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A B S T R A C T  

   

This paper studies a new approach to analyze the large deflection behavior of prismatic and non-
prismatic beams of non-homogenous material under combined load and multiple boundary conditions. 
The mathematical formulation has been derived which led to a set of six first-order ordinary 
differential equations. The geometrically nonlinear problem has been solved numerically using the 
multiple shooting method combined with a quadratic programming technique. The results obtained by 
presented method have been compared with the existing with less complex cases in the literature. The 
method may be applied to the design of compliant mechanisms, nonlinear springs or any related 
subject. 
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1. INTRODUCTION1 

 
Conventional mechanisms have been studied and 
extensively implemented in past centuries. The use of 
flexibility in structures and mechanisms was mostly 
avoided because of the difficulty in design and 
manufacturing. In recent decades, compliant 
mechanisms (CM) have become an important area in 
mechanical science which is rapidly developing due to 
dramatic improvement of technology, need for high 
precision, smal scale and low final cost. Compliant 
mechanisms are usually monolithic and transmit motion 
and forces by means of their flexible members. 
Therefore CMs’ members usually undergo large 
deflection without exceeding the yield stress of the 
material. The advantages of these mechanisms 
compared to traditional rigid-body mechanisms are due 
to the absence of rigid body kinematic joints. Some of 
the many advantages of these mechanisms includes 
lower degree of noise, backlash and lubrication as well 
as wear; resulting in structures with very low 
maintenance cost and high precision. Compliant 
mechanisms are widely used in product design [1–3], 
design for systems without assembly proccess[4], Micro 
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Electro Mechanical Systems (MEMS) [5], nonlinear 
springs [6, 7], stages for precision engineering [8], 
statically balanced mechanisms [9, 10]. 

In many engineering applications each segment of a 
compliant mechanism has been modeled as a straight 
beam. Although, the complaint mechanisms may 
undergo large deflection, strains in beam segments 
remain small, hence, the governing equations can be 
obtained from the Euler–Bernoulli beam theory. The 
analysis of compliant mechanisms may require 
development of the governing equations as a general 
system of nonlinear algebraic equations (NAE) that rely 
on a complex model and kinematics of a deflected 
beam. Therefore, the principle of superposition cannot 
be applied and large deflections may not be easy to 
determine by any known methods. Usually elliptic 
integrals [11], finite difference method [12], finite 
element method [13] and some numerical methods such 
as shooting method [14] were used for analyzing large 
static deflection of flexible structures. Large deflection 
analysis based on solving the two-point nonlinear 
boundary value problem (BVP) has been investigated 
by C. C. Lan [15]. He has shown that the problem of 
initially straight or curved beam can be formulated by a 
set of four first-order ordinary differential equations 
which have been numerically solved using the scheme 
of multiple shooting method with two numerical solvers 
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including unbounded Gauss-Newton Method and 
bounded Gauss-Newton Method [15]. An approximate 
power series solution using an incremental linearization 
approach in global coordinate model was implemented 
to investigate deformed shape of compliant mechanisms 
with large displacement and rotation [16].  

In that work, the concentrated loads were applied to 
a compliant mechanism of initially curved members. 
The analytical homotopy analysis method (HAM) has 
been used to investigate the large deformation of a 
cantilever beam under point follower load at the free tip 
[17, 18]. An analytical analysis investigation on large 
deflection of cantilever beams subjected to end point 
load has also been studied using the Adomian 
decomposition method (ADM) [19] and direct nonlinear 
solution (DNS) [20]. A comparative review of different 
methods regarding computation time, implementation 
convenience and accuracy was reported in the literature 
[20]. Nonlinear elastic behavior of materials, makes the 
problems more complex. Large deflection of a linear 
viscoelastic slender cantilever beam subjected to a time 
dependent concentrated load at the free end has been 
investigated by Vaz and Caire [21]. Solano investigated 
exact solutions for the large deflection of a cantilever 
beam made of Ludwick type material under a 
concentrated loading at the free end as well as a 
uniformly distributed vertical load [22]. An initially 
curved partially compliant bi-stable mechanism was 
also studied by Tolou and Herder [10]. 

Most of the beams which have been investigated in 
the above mentioned studies are the classical type of 
compliant beams which were subjected to tip loads, 
while a few of them were subjected to distributed loads; 
with variable thickness or nonlinear materials [22, 23, 
16]. In addition, Lee has carried out the Post-buckling 
analysis of uniform columns under combination of a 
uniformly distributed axial load and concentrated load 
at the free end [24] using Butcher's numerical 
integration procedure. Then Merli et al. have analyzed 
the nonlinear bending problem of a constant cross-
section extensible beam with simply supported ends 
subjected to a uniformly distributed load [25]. 

 In the above studies, the numerical integration was 
derived using a nonlinear Timoshenko beam and two 
different linearization schemes, namely, multistep 
transversal linearization (MTrL) and multi-step 
tangential linearization (MTnL). 

In this article, the previous works have been 
extended by analyzing the large deflection of a variable 
thickness beam. The non-homogenous material under 
general loading cases consisting of concentrated end tip 
force, end tip moment, and distributed loading were also 
considered. Large deflections analysis of beam was 
carried out considering multiple boundary conditions 
including, clamped, simply supported, free and sliding. 
The mathematical formulation of this problem yields to 
a set of six first-order ordinary differential equations 

consisting components of slope, moment, forces and 
positions of each point of the beam in global Cartesian 
coordinates. The shooting method has been used to 
solve the governing equations numerically. The two 
point boundary value problem (BVP) is transformed 
into an initial value problem (IVP). The solution starts  
by assuming an initial conditions and continues with 
integration of the equations using the Runge-Kutta 
algorithm [26].  

By adjusting the assumed initial values using 
iterative methods, the terminal boundary conditions will 
be convergence to an acceptable degree of accuracy. 
This adjustment is implemented by minimization of 
errors in terminal boundary conditions using an 
optimization algorithm such as Newton’s or quasi-
Newton’s method. This procedure has a simple 
formulation and high accuracy with extreme 
convergence speed [26]. Unlike the finite element 
method which requires fine meshing to increase the 
accuracy, this method does not depend on element size 
and correspondingly may reduce the computation time. 
Without loss of generality, the shear and axial 
deformations are assumed insignificant because of their 
small values compared to flexural deformation of 
slender beams. Several numerical examples are 
presented covering prismatic and non-prismatic 
cantilever beams subjected to a general loading 
consisting of moments, distributed loads and 
concentrated loads in vertical and horizontal directions. 
The beams are inextensible, linear elastic and initially 
straight with various boundary conditions at both ends. 

This paper is organized as follows: the moment-
curvature relationship and governing equation are first 
derived in section 2. 1. In section 2. 2, constraints and 
loading cases are introduced; section 2. 3 presents the 
shooting method as the numerical solver. The results are 
portrayed graphically and presented numerically in 
section 3 and compared with those of the numerical 
solution obtained from FEM. Discussion on obtained 
results are presented in section 4 and finally, section 5 
represents the  conclusions. 

 
 

2. MATHEMATICAL MODEL 
 
Figure 1 shows the deflected configuration of a non-
prismatic compliant beam of length L and variable 
stiffness EI(s) subjected to concentrated forces Fx, Fy, 
bending moment Me at the end point and non-uniform 
horizontal and vertical distributed loads Wx(s), Wy(s), 
where s denotes the location along the deflected axis of 
the beam. The boundary conditions of the beam at 
points O and B are assumed to be clamped, simply 
supported, sliding or free. As mentioned before, the 
material is assumed to be isotropic with linear elastic 
stress-strain behavior and for the slender beam the axial 
and shear deformations are assumed to be negligible. 
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2. 1. Governing Equation    Figure 2 shows the free 
body diagram of a compliant beam segment from point 
( ss yx , ) to the tip of the beam. 
 
 

 
Figure 1. Non-prismatic compliant beam under generalized 
loading 
 
 

 
Figure 2. Free body diagram of the compliant beam segment 
 
 

 
Figure 3. Infinitesimal element in global coordinate system 
 
 

Horizontal and vertical equilibrium force equations 
of this segment are: 

(1) ( ) ( )LH s W s ds FS x x= +∫  

(2) ( ) ( )LV s W s ds FS y y= +∫  

Consider an infinitesimal element of length ds of the 
beam as shown in Figure 3. 
Applying the moment equilibrium of the element yields: 

(3) ( ) ( ) ( ) 0dM s ds V s dx H s dy
dS

+ − =  

The link is characterized by a nondimensional arc length 
]1,0[∈u  along its neutral axis that is defined as 

u s L= . From Euler–Bernoulli law and the geometrical 
relationship of the infinitesimal element: 

(4) )()()( u
du
d

L
uEIuM ψ=

 

(5) ))()(cos( uuLx
du
d ηψ +=  

(6) ))()(sin( uuLy
du
d ηψ +=  

where Ψ and η are the angle of rotation and initial slope 
of the beam, respectively. As shown in Equation 4, both 
non-uniform moment of inertia, I(u), and non-
homogenous Young’s modulus, E(u), can be 
incorporated. Substituting Equations (4), (5) and (6) into 
Equation (3), results in: 

(7) 2

1 ( ( ) ( )) ( ) cos( ( ) ( ))

( ) sin( ( ) ( )) 0

d EI u u V u u u
duL

H u u u

ψ ψ η

ψ η

′ + + −

+ =

 

The prime over a variable denotes the first derivative 
with respect to u. The detail of above derived equations 
are found in the literature [23].  

Equations (1), (2), (5), (6) and (7) are the governing 
equations of the large deflection behavior of cantilever 
beams of non-uniform thickness and non-homogeneous 
material subjected to various types of loadings. In order 
to proceed solving the equations use the direct multiple 
shooting method, the beam is divided into N arbitrary 
subsegments by N-1 control points. In each subsegment, 
η , EI are constant and xW , yW are uniform. As the 
number of control points increases, it can be shown the 
accuracy of the results increases. 

On the other hand the computational procedure and 
consequently, the CPU time increased. Dividing the 
beam in the subsegments less than 10 (i.e 10≤N ) is 
usually sufficient to determine the shape of a compliant 
beam. 

Equations (1), (2), (5), (6), and (7) form a system of 
coupled first-order ordinary differential equations as 
follows: 

(8) 

2
( sin( ) cos( ))

cos( )

sin( )

( )

( )

i
i Li H Vi i i i i i iEIixiq Li i i iyi Li i iHi L Wxi iVi L Wyi i

ψ
ψ

ψ ψ η ψ η

ψ η

ψ η

′′

′ + − +

′ = = +

+

−

−

 
   
   
   
      
   
   
   
   
    

  
, 1i to N=  
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Each set of governing Equation (8) can be applied to 
any sub segment. In each sub segment the non-
dimensional parameter iu  along with neutral axis of the 
beam follows the following relationship: 

(9) 0 ... 10 1u u uN= < < < =  

The 1 2[ ,  ,  ... ]T T T T
Nq q q q=  is the vector of unknowns of 

the flexible beam. Equation (8) is a set of ordinary 
differential equations which can be solved numerically 
by algorithms such as “ode45” in MATLAB® [29], 
using an initial guess for vector q. However, the 
problem of the beam is a BVP which is then treated as 
an IVP. 
 
2. 2 Boundary Conditions   Both ends of the beam 
are constrained, which can be expressed by constraint 
equations. The equations may be divided into four 
classes including force, position, moment and slope 
constraints depending on the joint type. The joints are 
also categorized in four types including clamped, simply 
supported, free and sliding. The joints along with the 
boundary conditions are shown in Table 1. 
 
 

TABLE 1 . Boundary conditions and joint types 

 Force Position Moment Slope 

Clamp NA* i

i

x const

y const

=

=





 0iψ =  NA 

Simply 
Support NA 

x consti
y consti

=

=





 EIi MeiLi
ψ ′ =  NA 

Free 
i x

i y

H F

V F

=

=





 NA 
EIi MeiLi

ψ ′ =  NA 

Sliding 

Along 
x axis 

H Fxi =  y consti =  EIi MeiLi
ψ ′ =  NA 

Along 
y axis 

V Fyi =  x consti =  EIi MeiLi
ψ ′ =  NA 

*NA: not available and are to be determined during computation 
 
 
 
The bending moment and forces are normalized as 

(10) 

2 2 3
, , ,

(0) (0) (0)
3

,
(0) 2 (0)

L L L
F F F F W Wx x y y x xEI EI EI

L L
W W M My yEI EIπ

= = =

= =

 

When a beam is divided into N subsegments, it has 
)1(6 −× N continuity conditions at each control point as 

shown in Equation (11) for the forces, positions, 
moment and slope in each subsegment. 

(11) 

( ) ( )1

1' '( ) ( )1
1

( ) ( )1 1 : 1

( ) ( )1

( ) ( )1

( ) ( )1

u uj j jj

EIEI j j
u uj j jjL Lj j

x u x uj to N j j jj
y u y uj j jj

h u h uj j jj
u uj j jj

ψ ψ

ψ ψ

ν ν

= +

+
= +

+

== − +

= +

= +

= +














 

From Equation (8), a beam has N×6  differential 
equations, a number that must be equal to the number of 
constraint equations in order to be solved to obtain 

N×6  unknowns. There are 6 constraints at both end 
points which are presented in Table 1. As a result, a 
beam with N sub segments has N×6  constraint 
equations. So, the number of equations is equal to the 
number of boundary conditions. Constraint equations 
including boundary conditions and continuity equations 
lead to a vector of nonlinear algebraic equations: 

(12) 0)( =qF  

 
2. 3. Multiplie Shooting Method   The shooting 
method is an approach for solving a BVP by converting 
it to an IVP. The unknown initial values need to be 
assumed, and then the IVP to be solved to obtain the 
boundary values subsequently. If the obtained results 
are not equal to the predefined boundary conditions, an 
iterative approach such as Newton’s method will be 
applied. The initial guess will iteratively be changed 
until the boundary conditions on the other side are 
satisfied. Similar to solve nonlinear equations, the 
simple Shooting method has the following two major 
concerns in implementation: 
• The solution is sensitive to the initial guess. For 

highly nonlinear or unstable problems, the initial 
guess has to be close enough to a solution. Wrong 
initial guesses may lead to singularities or cause the 
solutions not exist on bounds. 

• Slow convergence of solutions. Solving nonlinear 
systems utilizes root finding techniques that 
typically make these methods converging at slower 
rate. Also the round off errors that emerge in each 
iteration may slow down the convergence rate of 
the solutions. 

The multiple shooting method was originally developed 
by Keller [26]. This procedure divides the interval into 
small subdivisions and solves a BVP by implementing a 
simple shooting method in each of the smal intervals 
until the results converge to an acceptable degree of 
accuracy. Considering uniqueness and existence of 
solutions of BVP,  the Gauss-Newton method has been 
used to solve BVP which begins with N×6  initial 
guesses 0q . It solves q iteratively, until Equation (12) 
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has been satisfied. Therefore, it is possible to 
approximate Equation (13) in each iteration (k th) by the 
first-order function: 

( ) ( ) ( )( )F q F q J q q qk k k≅ + −  (13) 

In this equation, kq  is the initial guess and ( )J qk is the 
Jacobian matrix evaluated numerically at kq  using the 
finite difference method. Calculation of Jacobian matrix 
is very time consuming, hence, it the Quasi- Newton 
approach such as Broyden’s method [27] can be used to 
approximate the Jacobian matrix in each iteration. To 
find vector q by solving Equation (13), when the 

||)(||min qF become less than the tolerance ε the 
iteration will be terminated: 

min || ( ) ||F q ε≤  (14) 

Next, the approximation Equation (15) is squared 
and expanded: 

2|| || ( 2 )t t t tJ q b q J J q b J q b bk k k k k k k k− = − +  (15) 

To simplify the notation, the vectors )( kqJ  and 
)( kqF  are defined as kJ  and kF , respectively. Where 

kb  is a constant vector in each iteration and  can be 
defined as follows: 

b J q Fk k k k= −  (16) 

Since k
t
kbb  is a constant vector in each iteration, it can 

be eliminated from Equation (15). The remaining 
problem is to develop in the standard form of the 
quadratic programming problem (QP) which can be 
solved using various methods such as “fmincon” or 
“quadprog” in MATLAB®: 

1
min( ) ;

2
t tq Hq F q q q qlb ub+ ≤ ≤  (17) 

Solving the quadratic programming problem leads to 
find the vector q, that is the initial guess for the next 
step 1+kq . This iteration procedure will be repeated until 
Equation (14) is satisfied for a given ε. 
 
 
3. RESULTS 
 
Numerical examples will now be given to illustrate the 
validity of the present study and to investigate the force-
deflection behavior of the beam under different 
boundary conditions. The nonlinear FEM result is 
obtained by the co-rotational procedure implemented in 
ANSYS® [30], in which the beam 3 element has been 
used to perform large-displacement static analysis. The 
tolerance ε in all examples was set at 1e-8. The adopted 
dimensions in the numerical example are presented in 
Table 2. 

TABLE 2. Geometrical properties adopted for the 
numerical examples.

 

Length, L [mm] 50 

In-plane thickness, h [mm] 0.4 

out-plane thickness, b [mm] 6 

Young’s modulus, E [GPa] 115 (titanium Ti-6 Al-2 V)[31] 

 
 
3. 1. Case I: Beam with Clamped-free Boundary 
Condition under End Point Force and Moment    
Figure 4(a) shows the trajectory position of an initially 
straight cantilever beam made up of linear elastic 
material under normalized end point concentrated load 
Fy (0 to 10 in –y direction). Figure 4(b) shows the non 
dimensional loads versus non dimensional 
displacements of end tip in x and y directions  (U/L, 
W/L respectively). In Table 3 the results are compared 
with the elliptic integral solution [28]. 
 
 

 
(a) 

 
 

 
(b) 

Figure 4. Cantilever beam of case I under normalized end 
loads: (a) Trajectory position and (b) non dimensional moment 
versus x and y end tip displacements 
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TABLE 3. Comparison of present study results with those of 
the elliptic integral solution for case I under end point force 

  
Fy  

 U

L
  W

L
 

Ref [27] Present 
Study 

 Ref [27] Present 
Study 

1  0.05643 0.0564  0.30172 0.3017 

2 0.16064 0.1606  0.49346 0.4935 

3 0.25442 0.2544  0.60325 0.6033 

4 0.32894 0.3289  0.66996 0.6700 

5 0.38763 0.3876  0.71379 0.7138 

6 0.43459 0.4346  0.74457 0.7446 

7 0.47293 0.4729  0.76737 0.7674 

8 0.50483 0.5048  0.78498 0.7850 

9 0.53182 0.5318  0.79906 0.7991 

10 0.55500 0.5550  0.81061 0.8106 

 
 

 
(a) 

 
 

 
(b) 

Figure 5. Cantilever beam of case I under normalized end 
moments: (a) Trajectory position and (b) non dimensional 
moment versus x and y end tip displacements 
 

TABLE 4. Comparison of presented study with analytical 
method for case I under end moment 

M  

 U

L
  W

L
 

 analytical present 
study  analytical present 

study 

0.25  0.6366 0.6366  0.3634 0.3634 

0.5  0.6366 0.6366  1.0000 1.0000 

0.75  0.2122 0.2122  1.2122 1.2122 

1  0.0000 0.3718e-8  1.0000 1.0000 

 
 
 
The trajectory position of a cantilever beam subjected to 
normalized end moment M  (from 0 to 1) and four load 
steps are shown in Figure 5(a). Since all terms including 
forces, i.e. H(s) and V(s), in Equation (7) are zero, the 
problem can have an analytical solution 
( ( ) 2u M uψ π= × ). Non dimensional loads versus non 
dimensional displacements and slopes are plotted in Fig. 
5(b). In Table 4 a comparison of analytical solutions and 
the present numerical study is provided. 

 
3. 2. Case II: Beam with Various Boundary 
Conditions under Uniform Distributed Loading   
An inextensible beam with various boundary conditions 
such as clamped-free, clamped-sliding and simply 
supported-sliding under normalized uniformly 
distributed load 

yW  
(0 to 10 in –y direction) has been 

investigated using the present method. The results are 
compared to those from a finite element solution. Since 
the load is uniform, the beam is considered without sub-
segments (N=1).  

Non dimensional force displacements of the beam 
for (a) clamped-free, (b) clamped-sliding and (c) simply 
support-sliding boundary conditions are shown in 
Figures 6, 7 and 8, respectively.  

The results are compared to existing results in the 
previous studies [22]. As may be seen in Figures 6 there 
are not any difference between results of presented 
method and those of FEM, while there some differences 
as shown in Figures 7 and 8. That was due to the more 
complexity of supports of the beam. 

Table 5 demonstrates the normalized loads versus 
normalized endpoint displacements and slopes under (a) 
clamped-free, (b) clamped-sliding and (c) simply 
supported-sliding boundary conditions. 
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(a) 

 

 
(b) 

Figure 6. Beam of case II with clamped-free boundary 
condition: (a) Trajectory position and (b) non dimensional 
load- displacement 
 
 

 
(a) 

 

 
(b) 

Figure 7. Beam of case II with clamped-sliding boundary 
condition: (a) Trajectory position and (b) non dimensional 
load- displacement. 

TABLE 5. Normalized displacements and slopes for (a) 
clamped-free, (b) clamped-sliding and (c) simply supported-
sliding boundary conditions 

yW  
L
U  

L
W  

π
ψ
2

 

1 0.0088 0.1235 0.0263 

2 0.0331 0.2385 0.0512 

3 0.0685 0.3396 0.0738 

4 0.1099 0.4252 0.0937 

5 0.1533 0.4959 0.1109 

6 0.1963 0.5539 0.1258 

7 0.2372 0.6015 0.1386 

8 0.2756 0.6406 0.1496 

9 0.3110 0.6731 0.1592 

10 0.3436 0.7002 0.1675 

(a) Clamp-Free 

 
yW

 L
U

 π
ψ
2  

1 0.2e-8 0.0022 

2 0.0001 0.0045 

3 0.0003 0.0068 

4 0.0006 0.0090 

5 0.0009 0.0112 

6 0.0013 0.0135 

7 0.0018 0.0157 

8 0.0023 0.0179 

9 0.0030 0.0201 

10 0.0036 0.0222 

(b) Clamp-Sliding 

 

yW  
L
U  

π
ψ
2

 

1 0.0004 0.0066 

2 0.0017 0.0132 

3 0.0037 0.0198 

4 0.0066 0.0262 

5 0.0102 0.0326 

6 0.0144 0.0389 

7 0.0193 0.0450 

8 0.0248 0.0509 

9 0.0307 0.0567 

10 0.0371 0.0623 

(c) Simply Support-Sliding 
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3. 3. Case III: Beam with Clamped-sliding 
Boundary Condition under End Point Moment  
The behavior of a beam with clamped-sliding boundary 
condition subjected to four normalized endpoint 
moment cases is depicted in Figure 9 (a). The results are 
compared to the finite element results. Figure 9 (b) 
shows the normalized endpoint slopes versus non 
dimensional arc length for each load case. 
 
 
 

 
(a) 
 

 
(b) 

 
Figure 9. Beam of case III with clamped-sliding boundary 
condition: (a) Trajectory position and (b) non dimensional 
load- displacement. 
 

 
3. 4. Case IV: Non-prismatic Beam with Clamped-
sliding Boundary Condition under Non-uniform 
Distributed Loading    In the final study a general 
case of research is presented. A non- prismatic beam 
with clamped-sliding boundary condition subjected to a 
ramp loading is shown in Figure 10 (a). Out of plane 
thickness is assumed to be uniform and equals to 1 mm 
( mmb 1= ), in plane thickness is varied from h1=0.6 mm 
at u=0 to h2=0.4 at u=1, respectively. The load w0 is 
equal to 800 N applied at u=0. Figure 10 illustrates the 
trajectory position and non-dimensional load-
displacement of the beam with clamped-sliding 
boundary condition. 

 

(a) 
 

 
(b) 

Figure 10. Non prismatic beam of case IV with clamp-sliding 
boundary condition under distributed ramp load: (a) Trajectory 
position and (b) non dimensional load- displacement. 
 
 
TABLE 6. comparison of convergence results for all case 
studies 
 Mean 

convergence 
iteration 

computation 
time(s) 

Accuracy 

Case I (end force) 4 3.3910 1e-8 

Case I (end moment) 1 2.3390 1e-8 

Case II (Clamp-Free) 5 3.4940 1e-8 

Case II (Clamp-
sliding) 

5 4.1030 1e-8 

Case II (simply 
supported-sliding) 

5 3.9620 1e-8 

Case III 3 3.1180 1e-8 

Case IV 6 4.8360 1e-8 

 
 
3. 5. Convergency and Computation Time   Table 6 
represents the mean convergence iteration, 
computational time and accuracy of results for all above 
case studies. The number of both sub-segments and load 
steps is assumed to be equal to 10. An Intel Pentium 4 
Core 2 Duo (2 GHz CPU with 3 GB RAM) hardware 
has been used to run the program and find the deflected 
shapes of the beam. Prior to starting the iterations, the 
Jacobin matrix should be calculated once, however for 
each load step an approximation will be made using 
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Quasi- Newton algorithm and the iteration will be 
continued. Therefore, all of the computational time is 
spent to calculate the accurate value of the Jacobian 
matrix which is presented in all examples. 
 
 
4. DISCUSSION 
 
As data presented in Table 5, the computation time for 
all studied cases is found to be less than 5 seconds. The 
lowest computational recorded time corresponds to the 
Case I which is the cantilever beam under end point 
load, while the highest one (almost 2 times more) 
corresponds to Case IV which is the non-prismatic beam 
with clamped-sliding boundary condition under non-
uniform distributed loading. As shown in this table, as 
the complexity of load case increases or the boundary 
condition changes towards cancelation of more degrees 
of freedoms, the computation time increases. This table 
also shows that an increase in number of sub-segments 
reduces the convergence rate and increases 
computational time. However, the solution still 
converges to a reasonably good accuracy as the  number 
of load steps is increased. Reduction in number of load 
steps leads to divergence of results. This fact again 
shows that the nonlinear behavior depends on the 
loading history. Decreasing the value of ε increases the 
accuracy of results. However, it is less effective than 
increasing the number of sub-segments or load steps. 

Some assumptions have been made to drive the 
governing Equation (9) including neglecting the 
bending effects and shear deformation. Nevertheless, 
the results are of good accuracy and agreed to those of 
FEM, as shown in Figures 4-9. It may be seen in 
Figures 4 and 6 that changes in the shape  due to the 
distributed load is less as compared to the concentrated 
load. Also, as expected from Figures 7 and 8, the 
deflection will be increased (in the order of 10 percent) 
if one of boundary conditions is changed from clamped 
to simply supported. Figure 9 once gain validates the 
present approach as the slope at the clamped and simply 
supported ends matches with the boundary conditions. 
From Figure 10, it can be seen that the effect of the 
cross section on the deflection is also significant. This is 
due to the fact the area moment of inertia is more 
sensitive to in-plane thickness than out of plane 
thickness. 

 
 

5. CONCLUSION 
 
In this paper, large deflection of compliant beams of 
variable thickness made of non-homogenous material 
under combined load and multiple boundary conditions 
has been investigated. The problem was modeled 
mathematically, and the governing equations were 

derived and solved numerically using a shooting 
method. The large deflection analysis of compliant 
beams in the form of generalized case e.g. combined 
load, variable thickness, non-homogenous material and 
multiple boundary conditions has been investigated. 
Several examples are presented and a comparison was 
performed with FEM results. The presented method 
features high degree of accuracy with a considerably 
good convergence rate and is capable of handling a 
wide range of cases. It was also found that the multiple 
shooting method is not sensitive to initial values. Unlike 
the other methods the quadratic programming problem 
does not need to calculate the inverse Jacobian matrix 
that may introduce singularities. Therefore, the 
presented study can extensively be used in design of 
compliant mechanisms as well as a comparative for 
accuracy assessment of other methods. 
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 چکیده

 
  

پردازد که رفتار تیرهاي منشوري و غیر منشوري همگن و غیر  این مقاله به مطالعه و تحقیق در خصوص روش جدیدي می
این بررسی در شرایط مرزي متفاوت و بازگذاري مرکب انجام . دهد گن را در تغییر مکانهاي بزرگ مورد بررسی قرار میهم

تهیه مدل ریاضی این تیرها منجر به تشکیل یک دستگاه معادلات متشکل از شش معادله دیفرانسیل معمولی از . شده است
. ریزي غیر خطی تحلیل گردید اي چندگانه و برنامه ه از روش پرتابهشرایط غیر خطی هندسی با استفاد. مرتبه اول گردید

نتایج نشان . نتایج بدست آمده از حل با روش فوق با نتایج موجود از تحقیفات انجام شده در این زمینه مقایسه گردید
عات مرتبط مورد پذیر، فنرهاي غیرخطی و یا موضو توان براي طراحی مکانیزمهاي انعطاف دهد که این روش را می می

 .استفاده قرار داد
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