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A B S T R A C T  

   

A simple and easy to implement is proposed to address wall tracking task of an autonomous robot. The 
robot should navigate in unknown environments, find the nearest wall, and track it solely based on 
locally sensed data.  The proposed method benefits from coupling fuzzy logic and Q-learning to meet 
requirements of autonomous navigations. The robot summerizes the obtained information from the 
world into a set of fuzzy states. For each fuzzy state, there are some suggested actions. States are 
related to their corresponding actions via simple fuzzy if-then rules, designed by human reasoning. The 
robot selects the most encouraged action for each state by Q-learning and through online experiences. 
The objective is to design a wall tracking algorithm which can efficiently adapt itself to different wall 
shapes in completely unknown environments.  Q-learning is applied without any exploration phase, i.e. 
no training environment is considered. Experimental results on simulated Khepera robot validate that 
the proposed method efficiently deals with various wall contours from simple straight shape to 
complex concave, convex, or polygon shapes. The robot successfully keeps track of walls while 
staying within predefined margins.. 
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1. INTRODUCTION 
 
Autonomy1is a necessity of the robots that are 
increasingly replacing/cooperating human in homes and 
workspaces, or hazardous and unreachable 
environments. An autonomous robot should move 
purposefully and carry out specific tasks in unknown 
environments usually with unpredictable dynamics. A 
robot system comprises some main interacting units: 
sensors, preprocessing unit, decision making unit, 
controllers, motors, and actuators [1, 2]. Although, all 
these units affect the robot performance, decision 
making unit as the robot brain plays the most significant 
role. As the focus of this study is on decision making 
unit, a small wheeled robot with simple infrared sensors 
is selected so that other units do not  require demanding 
processing [3]. A robust decision making algorithm is 
designed to equip the robot with the capability of 
tracking walls. The robot should find the nearest wall 
from any start points and continue tracking walls while 
staying in predefined margins. Imagine a robot working 
in a workspace crowded with people and furniture. 
Also, suppose the robot should move around a room, 
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between rooms, or pass corridors to perform specific 
tasks e.g. delivering objects. In such cases, wall tracking 
provides a safe and easy way for the robot to move. 
Wall tracking is also applicable to multi task robots. For 
instance, if a robot tries to reach a goal behind an 
obstacle, tracking the obstacle walls is faster than 
avoiding it. Another application of wall tracking would 
be exploring unreachable and hazardous environments 
to gather information. A wall tracker robot moves in 
such environments, and provides valuable 
measurements of their circumferences. Most of 
researches [4-8] deal with relatively simple walls shapes 
and complicated algorithms. However, the proposed 
method is simple and at the same time efficient in face 
of complex wall shapes. 

Major problems in autonomous robot navigation are 
as follow: (1) usually a mathematical model of the 
environments is not available; (2) sensed data is not 
reliable and precise; (3) real time response is necessary. 
Fuzzy logic is an adequate tool to address autonomous 
robot navigation due to its efficient properties. 
Generally, researchers mention three main advantages 
for fuzzy system. First, fuzzy logic is a flexible tool to 
model input-output relations. It allows incorporation of 
heuristic knowledge in form of if-then rules, and is an 
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efficient alternative when the system cannot be exactly 
modeled. Fuzzy rules efficiently implement simple 
behaviors, independent of complicated mathematical 
models, to handle various complex tasks.  Secondly, due 
to their qualitative descriptions, fuzzy behaviors are 
capable of being transferred to other environments 
without major changes. Finally, interpolative nature of 
fuzzy system leads to smooth movements of robots and 
an acceptable performance in face of noises and 
fluctuations in the sensed data [2]. 

Robot behaviors include reasoning, acting, and 
reacting according to the sensed information. Flexible 
behaviors require learning ability. Learning is to obtain 
information or improve current skills on the basis of 
experience, observation, and training. Q-learning is an 
efficient robust tool to tune the fuzzy systems due to its 
simple, model free, and dynamic structure [9]. 

A set of heuristic fuzzy if-then rules is designed by 
human reasoning and without any restrictive 
presumptions about the world. Incorporation of 
heuristic knowledge to design of fuzzy rules results in 
few number of rules, which in turn leads to a fast and 
easy implementation of planning process. The proposed 
method is independent of a global model or prior 
knowledge about the world. The only source of 
information comes from the locally sensed data by 
limited range infrared sensors. Fuzzy inputs are the 
reported data by infrared sensors while fuzzy outputs 
are the robot speed and steering angle. There are several 
suggested actions (steering angles) for each fuzzy state. 
The robot selects the most encouraged action for each 
state by Q-learning and through interactions with the 
world. Online tuning of the fuzzy inference provides a 
flexible decision making unit, which could adapt itself 
to unknown environments with various shapes of walls. 
Q-learning is applied without any exploration phase, i.e. 
no training environment is considered. The test 
environments are supposed to be completely unknown 
and may include variety of wall shapes to be good 
representatives of real world environments. For  such 
environments, designing an appropriate training 
environment is usually very difficult or impossible.   

Simulated experiments are conducted on sixty 
environments with various degrees of complexity, 
including concave, convex, and polygon walls shapes. 
Environments  are designed by placing various shapes 
of obstacles in different sizes around walls. Considered 
obstacles include a wide range of geometrical shapes, 
which are reliable representatives of vertices and 
contours existing in real world environments. 
Experimental results on simulated Khepera robot 
validate that the proposed method efficiently deals with 
various wall contours from simple straight shape to 
complex concave, convex, or polygon shapes. The robot 
successfully keeps track of walls while staying within 
predefined margins.  

The rest of paper is organized as follow: Section 2 
deals with related literature. Section 3 provides a brief 
description about the Khepera robot. The proposed 
fuzzy Q-learning method is explained in section 4. 
Simulated results are depicted in section 5, section 6 
includes a discussion about the proposed method, and 
finally the paper is concluded in section 7. 
 
 
2. RELATED LITERATURE 

 
Fuzzy logic has proven to be an efficient tool to 
autonomous navigation problems owing to its efficient 
properties such as independency of a precise model of 
the world, tolerance against uncertain or noisy 
information, fast response, and easy implementation [3, 
10, 11]. Fatmi, A et al. and A. Karambakhsh et al. [10, 
12], fuzzy logic is applied to design of robot behaviors. 
The parameters of applied fuzzy inferences are set 
offline. This is usually done based on expert knowledge 
or a trial and error process, which is not adequate in 
case of unexpected situations. Learning strategies are 
efficient alternatives to overcome this shortcoming.  

Supervised learning algorithms usually require large 
amounts of training input/output data, which may be 
hard to obtain specially for autonomous navigations [13, 
14]. Unsupervised and dynamic structure of 
reinforcement learning makes it a promising tool to 
online applications [4, 9, 15]. Q-learning is an efficient 
simple-structured model free reinforcement learning 
implementation, that is often used to adjust fuzzy 
inference systems; this coupling is also known as fuzzy 
Q-learning (FQL) [4-6]. FQL is applied, where a fuzzy 
inference of eight rules are designed offline and Q-
learning is applied to tune fuzzy outputs memberships 
online by P.Y. Glorennec et al. [5]. A dynamic fuzzy Q-
learning (DFQL) to fine tune both structure and 
parameters of fuzzy inference system for wall tracking 
task of an autonomous robot by M. J.Er and C. Deng 
[6]. However, sixteen initial fuzzy rules are designed 
offline base on a human driver’s intuitive experience. A 
reinforcement ant optimized fuzzy controller (RAOFC) 
is proposed for wall tracking task of an autonomous 
robot by C. F. uang and C. H. Hsu, [7] , where no prior 
assignment of fuzzy rules is necessary. Eighteen fuzzy 
if-then rules are obtained after the learning process. The 
premise parts of fuzzy rules are obtained through a 
fuzzy clustering method while conclusion parts of rules 
are designed using Q-value aided ant colony 
optimization. This approach selects conclusion parts of 
rules from a set of suggested actions according to ant 
pheromone trails and Q-values, both of whose values 
are updated using reinforcement signals.  

Both DFQL and RAOFC entail a complex time 
consuming and less intractable learning process in 
comparison with FQL. Since initially there is no rule in 
the fuzzy inference system, specially in RAOFC, these 
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methods are not applicable without a training phase. 
Furthermore, the greater numbers of rules result in 
slower decision making processes which is not desirable 
for real time application. The proposed FQL approach 
in references [5, 8], fails to satisfy predefined margins 
successfully when applied to wall tracking task , as 
mentioned in referenc [7]. In this paper a FQL algorithm 
with higher accuracy in satisfying predefined margins is 
proposed for wall tracking task. The accuracy of FQL is 
improved by an efficient definition of reinforcement 
signal, which has a critical role in Q-learning 
performance. Experimental results demonstrate an 
acceptable tradeoff between simplicity and accuracy of 
the proposed wall tracking algorithm. Furthermore, 
applying the proposed method, the robot can find 
nearest walls from any start points or return to walls in 
case of failures. For this purpose, unlike DFQL and 
RAOFC, the outputs of all front sensors are considered 
in fuzzy states and not just half of them.   

In FQL, DFQL, and RAOFC, after an exploration or 
a learning phase, one best action is chosen amongst 
some candidates as the output of each fuzzy rule. In 
such methods, the goal is to learn an optimal fuzzy rule 
base which is then exploited in experiments. The 
proposed method applies Q-learning without any 
exploration phase. No training environment is 
considered whose appropriate design is usually difficult 
or impossible specially for unknown environments. This 
outstanding point is the major difference between the 
proposed fuzzy Q-learning algorithm and the previously 
mentioned ones. The proposed method aims to produce 
an adaptive flexible wall tracking algorithm in face of 
various wall contours from simple to complex ones. 
Therefore, several options are considered as outputs of 
each fuzzy rule, any of which is probable to be selected  
depending on the encountered wall shape. The issue will 
be discussed more in section 6.   

 
 

3. KHEPERA ROBOT 

 
Khepera is a small mobile robot with a circular shape of 
55 mm in diameter, 30 mm in height and 70 g in weight 
[16]. Using such a small robot, the navigation algorithm 
can be developed independent of a precise model of the 
robot. This in turn, allows an easy transfer of the 
designed navigation algorithm to other robots [17]. 
Khepera has eight infrared sensors, which are composed 
of an emitter and an independent receiver. These 
sensors (S0, S1,…, S7) are arranged in a somewhat 
circular fashion around its body (see Figure 1) and 
measure distances in a short range from about 1 to 5 cm. 

The sensor readings are integer values in the range 
of [0, 1023]. A sensor value of 1023 indicates that the 
robot is very close to the object, and a sensor value of 0 

indicates that the robot does  not  receive  any  reflection 
of the infrared signal [3]. 

 
 

 
Figure 1. The Khepera Robot [3] 

 
 

Three groups of sensors are considered as inputs to 
decision making unit i.e. left, front, and right sensors. 
The considered value for each group is the maximum 
output of each of the merged sensors. 

L 1 2

F 0 7

R 6 5

Left sensor :    S =max(S , S )

Front sensor : S =max(S , S )

Right sensor : S =max(S , S )

 

Khepera has two wheels and two small Teflon balls. 
A DC motor moves each wheel.  The robot’s maximum 
linear and angular speeds are about 40 mm/s and 1.58 
rd/s respectively [3]. Khepera robot is driven 
differentially, thus the controller has to give the angular 
velocities i.e. L ω  and Rω , . As the human drivers reason 
more with linear velocity (v) and steering angle (Φ), the 
output of fuzzy rules are considered  v and Φ. If  the 
cornering force on wheels are neglected, the control 
commands are easily generated by simple geometrical 
equations [18] that make correspondence between (v,Φ) 
and ( R Lω ,  ω ) (Equations (1) and (2)): 

.( ) / 2R Lv r ω ω= +  (1) 

.( ) / 2R L
d r T
dt
ϕ

ω ω= +  (2) 

where, r is the radius of the wheels. 
 
 
4. THE PROPOSED FUZZY Q-LEARNING METHOD 
 
To get a better insight to the proposed method, brief 
descriptions of fuzzy logic and Q-learning is provided 
below: 
 
4. 1. Fuzzy Logic     Fuzzy logic maps an input space to 
an output space by a list of if-then statements called 
rules. The rules are structured in a human decision 
making format. A typical rule could be as follows: 
 
IF Obstacle is Far THEN Speed is Low 
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where, “Obstacle” and “Speed” are input variable and 
output variable, respectively. Rule base is the key 
element in robot intelligence. A rule base should 
consider all possible cases of linguistic adjectives for 
input variables.  Linguistic adjectives, like “Far” and 
“Low”, are described by membership functions which 
map the value of the variables to membership degrees 
([0,1]) in each fuzzy set (see Figure 2).  

Fuzzy sets are often defined as piecewise linear 
shapes (triangular or trapezoidal) to reduce the 
computational complexity of acquiring membership 
degrees. Fuzzy logic is able to handle imprecise data 
efficiently. If input data is sensed imprecisely, the 
membership degree in each fuzzy set may change but 
the relative membership degrees over fuzzy sets remain 
the same qualitatively.  Fuzzy operators are applied to 
combine input variables and manipulate the output 
fuzzy set for each rule. The outputs from all rules are 
then aggregated to form a single fuzzy set.  To extract a 
crisp output from the aggregated fuzzy set, a 
defuzzification method is applied [19].  

 
4. 2. Q-learning     Q-learning usually provides best fit 
to requirements of real world applications due to its 
unsupervised, dynamic, and model free structure. The 
robot observes the world as a set of state-action pairs. 
To each action a Q value is assigned. Transition from 
one state to another (via proper actions) may bring it 
punishment or reward, and accordingly Q values are 
updated as Equation (3):  

1( , ) ( , ) { ( ) ( , )}t t t t t t t t tQ x a Q x a r V x Q x aβ γ +← + + −  (3) 

where, xt is the current state, at is the action taken at 
state xt, Q(xt,at) is the Q value of state xt , V(xt+1) is an 
estimated value of the new state (xt+1). β and γ are the 
learning rate and forgetting factor respectively both in 
range of [0 1], and rt is the immediate reinforcement 
scalar signal. Parameter β is redundant i.e. one can 
eliminate β (taking β = 1), and 0.9< ɣ <0.99 [9]. 
 
4. 3. Fuzzy Q-learning   A heuristically designed 
fuzzy rule base with N=8 rules is applied. Input 
variables are the three groups of Khepera infrared 
sensors mentioned in Section 3 i.e. SL, SF, and SR  which  
 

 
Figure 2. Fuzzy membership function 

approximately cover a 180 degrees view of the 
surroundings. To reduce the number of rules, just two 
linguistic adjectives are considered for inputs: Far (F) 
and Near (N) whose membership functions are depicted 
in Figure 2. The approach is to find the nearest wall and 
continue tracking it. The nearest wall (right or left) is 
determined by checking the value of parameter (P) as 
below: 
 

 S   ;  1  ;   0  ;  L RIf S P Else P End= =f  
 
The outputs are the robot speed (S) and steering angle 
(Φ) as Figure 3. Si (1≤i≤N) is a fixed value for each rule 
which can be zero(Z), C1*Vmax, C2*Vmax. C1 and C2 
are constants smaller than one and C1<C2. Vmax is the 
maximum considered speed. Si is described by linguistic 
adjectives of PB(Positive Big), PS(Positive Small), 
Z(Zero), NS(Negative Small), and NB(Negative Big) 
which are symmetric i.e. PB=-NB, PS=-NS. The rule 
base is as follow: 
 

1 1 1

2 2 2

3 3 1 max 3

4 4 1 m

: ( , , )                   &   (2 1)
: ( , , )                   &   
: ( , , )      V   &   
: ( , , )       V

L F R

L F R

L F R

L F R

R IF S S S NNN THEN s Z p PB
R IF S S S NNF THEN s Z PB
R IF S S S NFN THEN s C Z
R IF S S S NFF THEN s C

ϕ
ϕ
ϕ

= = = × −
= = =

= = × =

= = × ax 4

5 5 5

6 6 6

7 7 1 max 7

8

  &   
: ( , , )                   &   
: ( , , )                   &   (2 1)
: ( , , )      V   &   
: ( , , )   

L F R

L F R

L F R

L F R

PS
R IF S S S FNN THEN s Z NB
R IF S S S FNF THEN s Z p PB
R IF S S S FFN THEN s C NS
R IF S S S FFF TH

ϕ
ϕ
ϕ
ϕ

=

= = =

= = = × −

= = × =

= 8 2 max 8    V   &   (2 1)EN s C p NBϕ= × = × −

 

 
The applied fuzzy model is the Sugeno, or Takagi-
Sugeno-Kang method [20]. Equation (4) computes the 
robot speed:   

i i
i

i
i

s
S

α

α
=

∑
∑

 
(4) 

where, αi is the truth value of the ith rule calculated by 
product method. For each rule, there are J=6 actions or 
suggested steering angles (φ[i,j], 1≤j≤J). the six 
suggested actions are distributed equally in predefined 
intervals. To each of these actions, a q value (q[i,j]) is 
assigned. The values of φ[i,j] are determined offline. 
However, deciding which of these steering angles are 
selected for rules is done online by Q-learning.   

 
 

 
Figure 3. Demonstration of robot steering angle in Cartesian 
coordinates  
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TABLE 1. Ranges of Fuzzy Outputs 

Z PS PB NS NB 

0 [0 90] [90 180] [-90 0] [-180 -90] 

 
 

 

Figure 4. Fuzzy Q-learning algorithm 
 

 
To determine values of φ[i,j]  for each rule, the total 
possible degree of rotation for robot (i.e. approximately 
360 degrees) is divided to five intervals of as Table 1. 

To obtain the robot steering angle a fuzzy Q-
learning approach is applied as depicted in Figure 4. Q 
is a N*J matrix whose elements (q[i,j]) are initialized to 
zero. Among the J suggested actions for each rule, only  

 

the action associated with maximum q value (Equation 
(7)) is selected and takes part in computation of the 
overall action see Equations (5) and (6).  
The explained method is depicted as a flowchart in 
Figure 5. 

;1 ,1
i im

i

i
i

i N j J
α ϕ

φ
α

= ≤ ≤ ≤ ≤
∑

∑
 

(5) 

[ , ] | m ax [ , ]im ji j q i jϕ ϕ=  (6) 

xt  is the fuzzified state of sensors observed in the time t 
e.g. (SL, SF, SR)=FFN. In each iteration of the algorithm, 
maximum q values are updated applying Equations (7), 
(8), (1), and (9) respectively. 

max [ , ]im jq q i j=  (7) 

( , ( ))t t i im
i

Q x a x qα= ∑  
(8) 

im im iq q dQα= +  (9) 

As demonstrated in Figure 5, the robot is an integrated 
system comprising three main units of sensors, decision 
making, and motors. The robot intracts with 
environment in a closed loop. In robot viewpoint, the 
sensed environment is abstracted into eight fuzzified 
states e.g. xt=(SL=F,SF=F,SR=N). A fuzzy if-then rule is 
considered for each state. 

 

 
 

Figure 5. Flow chart of the proposed method 

1. t=0, observe the state xt. 

2. For each rule i, choose φ[i,j] with maximum q value. 

3. Compute (xt) and its corresponding Q(xt, (xt)). 

4. Apply the action (xt). Observe the new state xt+1. 

5. Receive the reinforcement rt. 

6. Compute an estimate value of the new state xt+1 i.e. Vxt+1 
. 

7. Update q[i,j]. 

8. t←t+1. Go to step 1.  
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The outputs of each rule are a fixed value velocity and a 
steering angle selected by Q-learning from six 
suggested actions. In each step, the actions with 
maximum q value is selected and others are neglected. 
In each current state (xt), the overall velocity and 
steering angle of the robot are computed by a 
defuzzification method and appropriate control 
commands are sent to motors. q values are updated after 
receiving the immediate reinforcement signal by 
observing the new state (xt+1).   

Choosing an appropriate reinforcement signal (rt) is 
a deciding factor in the overall performance of Q-
learning. rt is usually defined with respect to the existing 
obejctives. In this work, the objective is to keep the 
robot within predifned margins [d1 , d2] from walls as 
shown in Figure 6; d1=30mm is the minimum allowed 
distance from walls  and d2=60mm is the maximum 
allowed distance.  

To improve the acuracy of wall tracking, the 
distance constraint (d2-d1)  is splitted in five parts and 
the reinforcement signal (rt) is allocated according to 
which part the robot center locates as Equation (10): 

2 1
1 1

2 1
1 1

2 1
1 1

2 1
1 1

1 2

5;           d < d
5

2( )4;          d < d
5

3( )3;          d < d
5

4( )2;          d < d
5

1;           d < d
4;                otherwise

t

d dd

d dd

d ddr

d dd

d

− < +


− < +
 − < += 


− < +


<
−

 

 (10)  

 
 

5. SIMULATED EXPERIMENTS 
 

Applying the proposed wall tracking algorithm, the 
robot is expected to find the nearest wall from any start 
points and continue tracking walls while staying in 
predefined margins. Sixty different simulated 
environments are designed in three levels of complexity 
i.e. simple, normal, and complex; each group contains 
twenty environments. Levels of complexity are 
determined according to the number and shapes of 
obstacles locating around walls. The robot is expected 
to track these obstacles which are parts of walls and not 
avoid them. The obstacles are placed randomly around 
walls. Some typical shapes of obstacles are depicted in 
Figure 7.  

The obstacles in sixty simulated environments 
include a wide range of geometrical shapes, which are 
reliable representatives of vertices and contours existing 
in real world environments. The basic geometrical 
patterns such as rectangular,  triangular,  concave,  and  
 

 
Figure 6. Predefined margins (d1=30mm, d2=60mm) 

 
 

 
Figure 7. Typical shapes of obstacles. I: rectangular, II: 
convex, III: triangular, IV: concave, V & VI: polygon, VII: 
concave-convex  

 
 

TABLE 2. Quantitative description of simple, normal, and 
complex environments 
Environments Groups Type of obstacles Number of obstacles 

Simple I-II 2-4 

Normal I-IV 4-8 

Complex I-VII 8-12 

 
 

convex objects are considered as basic obstacles. More 
complex obstacles are designed  by  mixing  these  basic 
shapes, which do not necessarily have known 
geometrical shapes. Obstacles areas vary from  
1-10 times of the robot area. Areas of all environments 
are the same so that the results could be comparable. 
Visual instances for simple, normal, and complex 
environments are depicted in Figures 10, 12, and 14 
respectively. The degrees of complexity for the three 
groups of environments are defined quantitatively as 
Table 2.  

Each expriment is repeated ten times to assure 
rialiblity of obtained results. The reported result for 
each experiment is the average of ten executions. 
According to statistical measures like variance and 
average, repeating the experiments for more than ten 
times does not make sensible changes in the averaged 
results.  Simulated  expriments  are  executed  in  KiKs  
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Figure 8. KiKs setup window 

 
 
TABLE 3. Success Percentage in Finding the Nearest Wall 

Success Percentage in Finding 
the Nearest Wall: 

worst average best 

85% 90% 100% 

 
 

 
Figure 9. Finding the nearest wall from six different start 
points in a complex environments.  
The average success percentage over sixty simulated 
environments is 90%. 
 
 
software arena. KiKS is an abbreviation for ”Kiks is a 
Khepera Simulator”. The program is a Matlab 
application that simulates a Khepera robot connected to 
the computer in a very realistic way. The simulated 
Khepera is controlled from Matlab in the same way as 
real, physical Kheperas. The simulator can be 
downloaded from www.tstorm.se/projects/kiks. [21]. 
The figure below (Figure 8) shows the setup window of 

KiKs. Performance of the proposed method is evaluated 
according to three criteria as listed below: 
 
v Finding the Nearest Wall from the Start Point 
As claimed before, the robot can find the nearest wall 
and keep tracking it even if the start point is not next to 
a wall. To experiment this, six different start points are 
considered for each environment. The overall success 
percentage of finding nearest walls is 90% and obtained 
by averaging over the  result of six start points, and then 
over sixty environments. Among these sixty 
environments the worst percentage is 85% while the 
best one is 100% (Table 3). To choose start points, 
environments are partitioned into six and a start point is 
selected randomly in each partition. Figure 9 shows 
considered partitions and the result of an experiment 
performed in a typical complex environment.  
 
v Keeping the Predefined Margins from Walls 
If the robot is in the wall tracking mode, which could be 
recognized through sensors states, the distance of the 
robot center to the wall is measured by sensors outputs 
in each step. If the measured distance is not in 
predefined margins of [d1 d2], the failure counter is 
increased by one. Finally, the failure percentage for 
each execution is obtained. The ultimate result is the 
average over twenty environments of a group (Table 4). 
As expected, the failure percentage (8%-12%) increases 
form simple to complex environment. As well as 
counting the robot failures in keeping predefined 
margins, the maximum, average and minimum steps 
needed to return within predefined margins are also 
computed. The steps depicted in Table 4 is obtained by 
averaging over twenty environments of a group.   
 
v Speed  
The total number of steps for completing a full loop 
around the environment is also reported in Table 2. The 
maximum allowed number of steps is 10000 for all 
three groups of environments that is quite enough, 
considering the environment with maximum 
circumference. To highlight the effective role of  
Q-learning in tuning fuzzy inference parameters, the 
same experiments were repeated for a fuzzy rule base 
whose parameters were set completely offline and 
without Q-learning (Table 5). The output membership 
functions in fuzzy method are singletons fixed at the 
mean value of intervals considered for fuzzy Q-learning 
method.  Comparisons between two methods according 
to Tables 4 and 5 reveal superiority of fuzzy  
Q-learning over fuzzy method in terms of speed and 
accuracy. The failure percentage of fuzzy method varies 
from 41% to 74% which is much more greater than 
failure range of fuzzy Q-learning. Figures 10-17 provide 
visual comparisons, which clarify the smoother and far 

http://www.tstorm.se/projects/kiks
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more accurate performance of fuzzy Q-learning over 
fuzzy method. 

Figure 10 demonstrates a typical simple 
environment where the fuzzy Q-learning could 
successfully track walls with rectangular /convex shapes 
of different sizes, and stay in predefined margins. On 
the other hand, the fuzzy method demonstrates an 
inferior performance even in tracking straight walls 
(Figure 11). Furthermore, the fuzzy method fails to 
track vertices of rectangular obstacles. To robot, a 
vertex is a point between two different states. If the 
robot cannot adapt itself properly and quickly to the 
new state, it may fall in danger of losing track of walls. 
As can be seen, applying the proposed method, the 
robot can successfully continue tracking walls even 
when shapes of walls changes thanks to efficient 
selection of fuzzy outputs by Q-learning. 

However, applying fuzzy method, the decision 
making unit cannot provide the adequate change of 
steering angle so that the robot can keep track of walls 
when states changes e.g. in case of a vertex. As can be 
seen from Figure 11, the robot gets out of margins while 
reaching vertex of the upper right square. For the upper 
left square, the robot completely loses track of the left 
wall, and finally comes within margins after a time 
consuming loop. The convex walls arise a similar 
challenge for the robot. However, the changes of states 
are not so sharp as of a vertex.  

Figure 12 shows a typical normal environment, the 
proposed method can successfully track walls even with 
new added wall shapes  i.e. traingular and concave 
walls. Furthermore, the more number of obstacles 
around walls than simple environement does not disturb 
the robot from tracking walls correctly. This spots 
adaptability of the proposed method to environmental 
changes. For the fuzzy method (Figure 13), similar 
failures with simple environment are repeated. The 
number of these failures increases, as more changes 
happen in wall shapes. 

 
 

TABLE 4. Performance of fuzzy Q-learning method. 

E
nvironm

ents 
G

roups 

Failures 

Steps needed   
to return within margins 

Steps 

M
axim

um
 

A
verage 

M
inim

um
 

Simple 8% 7 2 1 1775 

Normal 10% 9 3 1 2385 

Complex 12% 11 5 1 2892 

The reported results for each group of environments are the average 
over twenty environments. 

TABLE 5. performance of fuzzy method 

E
nvironm

ents 
G

roups 

Failures 

Steps  
needed  to return within margins 

Steps 

M
axim

um
 

A
verage 

M
inim

um
 

Simple 41% 581 176 1 2571 

Normal 52% 693 207 1 3458 

Complex 74% 710 271 1 4298 

The reported results for each group of environments are the average 
over twenty environments. 

 
 

 
Figure 10. Performace of fuzzy Q-learning method in a 
simple environment  

 

 
Figure 11. Performace of fuzzy method in a simple 
environment  
 

   
Figure 12. Performace of fuzzy Q-learning method in a 
normal environment  
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Figure 13. Performace of fuzzy method in a normal 
environment  

 

 
Figure 14. Performace of fuzzy Q-learning method in a 
complex environment  

 

 
Figure 15. Performace of fuzzy method in a complex 
environment  

 

 
Figure 16. Performace of fuzzy Q-learning method in a 
complex environment  

 
Figure 17. Performace of fuzzy method in a complex 
environment  

 
 

Figures 14 and 16 represents two typical complex 
environments where the proposed method can 
successfully track walls with basic rectangular, 
traingular, convex, and concave shapes, and also 
mixtures of  these basic shapes. As can be seen, the 
robot can quickly adapt itself to the changes of wall 
shapes. However, as environments get more complex 
the inefficiency of fuzzy method becomes more 
apparent (Figures 15 and 17).  

 
 

6. DISCUSSION 
 
As mentioned in Section 4.3, six suggested steering 
angles are considered for each rule instead of one fixed 
sigleton. This endows the decision making algorithm 
capability of adaptaion to variuos environmental 
changes. As demonstrated in previous section, fixed 
outputs for fuzzy rules cannot deal with environments 
with variuos wall contours. Even if, we assume that 
learning one best output for each fuzzy rule is 
responsive, desing of an appropriate training 
environment is not always possible specially for 
unknown environments.  The proposed fuzzy Q-
learning algorithm produces a dynamic rule base where 
the output of each rule may change during time intervals 
so that the entire decision making unit can adapt itself to 
various wall shapes, driven by the objective of staying 
in predefined margins.  

Applying the proposed fuzzy Q-learning, a 
simulated expriment is started with q values initialized 
to zero. In other words, no exploration phase or training 
environment is considered for Q-learning. Any of the 
six suggested actions may be once the best action during 
some time intervals depending on the encountered wall 
shapes.  

Figures 18-20 show the process of choosing actions 
for rules in typical simple, normal, and complex 
environements respectively for right wall tracking task 
during a complete loop around these environments.  
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Figure 18. Choosing actions for fuzzy rules in a simple environment 

 
 

 
Figure 19. Choosing actions for fuzzy rules in a normal environment 

 
 

 

Figure 20. Choosing actions for fuzzy rules in a complex environment 
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In each step, the action with maximum q value is 
selected for each rule. The overall defuzzified steering 
angle is computed and the appropriate command is sent 
to motors, after the robot movement an immediate 
reinforcement signal is received. The maximum q value 
for each rule is updated with respect to the truth value of 
that rule. During a time interval, if the balance between 
immediately received punishments and rewards results 
in deterioration of a q value from its maximum position, 
another action is selected which has the current 
maximum q value. The maximum q value for a rule is 
updated according to the truth value of that rule. 
Therefore, rules with greater truth values are expected 
to experience more changes of action selection. Which 
rules are fired more depends on the environment and the 
encountered wall shapes. For instance, in sample 
environment referred in Figure 18, the first rule (fuzzy 
state) barely seems to be fired, since there observed no 
changes in action selection. On the other hand, the most 
changes of action selection happened for the seventh 
rule (fuzzy state). However, as expected, more fuzzy 
states get involved from simple to complex 
environments (Figures 18-20), because more types of 
wall shapes will be included.    

 
 

7. CONCLUSION AND FUTURE WORK 
 

A fuzzy Q-learning method was proposed to address 
autonomous wall tracking task of Khepera robot. Eight 
heuristic fuzzy if-then rules were designed based on 
human reasoning, and without any restrictive 
presumptions about the world. Incorporation of heuristic 
knowledge resulted in a few number of rules, which in 
turn led to a fast and easy implementation of planning 
process. Fuzzy inputs were outputs of Khepera infrared 
sensors while fuzzy outputs were the robot speed and 
steering angle. Applying Q-learning, the steering angle 
was tuned online and through interactions with the 
world. Simulated experiments were conducted on sixty 
environments with various degrees of complexity, 
including concave, convex, and polygon wall shapes. 
Simulated environments were completely unknown to 
the robot, and no training environment was considered. 
Each execution of the proposed algorithm was done 
with q values initialized to zero (unbiased q values), i.e. 
Q-learning was applied without any exploration phase. 
The obtained results presented an efficient performance 
of the robot in finding nearest walls from start points 
and staying in predefined margins while tracking walls. 
Simulated experiments confirm that the proposed 
method can efficiently operate and adapt itself to 
various wall contours without exploration phase.  To 
highlight the effective role of Q-learning in online 
tuning of fuzzy inference system, the same experiments 

were repeated with a fuzzy rule base whose parameters 
were set completely offline. Comparisons between two 
decision making methods reveal the superiority of 
online tuned fuzzy inference system in terms of speed 
and accuracy. 

Future work will be devoted to improving the 
autonomy of the proposed algorithm by making 
previously offline settings online, for instance online 
tuning of input membership functions, online selection 
of learning parameters through an optimization 
algorithm, and etc. The proposed algorithm will be 
experimented in simulated environments with more 
realistic features like three dimensional environments 
with: bumpy or slippery floors, obstacles with different 
reflection conditions, noisy sensed information, and etc. 
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  چکیده
   

ربات بایستی . در این مقاله الگوریتمی ساده و کارآمد به منظور پیاده سازي رفتار تعقیب دیوار توسط ربات پیشنهاد شده است
. ي محلی تعقیب کندهاي حس شدهي دادههاي ناشناخته حرکت کند، نزدیکترین دیوار را بیابد و آن را تنها بر پایهدر محیط

ربات . گیردبراي تامین نیازهاي هدایت خودمختار بهره می Qرکیب منطق فازي و یادگیري الگوریتم پیشنهادي از مزایاي ت
براي هر حالت فازي تعدادي . کندهاي فازي خلاصه میاي از حالتاطلاعات به دست آمده از جهان پیرامون را به مجموعه

هاي نظیرشان اند، به عملنطق انسان طرح شدهآنگاه فازي، که با م- ها توسط قوانین اگرحالت. عمل پیشنهادي وجود دارند
هدف طراحی . کندو از طریق تجربیات برخط انتخاب می Qبراي هر حالت، ربات بهترین عمل را با یادگیري . شوندمربوط می

ه تطبیق هاي کاملا ناشناختهاي مختلف دیوار در محیطالگوریتم تعقیب دیواري است که بتواند خود را به طور کارآمد با شکل
نتایج آزمایشات . است، بدین معنی که محیط یادگیري وجود نداردبدون مرحله اکتشافی به کار گرفته شده Qیادگیري . دهد

ي خط هاي مختلف دیوارها، از حالت سادهسازي شده کارآمد بودن روش پیشنهادي را در برخورد با شکلروي ربات کپرا شبیه
نماید در ربات به طور موفق دیوارها را تعقیب می. نمایندتایید می ي مقعر، محدب و چندضلعی،مستقیم گرفته تا حالات پیچیده

 .ماندحالیکه در محدوده تعیین شده باقی می

 
doi: 10.5829/idosi.ije.2012.25.04a.07 
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