-pass methods. Single-pass period 
technique combines single priority rule and schedule 
generation procedures to construct a particular 
algorithm. Lova and Tormos [10] suggest that this 
combination is central to constructing a feasible 
schedule. In contrast, one might deploy a multi-pass 
approach when there are multiple buffers between 
stages. This method is the mixture of randomly 
sampling method and multi-priority rules method in the 
steady-state planning horizon. 

In order to better address a dynamic scheduling 
during the planning horizon in real-time, not only a 
quickly-reacting procedure to the changes is required, 
but it should be possible for its parameters to be 
modified in response to the system state changes [10]. 
Machine learning approach can be utilized such that 
decision module parameters are updated according to 
system state during the planning horizon. To 
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complement human knowledge of scheduling tasks or 
development of rule selection without human 
intervention [21], Machine learning is basically taken to 
fully reflect the real-time information of production 
scheduling based on knowledge gaining from system 
behavior. Three types of technique exist with respect to 
machine learning concept: cased-based reasoning, 
neural network and trigger-based learning. Priore, et al. 
[3] conducted a comparison between these algorithms 
and Mouelhi-Chibani and Pierreval [22] used the second 
class (a multi-layer perceptron) to select priority rules in 
a FMS. A drawback might be in adjusting networks 
total weights in online mode. Consequently, in this 
study, we used a neural network with a different 
topology in the control module suggesting that parts of 
information ,acquired from initialization mode, remains 
unchanged and the rest are updated through transfer 
function in the real-time simulation, which enables the 
system to learn efficiently in online mode. 

The rest of this study is organized as follows: First, 
an overview of machine learning mechanism is given in 
section three. Next section formulates the problem by 
the neural network and discrete-event simulation 
configuration. In section (5), the propose model is 
validated and the results are analyzed. Finally, section 
(6) concludes section (5) through a summary and 
recommendation for future research. 

 
 

3. OVERVIEW OF MACHINE LEARNING: NEURAL 
NETWORK APPROACH 

 
System components tend to have specific connections 
together. However the connection may vary from a 
simple cause and effect to a dynamic full-ecological 
connection. It is also required that some system 
parameters be estimated through these connections. 

To attain the aforementioned goals, in this study a 
novel framework of discrete-event simulation and 
neural network through iteratively learning 
characteristics of queues in a FMS is proposed. In real 
time simulation, a linear transfer function allows the 
inputs of offline network to be adapted and learned from 
changes in the system. This process requires substantial 
amount of experimental work of collecting practical 
data for training neural network, of an appropriate 
learning structure. It is a demanding task to develop a 
sustainable algorithm for any instance with a reasonable 
and acceptable solution in real time. In the first step of 
design, machine learning mechanism is the sheer 
amalgamated structure of human intuition and machine 
computational capability [23]. This will chronologically 
develop a procedure that can adapt itself to the new 
changes in the system conditions. 

There are two types of learning methods. The 
employed procedure can be either “supervised” or 

“unsupervised”. In supervised learning or machine 
learning mechanism, the learning mechanism takes only 
a set of input data and known responses to the inputs, 
and seeks to construct an estimator model that generates 
reasonable prediction to new data. Nevertheless, in 
unsupervised learning, the system learns of itself by 
adapting to the structural features in provided input 
patterns. Therefore, the framework of input and output 
learning vector should be such interconnected that taken 
training policy is able to reach maximum estimation 
accuracy. Therefore, if we reassess the machine learning 
idea with the FMS concept, it can be elicited that if a set 
of jobs in the ith queue experiencing the state S which 
contributed to performance measure P, then the system 
can learn from state S, if the state S improves the 
performance measure P. 

A popular form of constructing a supervised learning 
mechanism can be established through a neural network. 
A neural network is comprised of a number of 
interconnected neurons. The synapse (connection) 
between neurons has weights, which depicts the strength 
level of these connections. The philosophy behind the 
vast utilization of neural networks is that incentivized 
by their non-parametric properties of any linear and 
non-linear functions and they are capable of fast-
learning when appropriate parameters are chosen. 

A number of machine learning methods have been 
studied with regard to their applicability to scheduling. 
These techniques shall be categorized into four major 
groups: The first mechanism is referred to as rote 
learning. In this mode, even though the system saves old 
decisions that gave good results, it has no means of 
generalizing them and user should be very careful in 
implementing them in a complex environment in which 
the chances of observing the same state is very low. 
This form of learning is only useful when the number of 
possible scheduling instances is limited [11, 17]. 

Case Based Reasoning (CBR) is another machine 
learning paradigm being considered for application to 
scheduling problems. CBR seeks to exploit experience 
gained from past similar cases. The larger scheduling 
problem requires the identification of salient features of 
past schedules, generalization, and a mechanism for 
determining which stored case best matches and is 
useful in the problem context.  CBR can be applied to 
multi-objective scheduling problems as well [3, 20]. 

The third class of learning mechanisms are the 
induction type. A very common form of an induction 
type is a neural network. This mechanism is applicable 
in three steps: (1) data collection, where a trace of 
decisions and corresponding system states is obtained 
from the simulated system; (2) data analysis, where the 
traces are examined to determine the scheduling rules 
used; and (3) rule evaluation, where the performance of 
these obtained rules is compared against the expert’s 
performance [16,19,22]. The fourth class of learning 
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mechanisms are classifier systems. The classifier system 
learns rules which were found to perform better than the 
application of any of the single heuristics alone. A 
chromosome (or string) in such algorithm representing a 
list of rules (e.g., priority rules) that are to be used in the 
successive steps (or iterations) of an algorithmic 
framework designed to generate schedules for the 
problem at hand [11,22].  

 
4. PROPOSED STRATEGY 
 
4. 1. Problem Formulation       The topology of 
proposed neural net model is illustrated in Figure 1. In 
the first step, the states of queues are preprocessed 
through a linear transfer function, which can make the 
online learning possible, and fed as inputs to the 
network. Furthermore, consideration of time component 
cannot be neglected. For example, if the steady state 
period in the time horizon of shop simulation is T, then 
it is required that period T is decomposed into equal 
units of T/n with n training sets for network 
configuration. In this study, it is supposed that system 
can uniformly experience stochastic changes during the 
steady state period. This procedure can also be applied 
for both deterministic and nondeterministic flexible 
flowshop scheduling where all jobs ought to undergo 
waiting in buffers sequentially. Two phases are 
prescribed in the presented network. The first phase 
includes a linear transfer function so that corresponding 
weights ought to be updated in the real run. The 
philosophy behind choosing a linear transfer function in 
the first step is that it is easy to be learned and second 
all essential parameters can be included directly without 
any sophistication. The second phase consists of a 
multi-layer perceptron network which should be trained 
in initialization mode. Therefore, its weights are static 
during the simulation run. By letting Sij state j 
corresponding to queue i and PRi selected rule for queue 
i , it is assumed that PRis are set as input vector by 
randomly sampling in pre-run mode (offline input) and 
responses gaining from simulation run are set as target 
vector in that mode (offline target or online input). Once 
the network is trained offline, the triggering signal 
generated from real-time simulation run induces the 
network and by feeding the states of queues as an online 
attribute vector at specific moment the appropriate 
priority rule will be selected. Let M number of system 
state, H number of hidden layer neurons and N number 
of candidate priority rules, then, in order to 
mathematically illustrate the offline network and online 
transfer function, the two following expressions can be 
written: 

(2) (1)_ { [ ( . ) ]. }′ ′= + +∑ ∑
H M

i i h j jh h hi i
h j

Estimated PR F F S w wα β  (1) 

(3)
1 2 1 2

1 1 1 2

( , ,..., , , ,..., , )
...

j j j Nj j j Nj

j j j j Nj Nj

S F S S S
S S S

λ λ λ δ

λ λ λ δ

′ = =

+ + + +
 (2) 

where wjh is the strength level of connection between jth 
element of S′j and hth neuron of hidden layer, Fh

(1) ,αh 
,Fi

(2) and βi are activation function and threshold 
component associated with hth and ith neuron, 
respectively, w′hi the weight symbolizing the connection 
between hth neuron of hidden layer an corresponding ith 
neuron of priority rules vector and S′j the output of 
linear online transfer function. λij is the strength weight 
corresponding to state Sij and δ the threshold value of 
linear transfer function F(3). 

Expression (1) should be minimized through 
backpropagation technique. To put it precisely, errors 
generated from objective function are backpropagated to 
the neurons of each layer by the negative gradients. In 
this study, in order to approach a fast training speed for 
both minimization of expression (1) in offline mode and 
updating the weights of expression (2) in online mode, a 
well-known levenberg-marquadrt algorithm is used. The 
philosophy behind utilization of this algorithm is its 
design characteristic owing to the fact that there is no 
need to compute the hessian matrix; consequently, it can 
compute the gradient quickly. (For more information 
about this technique, see [25]) 

 
4. 2. Model Development     By acquiring the training 
sets from discrete-event simulation with replication and 
uniformly sampling the simulation results in the time 
horizon, the network is trained offline. The parameters 
of online transfer function are updated with respect to 
defined performance criteria. The neural network 
implemented in this study is three-layer feedforward 
consisting of one input layer, one hidden and one output 
layer. For the reason that there exist large number of 
training samples, number of neurons associated with 
hidden layer is chosen slightly larger, say 15, for 
keeping away underfitting problem. Also, overfitting 
problem is considered to avoid misleading results of 
training condition. A tangent hyperbolic transfer 
function is used in conjunction with initialization net. 

In this study, some basic queueing characteristics 
which can affect the process of rule selection are 
employed. In complex problems, an attribute extraction 
step is required for later use of knowledge acquisition 
process (for example see [10,14]). However, for better 
generalization of results, some basic queueing 
characteristics which can affect the process of rule 
selection are employed. The states associated with 
particular queue are provided by simulation model with 
corresponding initial inputs and then are fed to the 
network as a target in the offline training phase. The 
states are given in Table 1. 
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Figure 1. Offline and online training framework of Neural Network 

 
 

 
Figure 2. General overview of proposed strategy (in real-time 
run) 

 
 

TABLE 1. Online attributes of queueing states 
State Description 

Si1 Length of the ith queue  

Si2 Maximum processing time of jobs in the ith queue  

Si3 Average waiting time of jobs in the ith queue  

Si4 

Number of jobs of which corresponding processing 
times are smaller than one-third of mean total jobs 
processing time in the ith queue  

Si5 

Number of jobs of which corresponding processing 
times are greater than one-third and smaller than two-
third of mean total jobs processing time in the ith 
queue  

Si6 

Number of jobs of which corresponding processing 
times are greater than two-third of mean total jobs 
processing time in  the ith queue  

Before configuring the network, data collected from 
each state are normalized to have the same effect when 
processing through activation function. During the 
offline training, a set of equal-length intervals 
[#PR1#(t1,t2), #PR2#(t2,t3), … , #PRn#(tn,tn+1)] is used 
for offline input and later in selection of priority rules in 
online mode. For example, if the network yields a 
constant a/3 and intervals are [#SPT#(0,a), 
#LPT#(a,2a)] ,we use SPT as selected priority rule. 
Performance criterion monitors FMS simulator for any 
disturbance, if an event degrades the performance, then 
a signal is sent to both triggering module and for online 
transfer function to updates its weights. Later, control 
module sends a best suited signal corresponding to 
priority rule module for rule selection.  This procedure 
is outlined in Figure 2. 

The simulation model is constructed in a modular 
way, of which each perform a particular role. There are 
three types of module deployed in this model: (1) Signal 
generation module, (2) Signal management module and 
(3) physical modules. The role of the first class of 
modules is generating signal for simulating breakdowns, 
reworks, etc. The second class interprets the signal in 
order to acquire desired signal like control module or 
triggering module and the third class are physical 
entities such as jobs. 
Steps of the Algorithm: 
 
1) Simulate and run the shop model. 
2) Collect inputs and outputs for training offline network. 
3) Set coefficients of online transfer function to be unit. 
4) Re-run the simulated model which is connected to the 

network (real time). 
5) Upon receiving a signal implying that the previously 

selected rule fails in satisfying performance criteria, the 
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network alternates the existing rule and then updates the 
online transfer function weights. 

6) Repeat step 5 until running the simulation model stops. 
 
 

5. EXPERIMENTAL STUDY 
 

5. 1. The Proposed FMS Model
   

     The basic model 
is based on computer simulation study proposed by 
Barrett and Barman [24] and further employed in other 
pertinent articles (see for example [19, 22]). However, 
some stochasticity is embodied to measure the 
reliability of the proposed methodology. Thus, a 
specific hybrid flow shop model called ‘triple-stations-
triple-machines’ are put forth for study in the 
representation of a FMS in real-time. The presented 
model is comprised of three stations and each station 
has three machines which can do parallelly the same 
operations. Each job upon arrival to the work center 
goes to the first free machine. If all machines are 
loaded, the job waits in a queue until a machine 
becomes free. Transportation time from work center 1 
to work center 2 assumes to be 0.3 units with a constant 
speed. Machines require 0.5 time units for changing 
tools periodically upon servicing 50 jobs,  and it is 
supposed that absent machine operators can be replaced 
without disrupting production. Inspection time after jobs 
processing on work center 2 is negligible, however it 
assumes that 10% of the completed jobs requires 
rework; with rework time of 0.1 unit at work center 2 
and also waiting jobs for rework have the highest 
priority among other jobs in queue. A time-based 
(independent of processed jobs) repair operation needed 
for machines breakdown in work center 3 on the 
supposition that occurrence of machines failure follows 
an exponential distribution with 1/50 of the mean and 
duration of the breakdown is uniformly distributed over 
the interval (10,100). This component is the only one 
amongst virtual and physical components, which 
imposes stochasticity on the system  Furthermore, 
Arrival and processing times of each job in any work 
center are not deterministic, exponentially distributed 
with mean of 1.0 time units and preemption is not 

allowed. Due to the randomly generation of arrival 
times, it is also assumed that arrival times of jobs are 
uncorrelated with each other and are known in advance. 
The proposed FMS model for study is illustrated in 
Figure 3. 

In order to evaluate objective function, say mean 
tardiness, due date parameter should be imposed on jobs 
completion times. Thus, with the lack of adequate 
exogenous due dates from customer, it is considered 
that system generate its due dates itself, namely 
controllable due dates, by total work content (TWK) 
method [25]. According to this, the due-date of each job 
is equal to the sum of the job arrival time and due-date 
allowance factor – the amount of time that the job will 
spend in the system- multiplied by the total processing 
time. Then, due dates could be established as follows:  

1
shop loading ( ) ,

n

i
i

epβ
=

∝ × ∑  (3) 

where DDi  is the due date of job I, Ari the arrival time 
of job I, k the due-date allowance factor and pij the 
processing time of job I on machine j.  

It is also suggested that random generation of jobs 
arrival and processing times in each work center ought 
to be circumscribed and such manipulated that it can 
simulate the shop congestion condition [26]. Due to the 
stochastic nature of the model, obtaining the exact 
formula for shop load determination is somewhat 
difficult. Therefore, the relationship between arrival, 
processing time of jobs and loads to the work center can 
be written as following: 

,i i ij
j

DD Ar k p= + ∑  (4) 

where β is the mean arrival rate of jobs, n the number of 
work centers, epi the mean expected processing time of 
jobs at work center i. Accordingly, the above expression 
suggests that if the load of the shop is constant, then 
increasing the mean rate of jobs arrival will reduce the 
mean processing time of jobs, and vice versa. In this 
study, 91 percent (heavily load) for shop loading has 
been chosen.  

 
 

 
Figure 3. Proposed FMS model 
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5. 2. Validation, Evaluation and Analysis of the 
Results    In order to justify the performance of 
proposed methodology, a simulation model of 
previously mentioned configuration with neural network 
is developed and conducted. In this study, for the sake 
of ease in analysis of responses, four basic priority rules 
are deployed: SPT, LPT, EDD and FIFO. For statistics 
generation, a run length of 30000 hour is selected. The 
entire procedure (from neural network configuration to 
real-time simulation of the shop model) is programmed 
and simulated by Matlab & Simulink software package. 

In this study, a multi-level verification [16] is 
implemented to ensure the correct configuration of 
simulated model and programming logic. For this 
purpose, five steps are performed: (1) Program 
debugging, (2) checking the consistency of internal 
logic, (3) plausibility checking through running model 
under different configuration of exogenous parameters 
(initial seeds), (4) steady state analysis and (5) 
schedulability test. A robust generalization of a 
simulated model substantially depends on steady state 
analysis. It is assumed that steady state period 
corresponding to run time h takes a fraction of h for 
which plotted moving average performance measure 
indicates a reasonably smaller variation. Due to the 
presence of randomnesses like breakdown, to some 
extent a pure steady phase could be elusive (semi-
steady-state period). Figure 4 provides a summary plot 
of mean flowtime and mean tardiness moving average 
in the increments of simulation run length.  

 

 
Figure 4. Steady state analysis of mean flowtime and mean 
tardiness 

Also, a schedulability test is employed to validate 
that a given task can satisfy its specified deadlines when 
scheduled according to a specific scheduling algorithm 
[1]. For example, in case of violent stochastic 
occurrence, even a best-known algorithm corresponding 
to a specific benchmark could yield a result which is far 
from predictions. Therefore, system is tested under 
different priority rules before reaching the steady state 
to ensure that tasks are schedulable.  

Table 2 summarizes the pertinent results of 64 
combination of PR1/PR2/PR3 plus proposed strategy. 
For each combination 20 replications have been 
conducted. Note that PR1/PR2/PR3 represents the rules 
selected for respectively first, second and third queues. 
It is obvious that among all tested combinations 
EDD/SPT/SPT has shown better performance with 
respect to mean tardiness. Given the mean flowtime, 
SPT/FIFO/SPT gets the best score in comparison with 
other combinations. LPT/LPT/LPT exhibits the poorest 
result among other combinations in terms of both 
objective functions. The evidence suggests that 
(according to Table 2) the proposed strategy 
outperforms EDD/SPT/SPT and SPT/FIFO/SPT 
combinations in both measures. Figure 5 illustrates the 
overall density of priority rule selection in the planning 
horizon. It can be concluded that priority rules like LPT 
and FIFO are rarely chosen by control module, due to 
the degradation of performance criteria with respect to 
objective functions.  Also, proposed simulation 
metamodel with control system are illustrated in Figure 
A.1. 

 
 

 
Figure 5. Selected priority rules upon a triggering signal at 
stage 1, 2 and 3 
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TABLE 2. Mean tardiness and mean flow time for priority rules and proposed strategy 

PR Mean tardiness Mean flowtime PR Mean tardiness Mean flowtime 

SPT/SPT/SPT 63.12 22.43 EDD/SPT/LPT 109.34 31.61 

SPT/SPT/LPT 94.09 25.66 EDD/SPT/EDD 70.32 29.02 

SPT/SPT/EDD 81.67 23.12 EDD/SPT/FIFO 80.93 25.82 

SPT/SPT/FIFO 83.52 32.76 EDD/LPT/SPT 123.16 26.65 

SPT/LPT/SPT 115.36 31.89 EDD/LPT/LPT 194.07 26.64 

SPT/LPT/LPT 188.23 33.38 EDD/LPT/EDD 138.22 32.71 

SPT/LPT/EDD 101.30 27.33 EDD/LPT/FIFO 154.19 25.32 

SPT/LPT/FIFO 107.68 26.12 EDD/EDD/SPT 75.53 29.91 

SPT/EDD/SPT 78.12 24.66 EDD/EDD/LPT 118.33 33.26 

SPT/EDD/LPT 83.39 30.50 EDD/EDD/EDD 84.10 30.83 

SPT/EDD/EDD 75.98 29.97 EDD/EDD/FIFO 122.05 24.11 

SPT/EDD/FIFO 78.55 27.42 EDD/FIFO/SPT 148.39 24.01 

SPT/FIFO/SPT 109.85 20.26 EDD/FIFO/LPT 160.90 32.80 

SPT/FIFO/LPT 154.19 24.76 EDD/FIFO/EDD 121.96 31.96 

SPT/FIFO/EDD 95.66 26.32 EDD/FIFO/FIFO 130.51 25.76 

SPT/FIFO/FIFO 115.03 23.02 FIFO/SPT/SPT 87.18 24.25 

LPT/SPT/SPT 97.27 28.55 FIFO/SPT/LPT 159.63 26.53 

LPT/SPT/LPT 175.94 34.08 FIFO/SPT/EDD 93.57 31.17 

LPT/SPT/EDD 85.32 27.53 FIFO/SPT/FIFO 114.46 23.56 

LPT/SPT/FIFO 133.26 28.05 FIFO/LPT/SPT 172.05 22.84 

LPT/LPT/SPT 168.56 29.72 FIFO/LPT/LPT 214.82 34.00 

LPT/LPT/LPT 231.08 35.62 FIFO/LPT/EDD 159.88 33.32 

LPT/LPT/EDD 203.88 29.75 FIFO/LPT/FIFO 177.19 28.71 

LPT/LPT/FIFO 174.85 32.65 FIFO/EDD/SPT 127.41 26.12 

LPT/EDD/SPT 125.34 30.99 FIFO/EDD/LPT 139.11 31.20 

LPT/EDD/LPT 166.15 32.41 FIFO/EDD/EDD 95.28 29.19 

LPT/EDD/EDD 136.08 32.61 FIFO/EDD/FIFO 119.33 26.65 

LPT/EDD/FIFO 153.77 30.70 FIFO/FIFO/SPT 117.78 23.06 

LPT/FIFO/SPT 121.57 29.74 FIFO/FIFO/LPT 171.32 30.72 

LPT/FIFO/LPT 171.20 33.13 FIFO/FIFO/EDD 140.40 27.36 

LPT/FIFO/EDD 137. 91 28.16 FIFO/FIFO/FIFO 162.03 24.58 

LPT/FIFO/FIFO 148.32 27.85 Proposed Model 59.21 20.13 

EDD/SPT/SPT 62.34 22.25    

 
 
 

6. CONCLUSION 
 
In this study, we presented a two-phase framework of a 
supervised machine learning approach. A discrete-event 
simulation in conjunction with proposed control module 
was implemented to study dynamic characteristics of a 

FMS and then a best-suited strategy was repeatedly 
chosen according to the system attributes. This 
procedure has been done in deploying a two-phase 
learning neural net. First phase in real time plays the 
role of online learning and second including a multi-
layer network can store the information from 
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initialization mode. Furthermore, there are two points in 
configuration of such expert model that we should refer 
to them: 
1. Careful choice of system attributes should be taken 

into account. Developed model could be very 
sensitive or oblivious to considered states and yields 
misleading results. 

2. There is no guarantee that that dynamically selection 
of priority rules will have better performance 
compared with static counterparts. 

Though, we address the future work direction in the first 
step of design, defining more appropriate system 
architecture. We suggest that other machine learning 
architecture to be tested and developed in interaction 
with more complex FMS scheduling contexts, such as 
flexible job shop.  
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APPENDIX: 
 

 
Figure A.1. Simulation model with control module in Simulink 
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 چکیده

هاي  بسیاري از الگوریتم. شدنی نیستدر شرایط واقعی، رویکردهاي تحلیلی موجود در مباحث تئوري توالی عملیات اجرا  
ي اصلی در شرایط واقعی، چالش  رغم این مشکل، سه شاخصه علی. دهند هاي پویا از دست می موجود کارایی خود را در محیط

، ؛ ثالثاًاستاحتمالی  ،، پارامترهاي کنترلی کارگاه؛ ثانیاًیستریزي در دسترس ن هاي کارها در ابتداي برنامه ، دادهاولاً: استبرانگیز 
اي در محیط سیستم تولیدي منعطف  ی، سیستم خبرهدر این بررس. بندي شوند ریزي، هزاران کار بایستی زمان در یک افق برنامه

این مدل خبره شامل دو مجموعه از . بندي کارها را در شرایط واقعی انجام دهد تا با عملکردي کارا زماناست طراحی شده 
ي  به مجموعهي اول  ها و اطلاعات از مجموعه داده). کنترلر(گیرنده  ساز کارگاه و تصمیم شبیه: استهاي کلی )پودمان(  ماژول

هاي  شاخصه ،عنوان مکانیزم یادگیري ماشینی نظارتیه خوراند ب ي عصبی پس ابتدا یک شبکه. شوند دوم در دو فاز تفسیر می
سپس، حالات . کند ها و پارامترهاي خود مقداردهی اولیه می صف سیستم را از کارگاه گرفته و قبل از اجراي مدل به وزن

، ترجمه شده و بهترین استي عصبی  لاین و شبکه سازي آن کنترلی که خود شامل تابع فعال ءزبه ج) در اجراي اصلی(سیستم 
ارزیابی سناریوهاي مختلف و کاهش زمان محاسباتی، مدلی مبنی بر مفهوم  به  منظورهمچنین، . شود استراتژي انتخاب می

خیر کارها و أدو تابع هدف میانگین حداکثر ت. کار گرفته شده استه کنترلی ب ءپیشامد در تعامل با جز-سازي گسسته شبیه
میانگین مدت زمان جریان کارها در سیستم در ارزیابی مثال معروف سه ایستگاهی با پارامترهاي احتمالی در نظر گرفته شده 

   .استي سازگاري ادعاي مطرح شده و کارایی مدل  نتایج و شواهد نشان دهنده. است
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