
IJE TRANSACTIONS A: Basics Vol. 25, No. 4, (October 2012) 355-366

A Q-learning Based Continuous Tuning of Fuzzy Wall Tracking without Exploration

S. Valiollahi, R. Ghaderi*, A. Ebrahimzadeh

Department of Electrical and Computer Engineering, Babol University of Technology, Babol- 7414871167.

P A P E R I N F O

Paper history:
Received 19 Aprill 2012
Received in revised form 15 June 2012
Accepted 30 August 2012

Keywords:
Autonomous Navigation
Wall Tracking
Fuzzy Q-learning
Khepera Robot

A B S T R A C T

A simple and easy to implement is proposed to address wall tracking task of an autonomous robot. The
robot should navigate in unknown environments, find the nearest wall, and track it solely based on
locally sensed data. The proposed method benefits from coupling fuzzy logic and Q-learning to meet
requirements of autonomous navigations. The robot summerizes the obtained information from the
world into a set of fuzzy states. For each fuzzy state, there are some suggested actions. States are
related to their corresponding actions via simple fuzzy if-then rules, designed by human reasoning. The
robot selects the most encouraged action for each state by Q-learning and through online experiences.
The objective is to design a wall tracking algorithm which can efficiently adapt itself to different wall
shapes in completely unknown environments. Q-learning is applied without any exploration phase, i.e.
no training environment is considered. Experimental results on simulated Khepera robot validate that
the proposed method efficiently deals with various wall contours from simple straight shape to
complex concave, convex, or polygon shapes. The robot successfully keeps track of walls while
staying within predefined margins..

doi: 10.5829/idosi.ije.2012.25.04a.07

1. INTRODUCTION

Autonomy1is a necessity of the robots that are
increasingly replacing/cooperating human in homes and
workspaces, or hazardous and unreachable
environments. An autonomous robot should move
purposefully and carry out specific tasks in unknown
environments usually with unpredictable dynamics. A
robot system comprises some main interacting units:
sensors, preprocessing unit, decision making unit,
controllers, motors, and actuators [1, 2]. Although, all
these units affect the robot performance, decision
making unit as the robot brain plays the most significant
role. As the focus of this study is on decision making
unit, a small wheeled robot with simple infrared sensors
is selected so that other units do not require demanding
processing [3]. A robust decision making algorithm is
designed to equip the robot with the capability of
tracking walls. The robot should find the nearest wall
from any start points and continue tracking walls while
staying in predefined margins. Imagine a robot working
in a workspace crowded with people and furniture.
Also, suppose the robot should move around a room,

* Corresponding Author Email: r_ghaderi@nit.ac.ir , (R. Ghaderi)

between rooms, or pass corridors to perform specific
tasks e.g. delivering objects. In such cases, wall tracking
provides a safe and easy way for the robot to move.
Wall tracking is also applicable to multi task robots. For
instance, if a robot tries to reach a goal behind an
obstacle, tracking the obstacle walls is faster than
avoiding it. Another application of wall tracking would
be exploring unreachable and hazardous environments
to gather information. A wall tracker robot moves in
such environments, and provides valuable
measurements of their circumferences. Most of
researches [4-8] deal with relatively simple walls shapes
and complicated algorithms. However, the proposed
method is simple and at the same time efficient in face
of complex wall shapes.

Major problems in autonomous robot navigation are
as follow: (1) usually a mathematical model of the
environments is not available; (2) sensed data is not
reliable and precise; (3) real time response is necessary.
Fuzzy logic is an adequate tool to address autonomous
robot navigation due to its efficient properties.
Generally, researchers mention three main advantages
for fuzzy system. First, fuzzy logic is a flexible tool to
model input-output relations. It allows incorporation of
heuristic knowledge in form of if-then rules, and is an

International Journal of Engineering

J o u r n a l H o m e p a g e : w w w . i j e . i r

mailto:r_ghaderi@nit.ac.ir

 S. Valiollahi et al. / IJE TRANSACTIONS A: Basics Vol. 25, No. 4, (October 2012) 355-366 356

efficient alternative when the system cannot be exactly
modeled. Fuzzy rules efficiently implement simple
behaviors, independent of complicated mathematical
models, to handle various complex tasks. Secondly, due
to their qualitative descriptions, fuzzy behaviors are
capable of being transferred to other environments
without major changes. Finally, interpolative nature of
fuzzy system leads to smooth movements of robots and
an acceptable performance in face of noises and
fluctuations in the sensed data [2].

Robot behaviors include reasoning, acting, and
reacting according to the sensed information. Flexible
behaviors require learning ability. Learning is to obtain
information or improve current skills on the basis of
experience, observation, and training. Q-learning is an
efficient robust tool to tune the fuzzy systems due to its
simple, model free, and dynamic structure [9].

A set of heuristic fuzzy if-then rules is designed by
human reasoning and without any restrictive
presumptions about the world. Incorporation of
heuristic knowledge to design of fuzzy rules results in
few number of rules, which in turn leads to a fast and
easy implementation of planning process. The proposed
method is independent of a global model or prior
knowledge about the world. The only source of
information comes from the locally sensed data by
limited range infrared sensors. Fuzzy inputs are the
reported data by infrared sensors while fuzzy outputs
are the robot speed and steering angle. There are several
suggested actions (steering angles) for each fuzzy state.
The robot selects the most encouraged action for each
state by Q-learning and through interactions with the
world. Online tuning of the fuzzy inference provides a
flexible decision making unit, which could adapt itself
to unknown environments with various shapes of walls.
Q-learning is applied without any exploration phase, i.e.
no training environment is considered. The test
environments are supposed to be completely unknown
and may include variety of wall shapes to be good
representatives of real world environments. For such
environments, designing an appropriate training
environment is usually very difficult or impossible.

Simulated experiments are conducted on sixty
environments with various degrees of complexity,
including concave, convex, and polygon walls shapes.
Environments are designed by placing various shapes
of obstacles in different sizes around walls. Considered
obstacles include a wide range of geometrical shapes,
which are reliable representatives of vertices and
contours existing in real world environments.
Experimental results on simulated Khepera robot
validate that the proposed method efficiently deals with
various wall contours from simple straight shape to
complex concave, convex, or polygon shapes. The robot
successfully keeps track of walls while staying within
predefined margins.

The rest of paper is organized as follow: Section 2
deals with related literature. Section 3 provides a brief
description about the Khepera robot. The proposed
fuzzy Q-learning method is explained in section 4.
Simulated results are depicted in section 5, section 6
includes a discussion about the proposed method, and
finally the paper is concluded in section 7.

2. RELATED LITERATURE

Fuzzy logic has proven to be an efficient tool to
autonomous navigation problems owing to its efficient
properties such as independency of a precise model of
the world, tolerance against uncertain or noisy
information, fast response, and easy implementation [3,
10, 11]. Fatmi, A et al. and A. Karambakhsh et al. [10,
12], fuzzy logic is applied to design of robot behaviors.
The parameters of applied fuzzy inferences are set
offline. This is usually done based on expert knowledge
or a trial and error process, which is not adequate in
case of unexpected situations. Learning strategies are
efficient alternatives to overcome this shortcoming.

Supervised learning algorithms usually require large
amounts of training input/output data, which may be
hard to obtain specially for autonomous navigations [13,
14]. Unsupervised and dynamic structure of
reinforcement learning makes it a promising tool to
online applications [4, 9, 15]. Q-learning is an efficient
simple-structured model free reinforcement learning
implementation, that is often used to adjust fuzzy
inference systems; this coupling is also known as fuzzy
Q-learning (FQL) [4-6]. FQL is applied, where a fuzzy
inference of eight rules are designed offline and Q-
learning is applied to tune fuzzy outputs memberships
online by P.Y. Glorennec et al. [5]. A dynamic fuzzy Q-
learning (DFQL) to fine tune both structure and
parameters of fuzzy inference system for wall tracking
task of an autonomous robot by M. J.Er and C. Deng
[6]. However, sixteen initial fuzzy rules are designed
offline base on a human driver’s intuitive experience. A
reinforcement ant optimized fuzzy controller (RAOFC)
is proposed for wall tracking task of an autonomous
robot by C. F. uang and C. H. Hsu, [7] , where no prior
assignment of fuzzy rules is necessary. Eighteen fuzzy
if-then rules are obtained after the learning process. The
premise parts of fuzzy rules are obtained through a
fuzzy clustering method while conclusion parts of rules
are designed using Q-value aided ant colony
optimization. This approach selects conclusion parts of
rules from a set of suggested actions according to ant
pheromone trails and Q-values, both of whose values
are updated using reinforcement signals.

Both DFQL and RAOFC entail a complex time
consuming and less intractable learning process in
comparison with FQL. Since initially there is no rule in
the fuzzy inference system, specially in RAOFC, these

357 S. Valiollahi et al. / IJE TRANSACTIONS A: Basics Vol. 25, No. 4, (October 2012) 355-366

methods are not applicable without a training phase.
Furthermore, the greater numbers of rules result in
slower decision making processes which is not desirable
for real time application. The proposed FQL approach
in references [5, 8], fails to satisfy predefined margins
successfully when applied to wall tracking task , as
mentioned in referenc [7]. In this paper a FQL algorithm
with higher accuracy in satisfying predefined margins is
proposed for wall tracking task. The accuracy of FQL is
improved by an efficient definition of reinforcement
signal, which has a critical role in Q-learning
performance. Experimental results demonstrate an
acceptable tradeoff between simplicity and accuracy of
the proposed wall tracking algorithm. Furthermore,
applying the proposed method, the robot can find
nearest walls from any start points or return to walls in
case of failures. For this purpose, unlike DFQL and
RAOFC, the outputs of all front sensors are considered
in fuzzy states and not just half of them.

In FQL, DFQL, and RAOFC, after an exploration or
a learning phase, one best action is chosen amongst
some candidates as the output of each fuzzy rule. In
such methods, the goal is to learn an optimal fuzzy rule
base which is then exploited in experiments. The
proposed method applies Q-learning without any
exploration phase. No training environment is
considered whose appropriate design is usually difficult
or impossible specially for unknown environments. This
outstanding point is the major difference between the
proposed fuzzy Q-learning algorithm and the previously
mentioned ones. The proposed method aims to produce
an adaptive flexible wall tracking algorithm in face of
various wall contours from simple to complex ones.
Therefore, several options are considered as outputs of
each fuzzy rule, any of which is probable to be selected
depending on the encountered wall shape. The issue will
be discussed more in section 6.

3. KHEPERA ROBOT

Khepera is a small mobile robot with a circular shape of
55 mm in diameter, 30 mm in height and 70 g in weight
[16]. Using such a small robot, the navigation algorithm
can be developed independent of a precise model of the
robot. This in turn, allows an easy transfer of the
designed navigation algorithm to other robots [17].
Khepera has eight infrared sensors, which are composed
of an emitter and an independent receiver. These
sensors (S0, S1,…, S7) are arranged in a somewhat
circular fashion around its body (see Figure 1) and
measure distances in a short range from about 1 to 5 cm.

The sensor readings are integer values in the range
of [0, 1023]. A sensor value of 1023 indicates that the
robot is very close to the object, and a sensor value of 0

indicates that the robot does not receive any reflection
of the infrared signal [3].

Figure 1. The Khepera Robot [3]

Three groups of sensors are considered as inputs to
decision making unit i.e. left, front, and right sensors.
The considered value for each group is the maximum
output of each of the merged sensors.

L 1 2

F 0 7

R 6 5

Left sensor : S =max(S , S)

Front sensor : S =max(S , S)

Right sensor : S =max(S , S)

Khepera has two wheels and two small Teflon balls.
A DC motor moves each wheel. The robot’s maximum
linear and angular speeds are about 40 mm/s and 1.58
rd/s respectively [3]. Khepera robot is driven
differentially, thus the controller has to give the angular
velocities i.e. L ω and Rω , . As the human drivers reason
more with linear velocity (v) and steering angle (Φ), the
output of fuzzy rules are considered v and Φ. If the
cornering force on wheels are neglected, the control
commands are easily generated by simple geometrical
equations [18] that make correspondence between (v,Φ)
and (R Lω , ω) (Equations (1) and (2)):

.() / 2R Lv r ω ω= + (1)

.() / 2R L
d r T
dt
ϕ

ω ω= + (2)

where, r is the radius of the wheels.

4. THE PROPOSED FUZZY Q-LEARNING METHOD

To get a better insight to the proposed method, brief
descriptions of fuzzy logic and Q-learning is provided
below:

4. 1. Fuzzy Logic Fuzzy logic maps an input space to
an output space by a list of if-then statements called
rules. The rules are structured in a human decision
making format. A typical rule could be as follows:

IF Obstacle is Far THEN Speed is Low

 S. Valiollahi et al. / IJE TRANSACTIONS A: Basics Vol. 25, No. 4, (October 2012) 355-366 358

where, “Obstacle” and “Speed” are input variable and
output variable, respectively. Rule base is the key
element in robot intelligence. A rule base should
consider all possible cases of linguistic adjectives for
input variables. Linguistic adjectives, like “Far” and
“Low”, are described by membership functions which
map the value of the variables to membership degrees
([0,1]) in each fuzzy set (see Figure 2).

Fuzzy sets are often defined as piecewise linear
shapes (triangular or trapezoidal) to reduce the
computational complexity of acquiring membership
degrees. Fuzzy logic is able to handle imprecise data
efficiently. If input data is sensed imprecisely, the
membership degree in each fuzzy set may change but
the relative membership degrees over fuzzy sets remain
the same qualitatively. Fuzzy operators are applied to
combine input variables and manipulate the output
fuzzy set for each rule. The outputs from all rules are
then aggregated to form a single fuzzy set. To extract a
crisp output from the aggregated fuzzy set, a
defuzzification method is applied [19].

4. 2. Q-learning Q-learning usually provides best fit
to requirements of real world applications due to its
unsupervised, dynamic, and model free structure. The
robot observes the world as a set of state-action pairs.
To each action a Q value is assigned. Transition from
one state to another (via proper actions) may bring it
punishment or reward, and accordingly Q values are
updated as Equation (3):

1(,) (,) { () (,)}t t t t t t t t tQ x a Q x a r V x Q x aβ γ +← + + − (3)

where, xt is the current state, at is the action taken at
state xt, Q(xt,at) is the Q value of state xt , V(xt+1) is an
estimated value of the new state (xt+1). β and γ are the
learning rate and forgetting factor respectively both in
range of [0 1], and rt is the immediate reinforcement
scalar signal. Parameter β is redundant i.e. one can
eliminate β (taking β = 1), and 0.9< ɣ <0.99 [9].

4. 3. Fuzzy Q-learning A heuristically designed
fuzzy rule base with N=8 rules is applied. Input
variables are the three groups of Khepera infrared
sensors mentioned in Section 3 i.e. SL, SF, and SR which

Figure 2. Fuzzy membership function

approximately cover a 180 degrees view of the
surroundings. To reduce the number of rules, just two
linguistic adjectives are considered for inputs: Far (F)
and Near (N) whose membership functions are depicted
in Figure 2. The approach is to find the nearest wall and
continue tracking it. The nearest wall (right or left) is
determined by checking the value of parameter (P) as
below:

 S ; 1 ; 0 ; L RIf S P Else P End= =f

The outputs are the robot speed (S) and steering angle
(Φ) as Figure 3. Si (1≤i≤N) is a fixed value for each rule
which can be zero(Z), C1*Vmax, C2*Vmax. C1 and C2
are constants smaller than one and C1<C2. Vmax is the
maximum considered speed. Si is described by linguistic
adjectives of PB(Positive Big), PS(Positive Small),
Z(Zero), NS(Negative Small), and NB(Negative Big)
which are symmetric i.e. PB=-NB, PS=-NS. The rule
base is as follow:

1 1 1

2 2 2

3 3 1 max 3

4 4 1 m

: (, ,) & (2 1)
: (, ,) &
: (, ,) V &
: (, ,) V

L F R

L F R

L F R

L F R

R IF S S S NNN THEN s Z p PB
R IF S S S NNF THEN s Z PB
R IF S S S NFN THEN s C Z
R IF S S S NFF THEN s C

ϕ
ϕ
ϕ

= = = × −
= = =

= = × =

= = × ax 4

5 5 5

6 6 6

7 7 1 max 7

8

 &
: (, ,) &
: (, ,) & (2 1)
: (, ,) V &
: (, ,)

L F R

L F R

L F R

L F R

PS
R IF S S S FNN THEN s Z NB
R IF S S S FNF THEN s Z p PB
R IF S S S FFN THEN s C NS
R IF S S S FFF TH

ϕ
ϕ
ϕ
ϕ

=

= = =

= = = × −

= = × =

= 8 2 max 8 V & (2 1)EN s C p NBϕ= × = × −

The applied fuzzy model is the Sugeno, or Takagi-
Sugeno-Kang method [20]. Equation (4) computes the
robot speed:

i i
i

i
i

s
S

α

α
=

∑
∑

(4)

where, αi is the truth value of the ith rule calculated by
product method. For each rule, there are J=6 actions or
suggested steering angles (φ[i,j], 1≤j≤J). the six
suggested actions are distributed equally in predefined
intervals. To each of these actions, a q value (q[i,j]) is
assigned. The values of φ[i,j] are determined offline.
However, deciding which of these steering angles are
selected for rules is done online by Q-learning.

Figure 3. Demonstration of robot steering angle in Cartesian
coordinates

359 S. Valiollahi et al. / IJE TRANSACTIONS A: Basics Vol. 25, No. 4, (October 2012) 355-366

TABLE 1. Ranges of Fuzzy Outputs

Z PS PB NS NB

0 [0 90] [90 180] [-90 0] [-180 -90]

Figure 4. Fuzzy Q-learning algorithm

To determine values of φ[i,j] for each rule, the total
possible degree of rotation for robot (i.e. approximately
360 degrees) is divided to five intervals of as Table 1.

To obtain the robot steering angle a fuzzy Q-
learning approach is applied as depicted in Figure 4. Q
is a N*J matrix whose elements (q[i,j]) are initialized to
zero. Among the J suggested actions for each rule, only

the action associated with maximum q value (Equation
(7)) is selected and takes part in computation of the
overall action see Equations (5) and (6).
The explained method is depicted as a flowchart in
Figure 5.

;1 ,1
i im

i

i
i

i N j J
α ϕ

φ
α

= ≤ ≤ ≤ ≤
∑

∑

(5)

[,] | m ax [,]im ji j q i jϕ ϕ= (6)

xt is the fuzzified state of sensors observed in the time t
e.g. (SL, SF, SR)=FFN. In each iteration of the algorithm,
maximum q values are updated applying Equations (7),
(8), (1), and (9) respectively.

max [,]im jq q i j= (7)

(, ())t t i im
i

Q x a x qα= ∑
(8)

im im iq q dQα= + (9)

As demonstrated in Figure 5, the robot is an integrated
system comprising three main units of sensors, decision
making, and motors. The robot intracts with
environment in a closed loop. In robot viewpoint, the
sensed environment is abstracted into eight fuzzified
states e.g. xt=(SL=F,SF=F,SR=N). A fuzzy if-then rule is
considered for each state.

Figure 5. Flow chart of the proposed method

1. t=0, observe the state xt.

2. For each rule i, choose φ[i,j] with maximum q value.

3. Compute (xt) and its corresponding Q(xt, (xt)).

4. Apply the action (xt). Observe the new state xt+1.

5. Receive the reinforcement rt.

6. Compute an estimate value of the new state xt+1 i.e. Vxt+1
.

7. Update q[i,j].

8. t←t+1. Go to step 1.

 S. Valiollahi et al. / IJE TRANSACTIONS A: Basics Vol. 25, No. 4, (October 2012) 355-366 360

The outputs of each rule are a fixed value velocity and a
steering angle selected by Q-learning from six
suggested actions. In each step, the actions with
maximum q value is selected and others are neglected.
In each current state (xt), the overall velocity and
steering angle of the robot are computed by a
defuzzification method and appropriate control
commands are sent to motors. q values are updated after
receiving the immediate reinforcement signal by
observing the new state (xt+1).

Choosing an appropriate reinforcement signal (rt) is
a deciding factor in the overall performance of Q-
learning. rt is usually defined with respect to the existing
obejctives. In this work, the objective is to keep the
robot within predifned margins [d1 , d2] from walls as
shown in Figure 6; d1=30mm is the minimum allowed
distance from walls and d2=60mm is the maximum
allowed distance.

To improve the acuracy of wall tracking, the
distance constraint (d2-d1) is splitted in five parts and
the reinforcement signal (rt) is allocated according to
which part the robot center locates as Equation (10):

2 1
1 1

2 1
1 1

2 1
1 1

2 1
1 1

1 2

5; d < d
5

2()4; d < d
5

3()3; d < d
5

4()2; d < d
5

1; d < d
4; otherwise

t

d dd

d dd

d ddr

d dd

d

− < +


− < +
 − < += 


− < +


<
−

 (10)

5. SIMULATED EXPERIMENTS

Applying the proposed wall tracking algorithm, the
robot is expected to find the nearest wall from any start
points and continue tracking walls while staying in
predefined margins. Sixty different simulated
environments are designed in three levels of complexity
i.e. simple, normal, and complex; each group contains
twenty environments. Levels of complexity are
determined according to the number and shapes of
obstacles locating around walls. The robot is expected
to track these obstacles which are parts of walls and not
avoid them. The obstacles are placed randomly around
walls. Some typical shapes of obstacles are depicted in
Figure 7.

The obstacles in sixty simulated environments
include a wide range of geometrical shapes, which are
reliable representatives of vertices and contours existing
in real world environments. The basic geometrical
patterns such as rectangular, triangular, concave, and

Figure 6. Predefined margins (d1=30mm, d2=60mm)

Figure 7. Typical shapes of obstacles. I: rectangular, II:
convex, III: triangular, IV: concave, V & VI: polygon, VII:
concave-convex

TABLE 2. Quantitative description of simple, normal, and
complex environments
Environments Groups Type of obstacles Number of obstacles

Simple I-II 2-4

Normal I-IV 4-8

Complex I-VII 8-12

convex objects are considered as basic obstacles. More
complex obstacles are designed by mixing these basic
shapes, which do not necessarily have known
geometrical shapes. Obstacles areas vary from
1-10 times of the robot area. Areas of all environments
are the same so that the results could be comparable.
Visual instances for simple, normal, and complex
environments are depicted in Figures 10, 12, and 14
respectively. The degrees of complexity for the three
groups of environments are defined quantitatively as
Table 2.

Each expriment is repeated ten times to assure
rialiblity of obtained results. The reported result for
each experiment is the average of ten executions.
According to statistical measures like variance and
average, repeating the experiments for more than ten
times does not make sensible changes in the averaged
results. Simulated expriments are executed in KiKs

361 S. Valiollahi et al. / IJE TRANSACTIONS A: Basics Vol. 25, No. 4, (October 2012) 355-366

Figure 8. KiKs setup window

TABLE 3. Success Percentage in Finding the Nearest Wall

Success Percentage in Finding
the Nearest Wall:

worst average best

85% 90% 100%

Figure 9. Finding the nearest wall from six different start
points in a complex environments.
The average success percentage over sixty simulated
environments is 90%.

software arena. KiKS is an abbreviation for ”Kiks is a
Khepera Simulator”. The program is a Matlab
application that simulates a Khepera robot connected to
the computer in a very realistic way. The simulated
Khepera is controlled from Matlab in the same way as
real, physical Kheperas. The simulator can be
downloaded from www.tstorm.se/projects/kiks. [21].
The figure below (Figure 8) shows the setup window of

KiKs. Performance of the proposed method is evaluated
according to three criteria as listed below:

v Finding the Nearest Wall from the Start Point
As claimed before, the robot can find the nearest wall
and keep tracking it even if the start point is not next to
a wall. To experiment this, six different start points are
considered for each environment. The overall success
percentage of finding nearest walls is 90% and obtained
by averaging over the result of six start points, and then
over sixty environments. Among these sixty
environments the worst percentage is 85% while the
best one is 100% (Table 3). To choose start points,
environments are partitioned into six and a start point is
selected randomly in each partition. Figure 9 shows
considered partitions and the result of an experiment
performed in a typical complex environment.

v Keeping the Predefined Margins from Walls
If the robot is in the wall tracking mode, which could be
recognized through sensors states, the distance of the
robot center to the wall is measured by sensors outputs
in each step. If the measured distance is not in
predefined margins of [d1 d2], the failure counter is
increased by one. Finally, the failure percentage for
each execution is obtained. The ultimate result is the
average over twenty environments of a group (Table 4).
As expected, the failure percentage (8%-12%) increases
form simple to complex environment. As well as
counting the robot failures in keeping predefined
margins, the maximum, average and minimum steps
needed to return within predefined margins are also
computed. The steps depicted in Table 4 is obtained by
averaging over twenty environments of a group.

v Speed
The total number of steps for completing a full loop
around the environment is also reported in Table 2. The
maximum allowed number of steps is 10000 for all
three groups of environments that is quite enough,
considering the environment with maximum
circumference. To highlight the effective role of
Q-learning in tuning fuzzy inference parameters, the
same experiments were repeated for a fuzzy rule base
whose parameters were set completely offline and
without Q-learning (Table 5). The output membership
functions in fuzzy method are singletons fixed at the
mean value of intervals considered for fuzzy Q-learning
method. Comparisons between two methods according
to Tables 4 and 5 reveal superiority of fuzzy
Q-learning over fuzzy method in terms of speed and
accuracy. The failure percentage of fuzzy method varies
from 41% to 74% which is much more greater than
failure range of fuzzy Q-learning. Figures 10-17 provide
visual comparisons, which clarify the smoother and far

http://www.tstorm.se/projects/kiks

 S. Valiollahi et al. / IJE TRANSACTIONS A: Basics Vol. 25, No. 4, (October 2012) 355-366 362

more accurate performance of fuzzy Q-learning over
fuzzy method.

Figure 10 demonstrates a typical simple
environment where the fuzzy Q-learning could
successfully track walls with rectangular /convex shapes
of different sizes, and stay in predefined margins. On
the other hand, the fuzzy method demonstrates an
inferior performance even in tracking straight walls
(Figure 11). Furthermore, the fuzzy method fails to
track vertices of rectangular obstacles. To robot, a
vertex is a point between two different states. If the
robot cannot adapt itself properly and quickly to the
new state, it may fall in danger of losing track of walls.
As can be seen, applying the proposed method, the
robot can successfully continue tracking walls even
when shapes of walls changes thanks to efficient
selection of fuzzy outputs by Q-learning.

However, applying fuzzy method, the decision
making unit cannot provide the adequate change of
steering angle so that the robot can keep track of walls
when states changes e.g. in case of a vertex. As can be
seen from Figure 11, the robot gets out of margins while
reaching vertex of the upper right square. For the upper
left square, the robot completely loses track of the left
wall, and finally comes within margins after a time
consuming loop. The convex walls arise a similar
challenge for the robot. However, the changes of states
are not so sharp as of a vertex.

Figure 12 shows a typical normal environment, the
proposed method can successfully track walls even with
new added wall shapes i.e. traingular and concave
walls. Furthermore, the more number of obstacles
around walls than simple environement does not disturb
the robot from tracking walls correctly. This spots
adaptability of the proposed method to environmental
changes. For the fuzzy method (Figure 13), similar
failures with simple environment are repeated. The
number of these failures increases, as more changes
happen in wall shapes.

TABLE 4. Performance of fuzzy Q-learning method.

E
nvironm

ents
G

roups

Failures

Steps needed
to return within margins

Steps

M
axim

um

A
verage

M
inim

um

Simple 8% 7 2 1 1775

Normal 10% 9 3 1 2385

Complex 12% 11 5 1 2892

The reported results for each group of environments are the average
over twenty environments.

TABLE 5. performance of fuzzy method

E
nvironm

ents
G

roups

Failures

Steps
needed to return within margins

Steps

M
axim

um

A
verage

M
inim

um

Simple 41% 581 176 1 2571

Normal 52% 693 207 1 3458

Complex 74% 710 271 1 4298

The reported results for each group of environments are the average
over twenty environments.

Figure 10. Performace of fuzzy Q-learning method in a
simple environment

Figure 11. Performace of fuzzy method in a simple
environment

Figure 12. Performace of fuzzy Q-learning method in a
normal environment

363 S. Valiollahi et al. / IJE TRANSACTIONS A: Basics Vol. 25, No. 4, (October 2012) 355-366

Figure 13. Performace of fuzzy method in a normal
environment

Figure 14. Performace of fuzzy Q-learning method in a
complex environment

Figure 15. Performace of fuzzy method in a complex
environment

Figure 16. Performace of fuzzy Q-learning method in a
complex environment

Figure 17. Performace of fuzzy method in a complex
environment

Figures 14 and 16 represents two typical complex
environments where the proposed method can
successfully track walls with basic rectangular,
traingular, convex, and concave shapes, and also
mixtures of these basic shapes. As can be seen, the
robot can quickly adapt itself to the changes of wall
shapes. However, as environments get more complex
the inefficiency of fuzzy method becomes more
apparent (Figures 15 and 17).

6. DISCUSSION

As mentioned in Section 4.3, six suggested steering
angles are considered for each rule instead of one fixed
sigleton. This endows the decision making algorithm
capability of adaptaion to variuos environmental
changes. As demonstrated in previous section, fixed
outputs for fuzzy rules cannot deal with environments
with variuos wall contours. Even if, we assume that
learning one best output for each fuzzy rule is
responsive, desing of an appropriate training
environment is not always possible specially for
unknown environments. The proposed fuzzy Q-
learning algorithm produces a dynamic rule base where
the output of each rule may change during time intervals
so that the entire decision making unit can adapt itself to
various wall shapes, driven by the objective of staying
in predefined margins.

Applying the proposed fuzzy Q-learning, a
simulated expriment is started with q values initialized
to zero. In other words, no exploration phase or training
environment is considered for Q-learning. Any of the
six suggested actions may be once the best action during
some time intervals depending on the encountered wall
shapes.

Figures 18-20 show the process of choosing actions
for rules in typical simple, normal, and complex
environements respectively for right wall tracking task
during a complete loop around these environments.

 S. Valiollahi et al. / IJE TRANSACTIONS A: Basics Vol. 25, No. 4, (October 2012) 355-366 364

Figure 18. Choosing actions for fuzzy rules in a simple environment

Figure 19. Choosing actions for fuzzy rules in a normal environment

Figure 20. Choosing actions for fuzzy rules in a complex environment

365 S. Valiollahi et al. / IJE TRANSACTIONS A: Basics Vol. 25, No. 4, (October 2012) 355-366

In each step, the action with maximum q value is
selected for each rule. The overall defuzzified steering
angle is computed and the appropriate command is sent
to motors, after the robot movement an immediate
reinforcement signal is received. The maximum q value
for each rule is updated with respect to the truth value of
that rule. During a time interval, if the balance between
immediately received punishments and rewards results
in deterioration of a q value from its maximum position,
another action is selected which has the current
maximum q value. The maximum q value for a rule is
updated according to the truth value of that rule.
Therefore, rules with greater truth values are expected
to experience more changes of action selection. Which
rules are fired more depends on the environment and the
encountered wall shapes. For instance, in sample
environment referred in Figure 18, the first rule (fuzzy
state) barely seems to be fired, since there observed no
changes in action selection. On the other hand, the most
changes of action selection happened for the seventh
rule (fuzzy state). However, as expected, more fuzzy
states get involved from simple to complex
environments (Figures 18-20), because more types of
wall shapes will be included.

7. CONCLUSION AND FUTURE WORK

A fuzzy Q-learning method was proposed to address
autonomous wall tracking task of Khepera robot. Eight
heuristic fuzzy if-then rules were designed based on
human reasoning, and without any restrictive
presumptions about the world. Incorporation of heuristic
knowledge resulted in a few number of rules, which in
turn led to a fast and easy implementation of planning
process. Fuzzy inputs were outputs of Khepera infrared
sensors while fuzzy outputs were the robot speed and
steering angle. Applying Q-learning, the steering angle
was tuned online and through interactions with the
world. Simulated experiments were conducted on sixty
environments with various degrees of complexity,
including concave, convex, and polygon wall shapes.
Simulated environments were completely unknown to
the robot, and no training environment was considered.
Each execution of the proposed algorithm was done
with q values initialized to zero (unbiased q values), i.e.
Q-learning was applied without any exploration phase.
The obtained results presented an efficient performance
of the robot in finding nearest walls from start points
and staying in predefined margins while tracking walls.
Simulated experiments confirm that the proposed
method can efficiently operate and adapt itself to
various wall contours without exploration phase. To
highlight the effective role of Q-learning in online
tuning of fuzzy inference system, the same experiments

were repeated with a fuzzy rule base whose parameters
were set completely offline. Comparisons between two
decision making methods reveal the superiority of
online tuned fuzzy inference system in terms of speed
and accuracy.

Future work will be devoted to improving the
autonomy of the proposed algorithm by making
previously offline settings online, for instance online
tuning of input membership functions, online selection
of learning parameters through an optimization
algorithm, and etc. The proposed algorithm will be
experimented in simulated environments with more
realistic features like three dimensional environments
with: bumpy or slippery floors, obstacles with different
reflection conditions, noisy sensed information, and etc.

8. AKNOWLEDGEMENTS

This work has been supported by Department of
Electrical and Computer Engineering, Babol University
of Technology. Special thanks go to founders of
http://www.tstorm.se/projects/kiks and www.k-
teams.com who have made an easy access for
researchers to the open source KiKs software.

9. REFERENCES

1. Galindo, C., Fernández-Madrigal, J.-A. and González, J.,

"Improving Efficiency in Mobile Robot Task Planning Through
World Abstraction", IEEE Transactions on Robotics and
Automation, Vol. 20, (2004).

2. Saffiotti, A., "The uses of fuzzy logic in autonomous robot
navigation", Soft Computing, Vol. 1, (1997), 180-197.

3. Maaref, H. and Barret, C., "Sensor-based fuzzy navigation of an
autonomous mobile robot in an indoor environment", Control
Engineering Practice, Vol. 8, (2000), 757-768.

4. Ming-liang, X. and Wen-bo, X., "Fuzzy Q-learning in
continuous state and action space", The Journal of China
Universities of Posts and Telecommunications, Vol. 17, (2010),
100-109.

5. Glorennec, P.Y. and Jouffe, J., "A reinforcement learning
method for an autonomous robot", Citeseer, Vol. 12, 1996.

6. Er, M.J. and Deng, C., "Online Tuning of Fuzzy Inference
Systems Using Dynamic Fuzzy Q-Learning", IEEE
Transactions on Systems, Man, and Cybernetics—Part B:
Cybernetics, Vol. 34, (2004).

7. Juang, C.F. and Hsu, C.H., "Reinforcement Ant Optimized
Fuzzy Controller for Mobile-Robot Wall-Following Control",
IEEE Transactions on Industrial Electronics, Vol. 56, (2009),
3931-3940.

8. Glorennec, P.Y. and Jouffe, J., "Fuzzy Q-learning", 6th IEEE
Int. Conf. Fuzzy Systems, 1997.

9. Glorennec, P.Y., "Reinforcement Learning: an Overview",
ESIT, Aachen, Germany, 2000.

http://www.tstorm.se/projects/kiks

 S. Valiollahi et al. / IJE TRANSACTIONS A: Basics Vol. 25, No. 4, (October 2012) 355-366 366

10. Fatmi, A., Yahmadi, A. Al., Khriji, L. and Masmoudi, N., "A
Fuzzy Logic Based Navigation of a Mobile Robot", World
Academy of Science, Engineering and Technology, Vol. 22,
(2006).

11. Seraji, H. and Howard, A., "Behavior-Based Robot Navigation
on Challenging Terrain: A Fuzzy Logic Approach", IEEE
Transactions on Robotics and Automation, Vol. 18, (2002).

12. Karambakhsh, A., "Robot Navigation Algorithm to Wall
Following Using Fuzzy Kalman Filter", 9th IEEE International
Conference on Control and Automation (ICCA), 2011.

13. Obayashi, M., Kuremoto, T. and Kobayashi, K., "A Self-
Organized Fuzzy-Neuro Reinforcement Learning System for
Continuous State Space for Autonomous Robots", CIMCA,
2008.

14. Li, C., Chen, P. and Li, Y., "Adaptive Behavior Design Based on
FNN for the Mobile Robot", IEEE International Conference
on Automation and Logistics, 2009.

15. Kaelbling, L.P., Littman, M.L. and Moore, A.W.,
"Reinforcement Learning: A Survey", Journal of Artificial
Intelligence Research, Vol. 4, (1996), 237-285.

16. Mondada, F., Franzi, E. and Lenne, P., "Mobile robot
miniaturization: a tool for investigation in control algorithms",
The International symposium on experimental robotics,
(1993), 336-341.

17. Benreguieg, M., Hoppenot, h., Maaref, H., Colle E. and Barret ,
C., "Fuzzy navigation strategy: application to two distinct
autonomous mobile robots", Robotica, Vol. 15, (1997), 609-615.

18. Kato, A. and Kamikawa, K., "Obstacle Avoidance Based on
Approximate Reasoning for Mobile Robots", IEEE 'RSJ
International Workshop on Intelligent Robots and Systems
'X9, Vol. (1989).

19. Kruse, R., Gebhardt, J. and Klawonn, F., "Foundations of Fuzzy
Systems", Wiley and Sons, (1994).

20. Sugeno, M., "Industrial applications of fuzzy control", Elsevier
Scientific Publishing Company, (1985).

21. Storm, T., "KiKS is a Khepera Simulator user guide", Available
from: http://www.tstorm.se/projects/kiks.

A Q-learning Based Continuous Tuning of Fuzzy Wall Tracking without Exploration

S. Valiollahi, R. Ghaderi, A. Ebrahimzadeh

Department of Electrical and Computer Engineering, Babol University of Technology, Babol- 7414871167.

P A P E R I N F O

Paper history:
Received 19 Aprill 2012
Received in revised form 15 June 2012
Accepted 30 August 2012

Keywords:
Autonomous Navigation
Wall Tracking
Fuzzy Q-learning
Khepera Robot

 چکیده

ربات بایستی . در این مقاله الگوریتمی ساده و کارآمد به منظور پیاده سازي رفتار تعقیب دیوار توسط ربات پیشنهاد شده است
. ي محلی تعقیب کندهاي حس شدهي دادههاي ناشناخته حرکت کند، نزدیکترین دیوار را بیابد و آن را تنها بر پایهدر محیط

ربات . گیردبراي تامین نیازهاي هدایت خودمختار بهره می Qرکیب منطق فازي و یادگیري الگوریتم پیشنهادي از مزایاي ت
براي هر حالت فازي تعدادي . کندهاي فازي خلاصه میاي از حالتاطلاعات به دست آمده از جهان پیرامون را به مجموعه

هاي نظیرشان اند، به عملنطق انسان طرح شدهآنگاه فازي، که با م- ها توسط قوانین اگرحالت. عمل پیشنهادي وجود دارند
هدف طراحی . کندو از طریق تجربیات برخط انتخاب می Qبراي هر حالت، ربات بهترین عمل را با یادگیري . شوندمربوط می

ه تطبیق هاي کاملا ناشناختهاي مختلف دیوار در محیطالگوریتم تعقیب دیواري است که بتواند خود را به طور کارآمد با شکل
نتایج آزمایشات . است، بدین معنی که محیط یادگیري وجود نداردبدون مرحله اکتشافی به کار گرفته شده Qیادگیري . دهد

ي خط هاي مختلف دیوارها، از حالت سادهسازي شده کارآمد بودن روش پیشنهادي را در برخورد با شکلروي ربات کپرا شبیه
نماید در ربات به طور موفق دیوارها را تعقیب می. نمایندتایید می ي مقعر، محدب و چندضلعی،مستقیم گرفته تا حالات پیچیده

 .ماندحالیکه در محدوده تعیین شده باقی می

doi: 10.5829/idosi.ije.2012.25.04a.07

http://www.tstorm.se/projects/kiks

