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A B S T R A C T  

   

In this paper, linear stability of double diffusive convection of Darcy-Maxwell fluid with Soret and 
Dufour effects is investigated. The effects of the Soret and Dufour numbers, Lewis number, relaxation 
time and solutal Darcy Rayleigh number on the stationary and oscillatory convection are presented 
graphically. The Dufour number enhances the stability of Darcy-Maxwell fluid for stationary 
convection while it has a stabilizing character for overstability. The Soret number is to destabilize the 
system in both cases of stationary and oscillatory modes. In the limiting case some previous results 
have been recovered. 
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NOMENCLATURE 

C solute concentration DeL  Dufour number  12

11

D C
D T

 ∆
= ∆ 

 

d height of the fluid layer SeL  Soret number  21

22

D T
D C

 ∆
= 

∆ 

 

aD  Darcy number  2
k
d

 = 
 

 m horizontal wave number in y direction 

11D  thermal diffusivity M ratio of heat capacities 

12D  Dufour coefficient N Buoyancy ratio   
α ΔC=
αΔT
′ 

 
 

 

21D  Soret  coefficient p pressure 

22D  solutal diffusivity q velocity vector (u, v, w) 

g gravitational acceleration DaR  Darcy Rayleigh number  
1 1

g d T k
D

 α ∆
= ν 

 

k permeability DsR  Solutal Darcy Rayleigh number  
2 2

gk C d
D

 
  
 

′α ∆=
ν

 

1k  ( )0,0,1  t time 
l horizontal wave number in x direction T temperature 
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eL    Lewis number  11

22

D
D

 
= 

 
 

0W  dimensionless amplitude of velocity perturbation 

Greek Symbols β  horizontal wave number  ( )2 2= l + m  

T∆  temperature difference between the walls µ  effective viscosity 

C∆  concentration difference between the walls λ  stress relaxation characteristic time 

φ  eL= ε  ρ  density 

0θ  dimensionless amplitude of temperature perturbation ε  porosity 

0Γ  dimensionless amplitude of concentration perturbation α  coefficient of thermal expansion 
σ  growth rate  ( )r ii= σ + σ  ′α  coefficient of solutal expansion 

ν  kinematic viscosity  
0

 µ
= 

ρ 
 λ  dimensionless relaxation number  11

2
D
d

 = λ 
 

 

Subscripts   

b  basic state o reference value 

i  imaginary r real 

Superscripts   

′ perturbed quantity st stationary 

* dimensionless quantity over overstability (oscillatory convection) 

 
 

1. INTRODUCTION 

 
A large number of studies related to monodiffusive 
(Thermal) convection and double diffusive 
(Thermosolutal) convection have been carried out in a 
continuous as well as in porous medium (Chandrasekhar 
[1], Drazin and Reid [2], Ingham and Pop [3,4] and 
Nield and Bejan [5] have set some of the milestones). 

Historically, studies of thermal convection in a fluid 
saturated porous layer uniformly heated from below, a 
problem analogous to Rayleigh-Benard problem, were 
first put forward by Horton and Rogers [6] and later, 
independently by Lapwood [7]. The problem was 
generalized to double diffusive convection by Veronis 
[8] who demonstrated that subcritical instabilities may 
set in at a Rayleigh number smaller than that given by 
monodiffusive instability theory. The effect of double 
diffusive convection arises from the fact that heat 
diffuses more rapidly than a dissolved substance 
creating temperature and concentration difference under 
gravity. For example, in stellar interiors, the helium acts 
like salt in raising the density and in diffusing more 
slowly than the heat. This competition between the 
thermal and solutal buoyancy forces plays an important 
role in many physical phenomena. (See, for example, 
Mamou [9] and other references therein). In the case of 
flow of fluid through porous media, both  fluid and solid 
regions are responsible for the transfer of heat, while the 
solute transfers by diffusion and convection only 

through the fluid region. Thus, the properties of the 
porous medium can affect the transient flow behaviour 
even when the thermal and solutal diffusivities are 
equal. 

The problems of double diffusive convection in  
porous media occur in a broad spectrum of disciplines 
such as in the insulation of buildings and equipments, 
energy storage and recovery, geothermal energy 
extraction, dispersion of pollutants in the environment 
(like underground disposal of nuclear and non-nuclear 
waste), material and food processing, circulation in 
planetary atmosphere and growth of metal crystals.  
Double diffusive convection for a porous medium was 
first analyzed by Nield [10]. The critical Rayleigh 
numbers for the onset of stationary and overstable 
convection were obtained for different thermal and 
solutal boundary conditions. Rudraiah et al. [11] 
considered a porous layer with isothermal and isosolutal 
boundaries. They investigated the finite amplitude flow 
for opposing buoyancy forces and the threshold for 
subcritical convection was obtained as a function of the 
ratios of diffusivities. Furthermore, finite amplitude 
convection in a porous layer near the threshold was 
considered by Brand and Steinberg [12]. Recently, 
thermosolutal convection in different types of 
viscoelastic fluids through porous media has been 
considered by a number of researchers.  

In double diffusive convection when an external 
temperature gradient is imposed, a chemical potential 
gradient is produced. Likewise, an analogous effect 
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regarding temperature is produced corresponding to 
external concentration gradient. In heat-salt pair, there 
are many physical phenomena where it has been 
observed that the flux of salt is a function of 
temperature gradient as well as salinity gradient. This 
effect of temperature gradient on salt flux is termed as 
thermophoresis or Soret effect [13, 14]. Reciprocally, 
diffusion thermo or Dufour effect [15, 16] is observed 
which corresponds to specific differentiation developing 
in temperature submitted to the concentration gradient. 

Thermosolutal convection  with and without Soret-
Dufour effects so far are considered to be identical by 
converting the equations and boundary conditions of 
Soret-Dufour thermosolutal convection problems into 
those for thermosolutal convection without these effects 
with the help of a linear transformation [17]. But the 
fact is that Soret effect itself is of great importance in 
achieving difficult purifications in isomeric substance of 
various types such as, in mixture between gases with 
very light molecular weight, such as H2 or He  and of 
medium molecular weight such as N2 or air. Soret effect 
is also important to predict the composition profile of 
oil fields. Similarly several cases of Dufour effect of 
considerable magnitude have been prescribed by Eckert 
and Drake [18]. The Dufour driven thermosolutal 
convection was first examined by Veronis [8] while 
Tewfik et al. [19] were the first reserchers on Soret-
Dufour driven thermosolutal convection, followed   by 
Sparrow et al. [20]. 

In the last few decades, extensive theoretical and 
experimental investigations have been performed on 
double diffusive convection caused by coupled 
molecular diffusion. Rudraiah and Malashetty [21] have 
investigated the influence of coupled molecular 
diffusion on double diffusive convection in a porous 
medium. Weaver and Viskanta [22] have analyzed the 
Soret-Dufour effect on the natural convection in heat 
and mass transfer in a cavity due to combined horizontal 
temperature and concentration gradients. They have 
pointed out that when the differences of temperature and 
concentration are large, or when the difference of 
molecular mass of the two elements in a binary mixture 
is great, the coupled interaction is significant. They have 
established the important result that the total mass flux 
through the cavity due to Soret effect can be as much as 
10 – 15%, and energy transfer due to Dufour effect can 
be of appreciable magnitude compared to heat 
conduction. Recently, the effect of the cross coupled 
diffusion in a system with horizontal temperature and 
concentration gradients has been examined by 
Malashetty and Gaikwad [23]. Magherbi et al. [24] have 
investigated the Dufour effect on entropy generation in 
double diffusive convection. Among the recent 
contributions in the area of thermosolutal diffusion with 
Soret and Dufour effects, some of the milestones are 
due to Postelnicu [25] who  studied the simultaneous 

heat and mass transfer by natural convection from a 
vertical flat plate embedded in an electrically 
conducting fluid saturated in a porous medium, Kim et 
al. [26] who analyzed Soret-Dufour effect on convective 
instabilities in nanofluids for a Darcy Boussinesq 
model, Gaikwad et al. [27] who studeid Soret-Dufour 
effect on the double diffusive convection in a two 
component couple stress fluid layer  using both linear 
and non-linear stability analysis and Narayana and 
Murthy [28, 29] who investigated combined Soret - 
Dufour effect on free convection heat and mass transfer 
from a horizontal plate in a Darcy porous medium as 
well as in a doubly stratified  Darcy porous medium. 

During recent years, various problems regarding 
non-Newtonian fluids saturating porous media have 
received much attention [see review by Wang and Tan 
[30]]. Maxwell [31] was first who developed a model 
for a visco-elastic type fluid. Using this model, Tan and 
Masuoka [32] studied the monodiffusive stability of a 
fluid saturated in a porous medium. An analogous 
model, called modified Darcy-Maxwell model of the 
same fluid was introduced by Khuzayorov et al. [33]. 
Wang and Tan [30] used this modified Darcy-Maxwell 
model to investigate the instability of a double diffusive 
mixture.  

In view of the above studies, and keeping in mind 
that thermophoresis (Soret effect) and diffusion thermo 
(Dufour effect), however small they may be, are present 
in thermosolutal convections and are equally important, 
the aim of the present study is to theoretically examine 
the linear stability of double diffusive convection in 
Darcy-Maxwell fluid [33] confined between two 
parallel plates in the presence of Soret and Dufour 
effects, when both stationary and oscillatory 
convections occur. 

Therefore, the aim of the present paper is to extend 
the study of Wang and Tan [30] for Soret - Dufour 
phenomena, i.e. to investigate the effect of thermal 
diffusion (Soret) and diffusion thermo (Dufour) on the 
linear stability of modified Darcy-Maxwell model [33].  

 
 
 

 
Figure 1. Physical Configuration 

porous medium 
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2. FLOW STRUCTURE AND THE MATHEMATICAL 
FORMULATION 

 
A layer of Maxwell fluid is setup in a porous medium of 
thickness d by maintaining the horizontal boundaries at 
different temperatures and concentrations 
( )1 2 1 2T T , C C> >  as shown in Figure 1.  
The several assumptions used in the present paper are:  
(a) The boundaries are horizontal, parallel and infinite.  
(b) The porous medium is isotropic and homogeneous. 
(c) The saturating fluid is incompressible, non-

Newtonian, Darcy-Maxwellian and assumed to be 
everywhere in total thermodynamic equilibrium 
together with the porous medium. 

(d)  The layer is heated and soluted from below. 
(e) The Boussinesq approximation is valid which states 

that the variations of density in the equations of 
motion can safely be ignored everywhere except in 
its association with the external force [1]. 

In view of these assumptions, the governing equations 
describing the conservation of mass and momentum 
[30] can be written in the vector form as: 

0∇ ⋅ =q  (1) 

( )1 p
k t

µ ∂ = + λ −∇ − ρ ∂ 
q g  (2) 

where, ( )u, v, w=q  is the Darcian velocity, k is the 
permeability of the porous medium, µ  is the effective 
viscosity of fluid in the porous medium, λ  is the stress 
relaxation characteristic time constant, p pressure, ρ  is 
the density, and g is the acceleration due to gravity. 

 Following Groot [34] and McDougall [35], the 
phenomenological equations involving Soret-Dufour 
effects on the fluxes of heat and mass to the thermal and 
solute gradients present in the assumed fluid may be 
written as: 

2 2
11 12

1 . T D T D C
M t

∂ + ∇ = ∇ + ∇ ∂ 
q  (3) 

2 2
22 21C D C D T

t
∂ ∈ + ⋅∇ = ∇ + ∇ ∂ 

q  (4) 

where, 11D  is thermal diffusivity, 22D  solutal 
diffusivity, 12D  and 21D  quantify the contributions to 
the heat flux due to concentration gradient (Dufour 
coefficient) and mass flux due to temperature gradient 
(Soret coefficient) respectively, ε  the normalized 
porosity, M the ratio of heat capacities [36] and T and C 
are temperature and concentration respectively.  

The boundary conditions of the problem are:  
w Dw 0= =  at z 0=   and z d= . 
The equation of state is:  

( ) ( )0 0 01 T T S C C′ ρ = ρ − α − + α −   (5) 

where, ρ  and 0ρ  are the densities at the current and 
reference state respectively, α  and ′α  are the 
coefficients of thermal and solutal expansions and 
S 1= +  (or – 1) depending on whether the density of 
diffusing component is greater (or less) than that of the 
solvent. 

 
2. 1. Basic State     The basic state of the system is 
steady and is given by: 

( ) ( ) ( ) ( )
( )

b b b b

b

q 0, 0, 0 , p p z , z , T T z and

C C z

= = ρ = ρ =

=
 (6) 

Substituting Equations (6), Equations (1) – (5) yield: 

b
b

dp
g 0

dz
+ ρ =  (7) 

12 12
b b 1 1

11 11

D DT CT C T z C z
D d d D

∆ ∆   = − + − + −      
 (8) 

21 21
b b 1 1

22 22

D DC T
C T C z T z

D d d D
∆ ∆   = − + − + −   

   
 (9) 

( ) ( )b 0 b 0 b 01 T T S C C′ ρ = ρ − α − + α −   (10) 

Here, 1 2T T T 0∆ = − > and 1 2C C C 0∆ = − > . 

 
2. 2. Perturbed State     On the basic state we 
superimpose perturbations in the form  

( ) ( ) ( )
( )

b b b b

b

q q q , p p z p , z , T T z T

and C C z C

′ ′ ′ ′= + = + ρ = ρ + ρ = +

′= +
 (11) 

where, primes indicate perturbations which are 
functions of space as well as time. 

Introducing Equation (11) into Equations (7) – (10), 
and ignoring the second and higher order terms of the 
perturbations, we have: 

0′∇ ⋅ =q  (12) 

( )01 p g T C
k t

′µ ∂  ′ ′ ′ ′= − + λ ∇ − ρ α − α    ∂ 
1

q k  (13) 

2 2
11 1 2

1 T T w D T D C
M t d

′∂ ∆ ′ ′ ′− = ∇ + ∇
∂

 (14) 

2 2
22 21

C C w D C D T
t d
′∂ ∆ ′ ′ ′∈ − = ∇ + ∇

∂
 (15) 

where, ( )0, 0,1=1k  and 
2 2 2

2
2 2 2x y z

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
. 

Using the following non-dimensional parameters: 
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( )* * *

* *

11

* * '11
2

11

x y z
x , y , z , , ,

d d d
T C dT , C , q ,
T C D

D M kt t, p p
Dd

 ≡ =  
 

′ ′
′= = =

∆ ∆

=








=
µ

*

x* x

q
 

(16) 

assuming M = 1 and ignoring terms with the asterisks, 
the resulting equations in non-dimensional form are 
obtained as:  

0∇⋅ =q  (17) 

( )Da1 p R T SN
t

∂   = + λ −∇ + −   ∂ 
1q k  (18) 

D
2 2

e e
T w T L L C
t

∂
− = ∇ + ∇

∂
 (19) 

S
2 1 2

e e
C w C L L T
t

−∂
∈ − = ∇ + ∇

∂
 (20) 

 
where,  11

e
22

D
L

D
= : (Lewis number) 

D
12

e
11

D C
L

D T
∆

=
∆

: (Dufour number) 

s
21

e
22

D T
L

D C
∆

=
∆

:(Soret number) 

CN
T

′α ∆
=

α∆
:(Buoyancy Ratio) 

Da
11

g d TkR
D

α ∆
=

ν
:(Darcy Rayleigh number) 

11
2

D
d

λ = λ :(non-dimensional Relaxation number) 

 

 
3. LINEAR STABILITY THEORY 

 
Following normal mode analysis, we assume the 
perturbations to be periodic waves of the form: 

( )
( )
( )

( )
( )
( )

( )
x , y, z , t z

T x , y , z, t z exp t i x im y
C x , y, z , t z

   
   = θ σ + +   
   Γ   

q V
l

     
(21) 

where, σ  is the growth rate and, in general, a complex 
quantity ( )r iiσ = σ + σ , and l and m are dimensionless 
horizontal wave numbers in x and y directions, 
respectively. Stability or instability of the system is 
governed by ( )Re σ  such that the system is stable if 

( )Re 0σ <  for all modes, and unstable if ( )Re 0σ > , even 
for a single mode. The marginal state is prescribed by 

( )Re 0σ = . 

Substituting Equation (21) in linearized Equations 
(17) - (20), and simplifying the resulting equations for 
vertical component W of V, we get:  

( ) ( )( )
D

2 2 2
a eD W R 1 SL N− β = − β + λσ θ − Γ  (22) 

( ) ( )D
2 2 2 2

e eW D L L Dσθ − = − β θ + − β Γ  (23) 

( ) ( )S
2 2 1 2 2

e e eL W D L L D−∈σ Γ− = −β Γ+ −β θ  (24) 

where, 2 2l +mβ =  is the horizontal wave number and 
dD
dz

≡ . 

It is to be noted that in the absence of Soret-Dufour 
effects  (

DeL 0=  and 
seL 0= ) and for S = 1, the eigen 

value problem given by Equations (22)-(24) converts 
into one previously given by Wang and Tan [30]. 
Furthermore, when solute alone is taken to be absent, 
i.e. for 

DsR 0= , it converts into one discussed by Nield 
[10].  

In agreement with boundary conditions, we  choose 
the solutions of the form:  

( ) ( )
( ) ( )
( ) ( )

0

0

0

         W z W cos n z ,
z cos n z

and z cos n z .

= π
θ = θ π
Γ = Γ π







 (25) 

where n = 1,2,3,4------. Substituting Equations (25) into 
Equations (22)-(24), we obtain:  

( ) ( )
D D

2 2
0 a 0 a e 0QW R 1 R SNL 1 0− β λσ + θ + β × λσ + Γ =  (26) 

( ) D0 0 e e 0W Q L L Q 0− σ + θ + Γ =  (27) 

( )
s

1
0 e e 0 e 0W L L Q L Q 0−− θ − ∈ σ + Γ =  (28) 

where, 2 2Q = π +β  for the critical model n = 1. For non - 
trivial solution of 0 0W ,θ , and 0Γ ,  we require:  

( ) ( )
( )

D D

D

s

2 2
a a e

e e

1
e e e

Q R 1 R SNL 1

1 Q L L Q 0

1 L L Q L Q−

− β σλ + β λσ +

− σ + − =

− ∈ σ +

 
(29) 

Solving Equation (29), we get:  
2

2 1 0A A A 0σ + σ + =  (30) 

where, 

D D
2 2

2 s aA Q R S R= φ + λ β − λ φβ  (31) 

( ) ( )

( )
D D

D s

2 2
1 s a

2
e e e

A 1 Q R S 1 Q R

Q L L Q S N L Q

= + φ + + λ β − ×

φ + λ − λ + λ β

 (32) 

( )D s D D D s
3 3 2 2

0 e e s a e e eA Q Q L L R QS R Q 1 L L SNL= − + β − β × − +  (33) 

with 
De s

2 2
L  and R gk C d

D
φ = ∈ =

′α ∆
ν

 (Solutal Darcy 

Rayleigh number). 
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4. ANALYSIS AT THE MARGINAL STATE 
 
To analyze the marginal state, substituting iiσ = σ , 
where iσ  is real, in Equation (30) and separating the 
real and imaginary parts of the resulting equation, we 
get:  

( )
( )

D D D S

D D D s

2 2 2 3 3
s a i e e

2 2
s a e e e

Q R S R Q Q L L

R S Q R Q 1 L L SNL 0

φ + λ β − λφβ σ − −
+ β − β × − + =

 (34) 

( ) ( )

( )
D D

D s

2 2
s a

2
e e e i

1 Q R S 1 Q R

Q L L Q SN L Q 0

 + φ + + λ β −
φ + λ − λ + λ β σ =

 (35) 

It is clear from Equation (34) that for S = 1 at the 
margin of stability, stationary Darcy Rayleigh number 

D

st
sR , is obtained in the form:  

( )
D s D

D
D s

2 2 2
e e sst

a 2
e e e

Q Q L L R
R

1 L L NL

− + β
=

β − +

         or  

( )( )
( )

D s D

D
D s

4 2 2 4 2
e e sst

a 2
e e e

2 1 L L R
R

1 L L NL

 π + π β + β − + β =
− + β

 (36) 

The minimum value of 
D

st
aR  can be obtained by 

setting 
D

st
aR 0∂ ∂β = , which results in a critical wave 

number cβ = π , and hence the critical Darcy Rayleigh 
number for the stationary convection, denoted by 

( )D critical

st
aR  reduces to: 

( ) ( ) ( )s DD critical
D s

st 2
e e sa

e e e

1R 4 1 L L R
1 L L NL

 = × π − + − +

 
(37) 

It is to be noted that both the critical wave number 
and the critical Darcy Rayleigh number are independent 
of the relaxation time λ .  

In the absence of Dufour effect ( )0L
De = , Equation 

(37) reduces to: 

( ) ( ) ( )s DD critical
s

st 2
e e sa

e

1R 4 1 L L R
1 NL

= π × − + +
 

(38) 

while in the absence of Soret effect ( )0L
Se = , it reduces 

to: 

( ) ( )
D

D critical
D

2
sst

a
e e

4 R
R

1 L L

π +
=

−

 (39) 

whereas  in the absence of  both Soret and Dufour 
effects ( )D Se eL 0, L 0= = , the critical Darcy Rayleigh 

number is given by: 

( ) DD critical

st 2
saR 4 R= π +  (40) 

a result also given by Wang and Tan [30]. 
It is clear from Equations (38), (39) and (40) that 

whereas the Soret effect reduces critical Darcy Rayleigh 
number, the Dufour number has a reverse effect. This 
analytical analysis confirms the findings of Gaikwad et 
al. [27] who showed that the Dufour effect has a 
stabilizing character, while the Soret effect  has a 
destabilizing character.  

 
 

5. OSCILLATORY CONVECTION  
 
Oscillatory convection, at the marginal state ( )r 0σ = , is 
characterized by i 0σ ≠ . Therefore, for oscillatory 
convection,  Darcy Rayleigh Number is obtained in the 
form: 

( ) ( )
( )

D

D
D s

2 2
sover

a 2
e e e

Q 1 R 1 Q
R

Q L L Q NL Q

+ φ + + λ β
=

β φ + λ − λ + λ
 (41) 

Consequently, frequency for overstability is obtained as 
Equation (42) ( see Equation (42)).  From Equation (43) 
it is clear that oscillatory motions are excluded if I > 0, 
and not excluded if I < 0. ( see Equation (43)). 
 

 
 

( ) ( )( ) ( )}{ ( )
( ) ( ) ( )

D S D S D D S

D S D D S

2 2
e e e e e S e e e2

i 2 2 2
e e e S e e e

Q 1 Q 1 L L L L L Q Q R 1 L L NL

1 Q Q L L NL R 1 L L NL

 λ − + φ − λ + − − λ + φ + φ − + − β σ =
 φ − λ − φλ − + − φ − + λ β 

 (42) 
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e e e e e

I 1 L L NL R 1 L L NL 1 Q 1 Q L L NL

    L L Q Q 1 Q Q L L NL R Q 1 Q 1 L L NL

    L L Q Q 1 Q L L NL Q

= − φ − + λ β + − φ − + − λ − φ + − λ − +

× λ + φ λ + φ − λ − φλ − β + λ − φ − λ + −

− λ + φ φ λ − + φλ × −

 
(43) 
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6. NUMERICAL RESULTS AND DISCUSSION 
 
For S = 1 in the absence of Soret and Dufour effects 
( seL 0=  and DeL 0= ) the critical Darcy Rayleigh number 
for stationary convection and that for oscillatory 
convection  reduce to  

( ) DD critical

st 2
saR 4 R= π +  (44) 

and 
( )

( )DD

2
over

sa 2
1 Q1 QR R

Q Q

+ φ+ λ
= +

φ + λ φ + λ β
 (45) 

respectively.  
Minimum 2

iσ  with respect to β , from Equation (42)  
reduces to:  

( ) ( )
( ) ( )

D

D

2 2
s2

i 2 2 2
s

Q 1 Q R 1

1 Q R 1

λ − + φ − β
σ =

φ − λ + − φ λ β

 
(46) 

and oscillatory convection is excluded if 

( ) ( ) ( ) ( )
( )

DD

22 4 2 2 2 2 2
ss

22 2

1 R 1 1 Q Q R

Q 1 Q 0

λ β − φ + β − φ − λ × λ + φ

+φ − λ >

 (47) 

and  not excluded if  

( ) ( ) ( ) ( )
( )

DD

22 4 2 2 2 2 2
ss

22 2

1 R 1 1 Q Q R

Q 1 Q 0

λ β − φ + β − φ − λ × λ + φ

+φ − λ <

 (48) 

The results from Equations (44) to (48) are exactly 
the same as obtained by Wang and Tan [30] for the 
thermosolutal convection of Darcy Maxwell fluid in a 
porous medium. It is important to note that it is only due 
to Soret-Dufour effects, represented by 

seL  and 
DeL  

respectively that, contrary to Wang and Tan [30], the 
Darcy Rayleigh number 

DaR  at the marginal state 
depends upon the Lewis number eL . This effect of 
Lewis number and that of other parameters on the 
behaviour of neutral stability curves have been depicted 
in Figures (2) – (5). The important observations 
regarding neutral stability curves in 

DaR − β  plane for 
different values of β  are: 

• For fixed 
s De eL ( 0.25), L ( 2),= =  

DsR ( 25)= and 

( )N 10= , critical Darcy Rayleigh number 
DaR  becomes 

larger with increasing Lewis number (Figure 2),  
• For fixed 

s De sL ( 0.25), R ( 25)= = , eL (=0.75)  and 

( )N 10= , critical Darcy Rayleigh number 
DaR  decreases 

with increasing Dufour number  (Figure 3), 
• For fixed, 

DeL (=2), 
DsR (= 25), eL (=0.75)  and 

( )N 10= , critical Darcy Rayleigh number 
DaR  decreases 

with increasing Soret number (Figure 4), 

• For fixed eL (=0.75) , ( )
DeL 2 ,=

SeL ( 0.25)= , and N 

(=10), critical Darcy Rayleigh number 
DaR  increases 

with increasing Solutal Darcy Rayleigh number 
DsR  

(see Figure 5). 
 
 

 
 

Figure 2. Variations of critical Rayleigh number with 
wave number for different values of Lewis number 
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Figure 3. Variations of critical Rayleigh number with 
wave number for different values of Dufour number 
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Figure 4. Variations of critical Rayleigh number with 
wave number for different values of Soret number 
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Figure 5. Variations of critical Rayleigh number with 
wave number for different values of Solutal Darcy 
Rayleigh number. 

 
 

The above observations indicate that in case of 
stationary convection effects of Lewis number and 
solutal Darcy Rayleigh number are stabilizing, whereas, 
the Soret number and Dufour number act as catalysts to 
instability. However, Dufour phenomena, considered 
individually (in the absence of Soret effect), is shown 
analytically to postpone instability. Similarly, the 
variations of oscillatory critical Darcy Rayleigh number 

D

over
aR  with wave number β  are depicted in Figures (6) – 

(11) under different situations and it has been observed 
that: 
• For  fixed ( )DeL 2 ,=  

SeL ( 0.25), N(=10)= , ( )
DsR 25=  

and λ (0.05)= , an increase in the value of le increases 

D

over
aR at corresponding values of φ (see Figure 6).  

• For  fixed ( )
DeL 2 ,=  

SeL ( 0.25), N(=10)= , e =0 5L .( ),  

( )
DsR 25=  and λ (0.05)= ,  an increase in the value of φ 

continuously increases 
D

over
aR  (see Figure 7).  

• For fixed 
S ee = 5L 0.L ( 0.25), N(=10), ( ),=  ( 0.25),φ =  

( )
DsR 25=  and λ (0.05),=  an increase in the value of 

DeL  

(dufour number) increases 
D

over
aR   (see Figure 8).  

• For fixed e =0.L 5 ( 0.25),N(=10), ( ), =φ  ( )
DsR 25=  and 

λ (0.05),=  
D

over
aR  decreases with the increasing Soret 

number (see Figure 9). The role of Soret number is 
observed to remain the same for stationary convection 
as well as for overstability. However, for a given Soret 
number, while for stationary convection the curves in 
( )DaR ,β  plane decrease in small wave number range and 

then increase beyond this (see Figure 4), such curves 
decrease continuously for overstability (see Figure 9).  

• For fixed 
S ee = 5L 0.L ( 0.25), N(=10), ( ),=  ( )

DeL 2 ,=  

( 0.25)φ =  and λ (0.05)= , 
D

over
aR  increases with the 

increasing solutal Darcy Rayleigh number (see Figure 
10). 
• For fixed 

S ee = 5L 0.L ( 0.25), N(=10), ( ),=  ( )
DeL 2 ,=  

( 0.25)φ =  and λ (0.05)= , ( )
DsR 25= , 

D

over
aR  decreases 

with the increasing relaxation time λ  (see Figure 11). 
λ 0→  lead to the Newtonian overstable Darcy Rayleigh 
number. Variations in 

D

over
aR  with β  tends to reduce as 

λ  increases after decline in short wave number range, 
thus reducing the curvature of Newtonian curve. The 
point of critical Darcy Rayleigh number ceases to exist 
for largeλ . 
 
 
 

 
Figure 6. Effect of Lewis number on Darcy Rayleigh 
number for overstability  
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Figure 7. Effect of ( )eLφ = ε  on the Darcy Rayleigh 
number for overstability 
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Figure 8. Effect of Dufour number on the Darcy Rayleigh 
number for overstability 
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Figure 9. Effect of Soret number on the Darcy Rayleigh 
number  for overstability 
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Figure 10. Effect of solutal Darcy Rayleigh number on the 
Darcy Rayleigh number for overstability. 
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Figure 11. Effect of the relaxation time λ  on the Darcy 
Rayleigh number for overstability 

7. CONCLUSION 
 
The onset of double diffusive convection in a Darcy 
Maxwell model with Soret-Dufour effects has been 
studied using linear stability theory. The following 
conclusions are drawn: 
1. For stationary convection, the critical wave number 

cβ  is not changed due to the presence of Soret and 
Dufour phenomena, however, the critical Darcy 
Rayleigh number depends upon both the Soret and 
Dufour numbers. It is observed that when considered 
individually, the Soret number reduces the critical 
Darcy Rayleigh number, while the Dufour number 
has a reverse effect. Whereas when both Soret and 
Dufour phenomena are present, Soret number as 
well as Dufour number act as catalysts to instability 
for stationary convection, while Dufour number has 
a stable effect for overstability. 

2. The Lewis number enhances stability in both cases 
of stationary convection and overstability. 

3. The relaxation time shows the same effect as in the 
absence of Soret and Dufour effects. 

4. The existence of critical Darcy Rayleigh number in 
stationary convection is not seen in overstability. For 
oscillatory convection, the numerical computations 
indicate an asymptotic behaviour of 

DaR  for large 
values of wave number, β , for all cases. As such, 
critical wave number can not be ascertained. It also 
ensures that 

DaR  continuously decreases as 
β increases, implying thereby that small wave length 
perturbations are more unstable.  
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 چکیده

 
  

تاثیرات . بررسی شده است   Soretو  Dufourبا تاثیرات   Darcy-Maxwellفوذ دوتایی سیال نپایداري خطی ضریب 
در حالات ثابت و نوسانی  solutal  Darcy Rayleigh و عدد لوئس ، زمان ارامش و عدد   Soretو   Dufourاعداد 

سیال را براي یک همرفت ایستا  Darcy-Maxwell، پایداري   Dufourعدد . به صورت نمودار نشان داده شده است
براي بی ثبات کردن   Soretعدد . افزایش می دهد در حالیکه ان یک خصوصیت پایدار کننده براي حالت فراپایدار است

  .در بعضی از موارد محدود، بعضی از نتایج قبلی دوباره به دست امده است. در موارد نوسانی وپایدار می باشدسیستم 
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