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A B S T R A C T  

   

The Hilbert-Huang transform (HHT) is a powerful method for nonlinear and non-stationary vibrations 
analysis. This approach consists of two basic parts of empirical mode decomposition (EMD) and Hilbert 
spectral analysis (HSA). To achieve reliable results, Bedrosian and Nuttall theorems should be satisfied. 
Otherwise, the phase and amplitude functions are mixed together and consequently, the confidence of 
resultant frequencies are reduced. To prevent such an event, various methods entitled as improved 
Hilbert-Huang transforms have been proposed. Yet, another method is introduced in this paper that has a 
high ability to identify the mechanical defects easily. According to this method, the signal is decomposed 
to its intrinsic mode functions (IMFs) and then each of the IMF is analyzed by fast Fourier transform 
(FFT). Using the proposed method, which is called EMD-FFT, the mechanical defects of an 
electromotor have been detected in Kerman combined power plant. In addition, it is shown that the 
classical FFT method is unable to detect all the defects because of nonlinear and non-stationary 
properties of  the signals, and also use of the HHT method, regardless of satisfying the mentioned 
theorems, causes invalid results due to incorporation of phase and amplitude functions. 
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NOMENCLATURE   

)(ts  Original signal orf  Bearing outer race frequency 

)(tA  Amplitude function bsf  Bearing ball spin frequency 

)(tf  Frequency function cf  Bearing cage frequency 

)(~ ts  Hilbert transform of original signal bN  Number of balls 

))(( tsF  Fourier transform of original signal dB  Ball diameter 

))(~( tsF  Fourier-Hilbert transform of original signal dp  Pitch diameter of ball bearing 

)(tz  Analytic signal E∆  Error bound function 

j  Identity imaginary number  α  Ball contact angle 

sf  Shaft rotation frequency  )(tϕ  Phase function 

irf  Bearing inner race frequency    
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1. INTRODUCTION 
 
One of the most important techniques that is used in 
condition monitoring is the vibration analysis. This   
technique is capable of identifying physical symptoms 
that cause the disruption in machinery operation. 

For many years, fast Fourier transform (FFT) has 
been used to identify the mechanical systems defects. 
This method represents a given time domain signal in 
the form of frequency domain but is less effective in 
indicating all the characteristic defect frequencies 
(CDFs); for example, this method is less efficient in 
determining the defects of the inner race in the rolling 
bearings [1]. Also, the FFT is not capable of analyzing 
nonlinear and non-stationary signals. 

Distribution wavelet transform (DWT) has been 
used extensively for signal processing in the last two 
decades [2]. This method is based on the energy 
distribution which leads to the frequency band energy 
leakage. Although the DWT is implemented for 
nonlinear and non-stationary signals analysis, the 
problem of energy leakage causes an inaccurate 
performance. Regardless of trying to improve the DWT 
[3], one of the major weaknesses of this method is that it 
uses a fixed decomposition scale for analysis and does 
not pay attention to the signal characteristics. 

The Hilbert-Huang transform (HHT) is a two-step 
method which consists of the empirical mode 
decomposition (EMD) and Hilbert spectral analysis 
(HSA) [4]. The EMD decomposes the signal into a 
finite set of independent intrinsic mode functions 
(IMFs) and the HSA extracts the instantaneous 
frequencies and amplitudes of the signal by using 
Hilbert transform (HT) of the IMFs. The HHT has 
attracted considerable attention in recent years; the main 
reason is its ability to analyze the nonlinear and non-
stationary signals. Although the energy leakage 
problems do not occur in the process of the HHT, 
satisfying Bedrosian and Nuttall theorems is a challenge 
that the HHT is encountered with. To solve this problem 
partially, Huang et al. [5] proposed a normalized HHT 
method. Also, some models, such as the VARMA, are 
proposed to calculate the instantaneous frequencies [6]. 
In this study, another technique is proposed for 
mechanical system analysis that is called EMD-FFT. 
Not only this method is simply implemented but also it 
represents accurate results. Although the EMD-FFT and 
the HHT are two different techniques, it will be shown 
that they are not completely separable from each other. 
Consequently, the EMD-FFT can represent equivalent 
results in comparison with the HHT; circumvent 
limitations of Bedrosian, and Nuttall theorems. 

Another advantage of the EMD-FFT method is its 
authorization to concentrate on each of the IMFs. The 
IMFs contain frequencies in the decreasing order. Thus, 
the first IMF contains the maximum rate of change of 

the amplitude; hence, the highest frequency content and 
the last IMF (residue) is almost without any oscillatory 
manner. This property of the IMFs does not permit the 
small frequencies to be omitted during the transmission 
of signal from time domain to frequency domain. The 
last property is very noteworthy for mechanical fault 
diagnosis because several machinery defects, such as 
cage failure, are indicated in small frequencies. 
 

 
2. EMPIRICAL MODE DECOMPOSITION (EMD) 
 
To analyze a multi component signal, it is essential to 
decompose the signal into mono component functions. 
Huang et al. [4] proposed the EMD method to extrac 
mono component functions from nonlinear and non-
stationary signals, which are known as intrinsic mode 
functions (IMFs). 

The basic concept of the EMD is to decompose the 
original signal into a collection of the IMF components 
that satisfy the following two conditions: 
(a) Over a data set, the number of exterma and the 

number of zero-crossing must either be equal or 
differ not more than by one. 

(b) At any point, mean value of the envelopes defined 
by local maxima and local minima is zero. 

To generate the IMFs from original signal, the procdure  
of the EMD algorithm is described as follow: 
1- Estimation of all local exterma of the original signal 

)(ts  that is shown in Figure 1a and then connect all 
local maxima by cubic spline as the maximum 
envelope ( maxe ) and repeat the technique for the 
local minima to produce the minimum envelope 
( mine ) as depicted in Figure 1b.  

2- Computation of the local mean function )(m1 t  as: 

2
)(m minmax

1
eet +

=  (1) 

This is shown in Figure 1c. 
3- The candidate for the first IMF )(1 th  is achieved as: 

)()()( 11 tmtsth −=   (2) 

4- If )(1 th  does not satisfy the conditions of the IMFs, 
set )(1 th  as the original signal and the steps 1 and 2 
are repeated until )(1 th  being an IMF. 

5- After getting the IMF, remove it from the original 
signal and obtain residue )(1 tr  as follows: 

)()()( 11 thtstr −=  (3) 

This is shown in Figure 1d. 
6- Set )(1 tr  as the original data and repeat the above 
process until the thn  IMF could be generated and any 
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IMF could not be extracted from )(tr n . Consequently, 
Equation (4) can be drawn: 

∑
=

+=
n

i
ni trthts

1

)()()(  (4) 

According to Equation (4), the signal is decomposed 
into n-IMF components and a residue with the aid of a 
process that use Equations (1-3) and checking the IMF 
conditions. 
 
 

 

 

 

 
Figure 1. Schematic representation of EMD procedure: (a) 
Original signal, (b) Maximum and minimum envelopes, (c) 
Local mean function, (d) Residual signal. 

 

 
Figure 2. Procedure of obtaining Hilbert transform with the 
aid of Fourier and inverse Fourier transforms. 

3. HILBERT SPECTRAL ANALYSIS (HSA) 
 

Equation (5) is an integral transform that defines the 
Hilbert transform of a signal s(t) [7]. 

τ
τ

τ
ππ

d
t
s

t
tsts ∫

+∞

∞−
−

==
)(11*)()(~  (5) 

Using the property of Fourier transform of convolution 
multiplied, Fourier-Hilbert transform (FHT) is obtained 
as: 

)1()).(()1)(())(~(
t

FtsF
t

tsFtsF
ππ

=∗=  (6) 

Fourier transform of signal 
tπ

1  is: 

)sgn()1( fj
t

F −=
π

 (7) 

For positive frequencies, Equation (7) is simplified as: 

j
t

F −=)1(
π

 (8) 

Substituting Equation (8) into Equation (6) leads to: 
))(())(~( tsjFtsF −=  (9) 

If the inverse Fourier transform is applied on the 
Equation (9), Hilbert transform of the signal is obtained. 
Figure 2 shows how  to calculate  Hilbert transform of a 
signal with the aid of Fourier transform and inverse 
Fourier transform. 

The analytic signal corresponding to real signal )(ts  
is defined as: 

)()()(~)()( tjetAtSjtstz ϕ=+=  (10) 

where 
2 2A(t)= s (t)+s (t)%

 
and 1 ( )( ) tan

( )
s tt
s t

φ −  
=  

 

%  (11) 

In Equation (11), )(tA  and )(tϕ  are instantaneous 
amplitude and phase function, respectively. 
Differentiation of phase function with respect to the 
time variable leads to obtain of instantaneous 
frequency )(tf and can be expressed as Equation (12). 

dt
tdtf )(

2
1)( ϕ
π

=  (12) 

Studying a signal in the form of Equation (10) makes it 
possible to consider the effect of instantaneous 
amplitudes and instantaneous frequencies on the Hilbert 
spectrum. 
 
 
4. LIMITATIONS OF HILBERT SPECTRAL 
ANALYSIS  
 
It is possible to rewrite Equation (10) in a new form by: 

)(sin)()(cos)()( ttjAttAtz ϕϕ +=  (13) 
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Comparing Equations (10) and (13) leads to: 
)(cos)()( ttAts ϕ=  and )(sin)()(~ ttAts ϕ=  (14) 

From Equation (14), it is anticipated that the Hilbert 
transform does not change the amplitudes but it is 
essential to a phase change of  

2
π . On the other hand, 

Hilbert transform can be written as: 

[ ( )cos ( )] ( ) [cos ( )] ( )sin ( )H A t t A t H t A t tφ φ φ= =  (15) 

Obviously, the HT has no effect on amplitudes and 
)(sin)]([cos ttH ϕϕ = . That is, we expect 

2
π  change in 

the phase function exactly. But, the Bedrosian and 
Nuttall theorems warn that the last statement is not valid 
indisputably. According to Bedrosian theorem, Equation 
(15) is immutable only if the Fourier spectrums of 

)(cos tϕ  and )(tA  are completely separate from each 
other in the frequency domain and the frequency range 
of the spectrum of )(cos tϕ  is higher than that of )(tA . 

If Bedrosian theorem was not to be satisfied, the 
amplitude variation would mix with the phase function. 
In this manner, Equation (15) would not be true and the 
reliability of Hilbert spectrum would decrease severely. 

According to Nuttall theorem, the relation 
)(sin)]([cos ttH ϕϕ =  is immutable only if )(tA  

and )(tϕ are essentially narrow band functions. 
Otherwise, there is a discrepancy between the Hilbert 
transform )(~ ts  and quadrature function )(tcQ (that 
shift the phase stringently 

2
π ). Therefore, the error 

bound is defined as: 

∫ ∫
= ∞−

=−=∆
T

t
qc dffsdttstQE

0

0

)()(~)(  (16) 

where )( fsq  in Equation (16) is Fourier spectrum of 

)(tQc . Thus, Nuttall theorem would be satisfied only and 
only if 0=∆E . 

To circumvent the limitation of the HSA, Huang et 
al. [5] proposed a method which is called normalized  
Hilbert transform that solves the problem of Bedrosian 
theorem and a variable error bound based on this 
method tries to solve the problem of Nuttall theorem, 
but the difficulty in finding an exact quadrature )(tQc  is 
unresolved [6]. 
 
 
5. PROPOSED EMD-FFT METHOD 
 
For mechanical fault diagnosis, if Bedrosian and Nuttall 
theorems are not satisfied, it is recommended to use the 
FFT on each of the IMFs that are generated from the 
EMD process. According to Figure 2, Hilbert transform 
can be achieved in three steps; where the first step is 

used to calculate the Fourier transform of the signal. But 
if the mentioned theorems are not satisfied, performing 
the other two steps causes the incorporation of 
amplitude and phase functions and  because of this fact, 
the other two steps are left out. In other words, in this 
method, empirical mode decomposition is joined to the 
prevalent FFT method. 

Rai and Mohanthy [8] conducted some tests on 
bearings with inner and outer race faults and 
demonstrated that such analysis has a good performance 
in detecting bearing faults under nonlinear and non-
stationary vibrations. 

Although the EMD-FFT method may lead to a large 
covariance for the first IMFs, it is very useful for 
mechanical fault detection because we are often looking 
for specific frequencies (CDFs) and it is important to 
select a simple method that acts quickly and accurately 
for mechanical system analysis. 
 
 
6. CHARACTRISTIC DEFECT FREQUENCIES 

 
One of the most prevalent methods for mechanical 
system monitoring is the identification of defect 
frequencies from machine spectrums. The shaft rotation 
frequency sf  and the ball bearing components 
frequencies are the most important frequencies which 
are observed in a faulty machine spectrums. Usually, 
these cited frequencies are known as characteristic 
defect frequencies (CDFs). The CDFs are determined by 
Equations (17-20). 

)cos1(
2

α
d

db
sir p

BN
ff +=  (17)  

)cos1(
2

α
d

db
sor p

BN
ff −=  (18) 

)cos1(
2

2
2

2
α

d

d

d

d
sbs p

B
B
pff −=  (19) 

)cos1(
2

α
d

ds
c p

Bf
f −=  (20) 

Obtained frequencies are very important to identify 
the ball bearing faults but some other structural defects 
appear in multiples of shaft frequency. For example, 
some shaft defects, such as bending and misalignment, 
are often observed in integer multiples of shaft 
frequency. Also, non-integer multiples of shaft 
frequency often indicate inaccurate mechanical 
clearance between bearing outer race and housing or 
between bearing inner race and shaft which occur due to 
incorrect interference. Nevertheless, both integer and 
non integer multiples of shaft frequency are dominant 
components in  some faulty cases such as pedestal 
looseness in rotor system [9]. 
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7. RESULTS AND DISCUSSIONS 
 
As displayed in Figure 3, the experimental set up 
consists of an electromotor which is coupled with an 
auxiliary water pump in the cooling system of Kerman 
combined power plant. The electromotor is damaged 
with high vibrations due to bearing failures and 
inaccurate mechanical clearance. The shaft is supported 
on the SKF 6319 series ball bearings and rotates at the 
speed of 50Hz ( sf ). In the following analysis, a 
piezoelectric sensor with maximum response frequency 
of 300 kHz was coupled with the system near the shaft 
and the signals were recorded by a data acquisition 
system for an interval of 2 seconds in two perpendicular 
directions. The values of CDFs are given in Table 1. 
Also, Figure 4 shows the ball bearing vibrations in these 
two directions. 

In order to investigate electro motor failures, both 
the FFT and HHT techniques are adopted to analyze the 
signals; where the results are shown in Figures 5 and 6, 
respectively. As Figure 5 shows, the FFT spectrums 
were able to capture the shaft frequency (50Hz) and its 
non-integer multiples (25Hz, 125Hz) that are above the 
allowable values. Consequently, inaccurate mechanical 
clearance is detected but not any vestige of the ball 
bearing failures is detected. 
As depicted in Figure 6, it is clearly seen that the phase 
and amplitude functions are mixed together because the 
Bedrosian and Nuttall theorems are not satisfied and 
consequently, none of the CDFs are indicated in the 
Hilbert spectrums. 
 
 

 
Figure 3. Schematic representation of the experimental set up. 
 
 

TABLE 1. Characteristic defect frequencies. 

irf  245.10  Hz 

orf  154.80   Hz 

bsf  105.00   Hz 

cf  19.35    Hz 

 

 
 
 

 
Figure 4. Ball bearings vibrations in two perpendicular 
directions. (a) Vertical (b) Horizontal. 
 
 

 
 

 
Figure 5. FFT analysis of electro motor signals. (a) Vertical 
spectrum (b) Horizontal spectrum. 
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Figure 6. HHT analysis of electromotor signals (a) Vertical 
signal (b) Horizontal signal 
 
 

Figures 7 and 8 show the IMFs that are extracted 
from vertical and horizontal signals, respectively. Also, 
Figures 9 and 10 represent the result of EMD- FFT 
analysis for the first three IMFs of vertical and 
horizontal signals, respectively. According to the 
results, not only inaccurate mechanical clearance 
presages have been indicated but also symptoms of  ball 
bearing are shown clearly. As depicted in Figures 9a 
and 9c, the defects of inner race and cage are inevitable. 
Similarly, these defects are detected in Figures 10a and 
10c. On the other hand, the presence of non-integer 
multiples of shaft frequency ( sf5.0 and sf5.2 ) in the 
spectrums of Figures 9 and 10 demonstrate that the 
inaccurate mechanical clearance occur indisputably.  
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Figure 7. Empirical mode decomposition for vertical signal of 
electromotor. 

 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 



                            M. Besanjideh and M. Fooladi. Mahani / IJE TRANSACTIONS C: Aspects   Vol. 25, No. 4, (December 2012)  363-372                     370 
 

 

 
 

 
 
Figure 8. Empirical mode decomposition for horizontal signal 
of electromotor 
 
 
 

 
 
 

 

 
 
Figure 9. EMD-FFT analysis results for the first three IMFs 
from vertical signal.    
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Figure 10. EMD-FFT analysis results for the first three IMFs 
from horizontal signal.  
 
 
8. CONCLUDING REMARKS 
 
In order to detect the mechanical defects, a technique 
based on empirical mode decomposition (EMD) and 
fast Foureir transform (FFT) was proposed. The notable 
trait of this method is its ability to analyze  the nonlinear  
and non-stationary vibration. Although the HHT is a 
powerful method to analyze cited signals, if Bedrosian 
and Nuttall theorems are not satisfied, the results of 
analysis will be invalid. 
More precisely, in this study, three methods of FFT, 
HHT and EMD-FFT were used to analyze the vibrations 
of a defective electro motor. The FFT could not 
diagnose all the defects successfully because this 
method is unable to analyze nonlinear and non-
stationary signals. Also, the HHT was not successful 
because without noticing the Bedrosian and Nuttall 
theorems, the phase and amplitude functions were 

mixing together. Eventually, the EMD-FFT method was 
capable to identify all the defects of the electro motor 
fast and accurately without any specific necessities. 
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  چکیده
   

دو  شـامل ایـن روش  . روشی قدرتمند براي آنالیز ارتعاشات غیرخطی و نامانا  می باشـد  (HHT)تبدیل هیلبرت هوانگ 
براي دستیابی به نتایج صحیح . می باشد (HSA)و آنالیز طیفی هیلبرت  (EMD)قسمت اصلی تجزیه ي تجربی مودي  

باید قضایاي بدروسین و نوتال ارضا شوند؛ در غیر این صورت توابع فاز و  دامنه با یکدیگر مخلوط می شوند و در نتیجه  
هـاي گونـاگونی تحـت    براي جلوگیري از چنین رخدادي روش . از میزان اعتماد به فرکانس هاي حاصله کاسته می شود

عنوان تبدیل هاي ارتقا یافته ي هیلبرت هوانگ معرفی شده اند اما در این مقاله روش دیگري معرفی می شود که در عین 
تجزیه می  (IMFs)در این روش ابتدا سیگنال به مود هاي ذاتی . سادگی توانایی بالایی در  شناسایی عیوب مکانیکی دارد

 EMD-FFTبا استفاده از این روش که  .آنالیز می شود (FFT)فاده از تبدیل فوریه سریع با استIMF  هر  شود و سپس
نشان   علاوه بر این. عیوب مکانیکی یک الکتروموتور در نیروگاه سیکل ترکیبی کرمان شناسایی شده است می شود،نامیده 

به علت خاصیت هاي غیر خطی و ناماناي سیگنال ها، در تشخصی تمامی عیوب  FFTداده می شود که روش کلاسیک 
بدون توجه به ارضاي قضایاي مذکور، به علت ترکیب توابع فاز و دامنـه،   HHTناتوان است و همچنین استفاده از روش 

 .منجر به نتایج نامعتبر می شود
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