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This paper focuses on a hydraulic radius separation approach used to calculate the boundary shear stress in
terms of bed and wall shear stress proposed in a trapezoidal channel. The average bed and sidewall shear
stress in smooth trapezoidal open channels are derived after using Guo and Julien’s early equations, taking
a part of an investigation to cover both rectangular and trapezoidal channels. On the basis of the conformal
mapping procedure, a numerical solution is obtained for a case of constant eddy viscosity without
concerning secondary currents effect. In comparison with laboratory measurements data, the first
approximation for a rectangular channel overestimates the average bed shear stress measurement by about
4.8% and by decreasing a sidewall slope, overestimation increases. It, however; underestimates the
average sidewall shear stress by about 6.88%; in this case, underestimation increases while sidewall slope
is decreasing. A second approximation is then presented by introducing two lumped empirical correction
factors for taking into account the effects of secondary currents, variable eddy viscosity and else. Using
experimental data, in terms of average bed shear stress, the second approximation agrees very well (at
least R>>0.99, and an average relative error less than 5.35%) over a wide range of width to depth ratios. In
terms of average wall shear stress, the second approximation returns acceptable results despite the scatter

data with an average relative error less than 5.95% and by R*>0.93 where it seems to be reasonable.

doi: 10.5829/idosi.ije.2012.25.04a.04

1. INTRODUCTION

The distribution of boundary shear stress around the
wetted perimeter in open channels is known to depend
upon the shape of the cross section [1-9], the
longitudinal variation in planform geometry [10], the
boundary roughness distribution [11-14] and the
structure of secondary flows [15-19]. The importance of
understanding boundary shear stress distributions is
demonstrated by the use of local or mean boundary
shear stress in many hydraulic equations concerning
resistance, sediment, and dispersion or cavitation
problems. Furthermore, to estimate the bed-load
transport in open channel flows, one must separate the
bed shear stress from the total shear stress. Similarly,
one must know about the sidewall shear stress to study
channel migration or to prevent bank erosion.
Moreover, a sidewall correction procedure is often
needed in laboratory flume studies of velocity profiles,
bed form resistance and sediment transport [120-22].

* Corresponding Author Email: javid.cen@gmail.com (S. Javid)

However, accurate computation of the local or mean
shear stress is a difficult task even using sophisticated
turbulence models. As an alternative, various empirical,
analytical or simplified computational methods were
developed [15, 23-33].

Some of them relies on splitting the channel cross-
section into sub-regions inside which, the weight of
fluid is balanced by shear force acting along the
corresponding wall sections for computation of the
local, mean wall, and the mean bed shear stress in
straight and prismatic channels [34]. The idea of
mapping the channel cross-section and defining those
sub-regions by the way of bounding orthogonals to the
isovels is attributed to Leighly [35].

Those orthogonals were assumed to be ‘surfaces of
zero shear’ [34], meaning that the weight of water
flowing within the sub-region volumes had to be exactly
balanced by the shear forces acting on the
corresponding parts of the channel wall. In an appendix
Leighly [35] and Einstein [36] proposed the hydraulic
radius separation method that permits dividing a cross-
sectional area into two areas Ay and A, , as it is shown
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in Figure 1. The division of the channel into 3 regions is
achieved by computing the balance between shear force
exerted on each wall section and the adjacent weight of
water.

However, although the separation concept embraced
by many, the calculation of the division lines is difficult;
Keulegan [37] proposed a geometrical method based on
the bisector of the base angle and Chiu and Chiou [38]
suggested a mathematical model for the isovels,
permitting the application of Leighly’s idea.

Interestingly, Einstein [36] neither provides a sketch
nor offers details to how such division lines would be
computed.

In a subsequent discussion, Haywood plotted
straight lines obtained iteratively, so that (a) there was
no friction along the lines, and (b) the weight of fluid
matched the wall shear force. This is different from the
first sketch reported by Yang and Lim [31] which was
based upon the assumption that an absence of friction at
the division interface, uses a piece-wise linear curve
approach  obtained from  energy  dissipation
considerations. Subsequently, Guo and Julien [25]
proposed an analytical approach by analyzing the
continuity and momentum equations to establish the bed
and wall shear stress.

This paper points towards using a method of Guo
and Julien [25] as a part of an investigation for the
calculation of average bed and wall shear stress in
straight prismatic trapezoidal channels.

Although their method provided some good results,
it was only presented for rectangular cross section
channels.

Starting with the Guo and Julien’s [25] equations for
a steady uniform flow, the objective of this paper is first
to achieve a theoretical basis for the boundary shear
stress in trapezoidal open channels. Then, by assuming
various sidewall slopes, as a first approximation, a
numerical solution is possible to calculate the boundary
shear stress using conformal mapping procedure, after
neglecting secondary currents and assuming a constant
value for eddy viscosity term. A second approximation
is then presented by introducing two lumped empirical
correction factors for the effects of secondary currents,
variable eddy viscosity and other possible effects.
Finally, another numerical study is achieved to
generalize the concluded average bed and wall
equations to cover sidewall slopes of trapezoidal
channels from 30° to 90° sidewall angles. The
experimental data documented by Javid [39] are used
for validation purposes of equations obtained.

2. THEORETICAL ANALYSIS

Guo and Julien’s [25] method starts to consider control
volume BCHGB [Ay] in Figure 1, that has a unit length
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Figure 1. Comparison partition of cross-sectional area for bed
shear stress and sidewall shear stress

in the flow direction x and assumes delimitations of BG
and CH that are symmetric with respect to the axis z and
6 =90° . The flow direction defined the axis x, and the
cross-sectional plane y—z as it is shown in Figure 2. In
addition, the main flow velocity in the axis x denoted as
u, and the secondary currents in the plane y—z are v and
w, respectively. They analyzed the continuity and the
momentum equations to demonstrate that the bed shear
stress is comprised of three terms, namely the
gravitational (I), the secondary flows (II), and the
interfacial shear stress (III) in the following equation:

E:%S/l”fbgjl‘pu(vdz 7wdy)+§jl‘(r”dz —rzxdy) D

For the case of steady uniform flow in a rectangular
open channel; in which g=gravitational acceleration;
p=mass density of water; S=channel bed slope; b is the
channel width; and ¢,, and ¢ = shear stress in the flow

direction x applied on the z—x plane and the y—x plane,
respectively. One can prove that although Equation (1)
was derived for a smooth rectangular channel, they are
valid for all types of cross sections as long as BG and
CH are symmetric [25, 40]. Similarly, in case of
trapezoidal channels, the average sidewall shear
stress, 7,, , can also be derived from the force balance in

an arbitrary control volume, BGEB or CFHC in Figure
1. However, a short way to derive the average sidewall
shear stress is to consider the overall force balance in
the flow direction. That is

2hV1+m? ., + bty = pgS (b +mh 2

in which the first term on the left-hand side is shear

force on the two side walls, the second term is shear

force on the channel bed, and the right-hand side is the

component of water gravity in the flow direction.
Applying Equation (2) in Equation (1) gives the

average wall shear stress as:

— pgS(b+mh—4,[h) I pu (vdz —wdy ) I,_ (Tﬁdz —T;xd)’)

T, +=t 3)
2\/1+m2 h\/1+m2 h\/1+m2

where, / is the flow depth and m = Coz0 .
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3. FIRST APPROXIMATION
SECONDARY CURRENTS

WITHOUT

To estimate the boundary shear stress, using Equations
(1) and (3), one must know the main velocity u and

secondary currents, v and w, shear stress “» and "z,
and the integration path CH. On the other hand, to solve
for velocity field, one must know the boundary shear
stress. This interaction between velocity and shear stress
makes a solution for boundary shear stress or velocity
profiles very complicated, as shown by Chiu and Chiou
[38]. As a first approximation, one may neglect the
effects of secondary currents and the fluid shear stress.
Thus, Equation (1) becomes

5 = pegSay or (4a)
b
T _Ap (4b)
pghS bh

and Equation (3) becomes

—_ oSl ) o

o 21+ m? (52)

T, _m +(b/h)(1 —E/pghs)
pghs 214

The remaining problem is to find the area, 4,

(5b)

which is equivalent to finding the delimitations BG and
CH, in Figure 2.

3. 1. Delimitations BG and CH One can show that
the corresponding momentum equation in the flow
direction x is

ou ou 0Ty 01,y
p[v5+w5j—pgS+?+; (6)

The convective accelerations on the left-hand side of
Equation (6) accounts for secondary currents. The first
term on the right-hand side is the gravity component in
the flow direction, and the other two are net shear stress
applied on a differential element of fluid. The first
approximation assumes that: (1) secondary currents are
neglected; and (2) the eddy viscosity v; is constant.

Applying these two assumptions to Equation (6) gives:
ou du__ gS
a?r oar vty

= const 7

in which, Ty :p(u+u,)6u/6y; T2 = plo+o,)ou/éz ; and

v = water kinematic viscosity. The above equation is
called as the Poisson equation and can be solved by a
conformal mapping procedure [25, 41]. That is, the
orthogonals of the velocity contours used to delineate
BG and CH in Figure 2. Although a solution for
Equation (7) gives a laminar velocity profile, and the

(a)Longitudia Iprofile (b)Cross -section (flow entering the page)

Figure 2. Coordinate system in open-channel flows
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Figure 3. Estimated isovels and orthogonals pattern

orthogonals provide a first approximation of the
boundary shear stress.

To delimitate the potential lines and the streamlines,
Schwarz—Christoffel transformation [42, 43] used an
assumption of a trapezoidal cross-section channel by
width b and flow depth h from Figure 2 and a channel
sidewall aspect ratio (1:1). The related transformation
between physical flow domain (o -plane) and a half-
upper plane (& - plane) is:

j—‘;’:k.@w/zr'/‘*(@—m)*”‘* ()

in which, w=y+iz and { =& +in ; ky is transformation
constant; —b/2 and +b/2 are arbitrary values for left
and right toes of channel cross-section in
transformation, respectively. In other words, the values
of streamline crossing from corners equals to —b/2
and+b/2. Applying the theorem of integration to the
above gives:
3/4 1/4
+2k,(—b +2¢)"(2+4¢) 5

1/4

3(b+2¢) )

1 1
HyperGeometric2F1 —,2,1,——2
4442 b

=k,

in which, HyperGeometric2F1 1is known as
Equation (10) and %, is constant of integration.

HyperGeome tric 2F1 [c,d,e,x] =

ix+c(c+l)d(d+l)x2+m (10)

=1
’ e ele+1)

It is notable that k{,k, can be specified by

applying the channel toes condition in Equation (9). In
order to obtain the isovels and orthogonals pattern, over
than 100,000 various points for each parameter b, &

and n in Equation (10) were applied to use the
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Mathematica Software Package. Figure 3 shows the
results of this numerical analysis; in which n/b and
E/b are dimensionless values for isovels and

orthogonals, respectively. Likewise, Equation (11)
estimates over than 1000 points by applying the
streamline condition which crosses from right toe of the
channel (£ =5/2 and various values for 77) in Equation

(9) to delimitate division line CH as:
y/b=05Exp(-0.57z/b) (11)

as shown in Figure 1.

3. 2. Average Bed and Sidewall Shear Stress With
reference to Figure 1, after considering symmetry with
respect to the channel centerline, the area 4, can be

estimated as follows:
h

4 :2J' ydz =1.7544 %[ Exp (— 0.57h /b)] (12)
0

Substituting Equation (11) into Equation (4b) gives
the average bed shear stress as:
; :1.7544£1*E -0.57h/b
SalS el ) (13)

So, the average wall shear stress may be calculated
by substituting Equation (13) into Equation (5b).

4. SECOND APPROXIMATION WITH CORRECTION
FACTORS

The first approximation also implies that the maximum
velocity occurs at the water surface. However, studies
by Javid [39] and Javid and Mohammadi [44] illustrate
that the secondary flow cells’ specific performance in
trapezoidal channels change the pattern of flow lines
and potential lines, especially in the corners and surface
water. So, the second approximation aims at improving
upon the first approximation by introducing two lumped
empirical correction factors in the first approximation.
Substituting Equation (12) into Equation (4b) gives:
Tp 1

h
= -0.57z/b 14
pghS h Joexp( : ) (14

Applying the theorem of integration by parts and
then the mean value theorem for integrals to the above
gives:

0.57A.h

”’S = Exp(~0.57h/b)~ Exp(—0.571.h/b) (15)

pgh

To include the effects of secondary currents,
variable eddy viscosity and other possible effects, two
lumped empirical correction factors A; and A, are
introduced in Equation (15). In other words, using
Equations (14) and (15) one can assume:

b _ By (= 0.57h/b)- Ay L Exp ( 0.57 2gh 1 B) (16)
pghS b

Substituting Equation (16) into Equation (4b) gives
the second approximation for the average sidewall shear
stress. For as much as m=1 for trapezoidal channel with
sidewall aspect ratio (1:1), Equation (5b) reduces to
Equation (17):

o A b —
W === 1+—= -1,/ pghS 1
e S ARk Sl | (7

in which 7, /pghs is estimated by Equation (16). To
ensure the validation of the above two equations in both
narrow and wide channels, Equations (16) and (17)
were  analyzed  together  with  experimental
measurements from Yuen [22] by SPSS Software
Package. Analysis indicates that the first empirical
correction factor, A;, is not sensitive to b/ ratio, and

changes of average bed and sidewall shear stress are
negligible by various b/h ratios, like what was found
in Guo and Julien’s [25] work for rectangular cross-
section channels. However, analysis of the results
yields:

2 =033 (18)
But second empirical correction factor,A,, is very
sensitive to b/h ratio value and A, decreases by

increasing b/h . By comparison between the value of
A, and empirical data, Equation (19) is estimated:

dy =4.25+3.04Ln(h/b) (19)

This could be due to the influence of the wall
distance variation in height along the channel symmetry
axis which is fixed in rectangular channels with vertical
walls, and thus results in a constant value [25]. Finally,
with Equations (18) and (19), the second approximation
of the average bed shear stress, Equation (16) reduces
to:

T

pghS

h h h h
= 57— |-0.33— .57—| 4.25+3.04Ln| —
Exp(—O 57b] 033bExp(—057b( 5+3.04 n(b]D (20)

and the sidewall shear stress can be calculated by
substituting Equation (20) in Equation (17). It is also
noticeable that Equation (20) is based on extensive
range in trapezoidal channel for a given geometrical
shape and covers both subcritical and supercritical
flows, and may also be extended to deal with non
smooth channels, although that is not needed here. One
can demonstrate that for a very wide channel where
b/h — oo, Equation (20) reduces to:

7, / pghS =1 1)

This coincides with the result in a two-dimensional
flow. However, the average sidewall shear stress for
large width—depth ratios is not zero, which can be
clearly seen by incorporating the condition 5/h — o in
Equation (17) which yields:

7,/ pghS = 0.6549 (22)
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TABLE 1. Coefficients and calculated correction factors

Sidewall Slope Experimental data source o M B K
30° Javid [26, 44, 39] -0.2374 0.0545 10.850 5.2680
45° Yuen [22] -0.5696 0.3273 4.2433 3.0333
68° Flintham and Carling [11] -1.4376 -0.0974 -0.5679 0.9251
90° Knight et al. [4, 45] -2.7877 -1.4355 0.6000 -0.1845
K =(996—19.529 +0.09292)/100 (29)

TABLE 2. Average error and correlation coefficients between
estimated equations compared with results of analysis

a M ﬁ K
Error 2.5% 3.8% 1.0% 5.9%

R >0.999

5. TRAPEZOIDAL CHANNEL WITH SIDEWALL
SLOPES 30°, 68°, 90°

Equations for determining the average bed and wall
shear stress in trapezoidal channel with sidewall slopes
30°, 68° and rectangular channel obtained by
performing the described procedures for the channel
with sidewall slope of 45° which represented in the
prior part. Consider Equation (11) as:

y=0.5b.Exp(c.z/b) (23)

then, corresponding average bed shear stress as a first
approximation is:

, bl
=———|1-E hlb 24
oS e Explach /D) (24)
and for second approximation consider Equation (20)
as:

Sttt

thus, experimental data used to determine the correction
factors A, 3, k and coefficients of Equations (24) and

(25) which change by variation of sidewall slope, o , are
summarized in Table 1 for various sidewall slopes of
trapezoidal channels.

Then, the experimental data is not available for
every trapezoidal channels sidewall slope, therefore, to
generalize the calculated coefficients, Equations (26) to

(29) estimate the values of «, 4, f and «,
respectively.

o =-7.667+7.482C0s(0.01210 —0.235) (26)
2 =(-172+8.70 -0.00302 1100 27)

p =(3149-86.780 +0.58302)/100 (28)

in which 0 is in degree. If one define the relative error
as

Error I calculated — measured| (30)

measured |

The average relative error and corresponding correlation
coefficient for Equations (26) to (29) and the respective
data are listed in Table 2. Therefore, by the above
estimated relations, the average bed and the sidewall
shear stress can be obtained for a trapezoidal channel
with sidewall slopes of 30° to 90°. For example, to
obtain the average bed and sidewall shear stress in a
trapezoidal channel with a sidewall slope of 66°, at first
a, A, P and x should be calculated from Equations

(26) to (29). Then by substituting the calculated
parameters in Equations (24) and (25), the first and
second approximation to determine the average bed
shear stress for arbitrary values of the fluid flow and
slope of the given channel geometry can be obtained,
respectively. The related sidewall shear stress can also
be calculated by substituting the calculated average bed
shear stress from Equation (24) or (25) in Equation (5b).
The authors believe that the presented relations are valid
for trapezoidal channels with sidewall slope of less than
30°, may be additional laboratory studies are needed,
but for channels with sidewall slopes 30° to 90° many
numerical studies have been conducted which all prove
the validation of presented relations.

L e
o8 {
’
i
[ ¢
w 06 1/
= [
w0 re
Ry i
fin 0.4 ,:J —— - — 1stapproximation (24)
e
L
j 2nd approximation (25)
0.2 ¢
N ©  Yuen(1989)
b
00 e b e
0 2 4 6 8 10 12 14

b/h
Figure 4. Comparison of first and second approximation for
average bed shear stress with the measurements (6=45°)
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6. COMPARISON WITH EXPERIMENTAL DATA

The existing experimental data in smooth trapezoidal
and rectangular open channels have been well
documented by Javid [39]. The data set includes those
of Cruff [46], Ghosh and Roy [1], Kartha and
Leutheusser [47], Myers [48], Knight and Macdonald
[49], Noutsopoulos and Hadjipanos [50], Knight et al.
[45], Flintham and Carling [11] and Yuen [22] and also
the results of some laboratory studies on trapezoidal
channels with sidewall slope of 30° provided by Javid
[39]. In order to validate the proposed method, one can
choose the rectangular and trapezoidal channel with
sidewall slope of 45° to peruse.

6. 1. Trapezoidal Channel with 45° Sidewall Slope
Presented model herein has been applied to the data
taken for smooth trapezoidal channel with a sidewall
slope of 45° provided by Yuen [22]. Mean bed and
mean sidewall shear stress computed by first and second
approximation are shown in Figures 4 and 5
respectively,  together  with  the  experimental
measurements. In terms of the average bed shear stress,
one can see that the first approximation Equation (24)
overestimates the average bed shear stress about 24.8%
as shown in Figure 4. This result reveals that except for
gravity, the effects of secondary currents and interface
shear stress should be considered at least empirically.
The second approximation denoted by the solid line,
agrees very well with the experimental data. The
relative error between Equation (25) and the data is
about 5.2%. If the two largest relative errors are
excluded, the average relative error then reduces to
1.57% and correlation coefficient will be greater than
0.997. The odd wave is obtained only with second
approximation in narrow channels emphasizing the
influence of the secondary currents and the Reynolds
shear stress. In terms of the sidewall shear stress, unlike
those of the average bed shear stress, the first
approximation denoted by a dashed line, is 33% less
than the experimental data when the width—depth ratio
becomes large. This finding shows that the first
approximation does not agree with the average sidewall
shear stress. However, the second approximation
improves the first approximation greatly, as it is denoted
by the solid line in Figure 5.

6. 2. Rectangular Channel = The average bed and
wall shear stress predicted by first and second
approximation in a rectangular channel was compared
with the experimental data taken by Knight et al. [45].
In terms of the mean bed shear stress, the first
approximation provides noticeably the same prediction
likewise the second approximation. In this case, the
average relative error by excluding the three largest

relative errors are, about 4.8 and 3.5%, respectively, as
shown in Figure 6. In terms of the average wall shear
stress, one can see in Figure 7, the first approximation
denoted by dashed line, predicts reasonably well results
with an average relative error of about 7.37%. It has a
little perceptible difference in comparing with the
results obtained by using the second approximation
denoted by solid line. However, the second
approximation agrees very well with the experimental
data by an average relative error of about 5.5% without
excluding any measurement data used here. To
summarize the study results, relative calculated average
error and correlation coefficients for different sidewall
slopes by first and second approximations are listed in
Table 3.

0.8

T,/pghS

- - - - 1stapproximation (24,5h)

0.2 4 2nd approximation (25,5b)

O Yuen(1989)

00 4t v b e

b/h

Figure 5. Comparison of first and second approximation for
average wall shear stress with the measurements (6=45°)
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Figure 7. Comparison of first and second approximation for
average wall shear stress with the measurements (6=90°)
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Figure 6. Comparison of first and second approximation for
average bed shear stress with the measurements (6=90°)
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TABLE 3. Summary of relative average error and correlation coefficients between calculated first and second

approximations compared with experimental data

First Approximation

Second Approximation

30° 45° 68° 90° 30° 45° 68° 90°
Err (%) 17.0 24.88 14.49 4.80 2.46 5.25 2.81 5.35
Average Bed Shear Stress
R? (%) 99.1 97.7 99.3 99.1 99.2 99.7 99.4 99.0
Err (%) 4.82 25.46 21.77 6.88 1.61 2.48 4.96 5.95
Averse Wall Shear Stress
R? (%) 96.1 97.0 96.7 91.9 99.9 97.3 98.8 93.3
7. CONCLUSIONS Chatwin, J. Millbank (eds.), Physical Mechanisms of Mixing
and Transport in the Environment, Wiley, New York, (1994),
51-87.
In this research nd Julien’s [25] meth
this esefa.c i G.uo.a dgu enl Sl[ 5] it od was useg 4. Knight, D.W. and Hamed, M.E., “Boundary shear in
as apart o 1nvest1gat10p or C_a cu atlpgt e average . < symmetrical compound channels”, Journal of Hydraulic
and wall shear stress in straight prismatic trapezoidal Engineering, ASCE, Vol. 109, No. 10 (1984), 1412-1427.
channels. A numerical solution is possible for the case 5. Lane, E.W., “Progress report on studies on the design of stable
where the eddy viscosity is a constant value and channels by the bureau of reclamation”, Proc. Journal of the
Secondary flow cells are negligible. Exerting the Hydraulics Division, ASCE, Vol. 79 No. 280 (1953), 1-30.
Schwarz—Christoffel ~ transformation, a numerical 6.  Mohammadi, M., “Boundary shear stress in a partly-filled pipe
solution is obtained. Using the Mathematica Software channels”, Proceedings Journal of Eng., Faculty of Eng.,
. Tabriz University, Vol. 54, August, (2009), Tabriz, Iran. (In
Package, related values of isovels and rays extracted. Farsi)
This leads to Equation (24) presented for Cal(_:ulat_mg the 7. Mohammadi, M., “Shape effects on boundary shear stress in
average bed shear stress as a first approximation. In open channels”, Proceeding Journal of Eng., Faculty of Eng.,
addition, Equation (5b) derived to calculate the average Tabriz University, August, (2004), Tabriz, Iran. (In Farsi)
wall shear stress for each of two approximations. 8. Mohammadi, M. and Knight, D.W., “Boundary shear stress
Comparing with the experimental measurements listed distribution in a = V-shaped = channel”, = Proceeding = Ist
in Table 3. this first imation by decreasine th International Conference on: Hydraulics of Dams & River
In lable 5, this hrst approximation by decreasing the Structures (HDRS), (2004), 401410, 26-28 April, Esteghlal
sidewall slope of a trapezoidal channel, the model Hotel, Tehran, Iran. http:/hdrs.pwit.ac.ir/
overestimates the measured average bed shear stress. 9. Yang, S-Q., and Lim, S.Y., “Boundary shear stress distributions

However, in case of average wall shear stress by
decreasing the sidewall slope, the first approximation
underestimates  the = measurements. A  second
approximation is then proposed after introducing two
empirical coefficients. The second approximation
[Equation (25)] yields a better agreement with the
experimental measurements (by R>>0.93) and an
average relative error is less than 5.95% for the average
bed shear stress despite the scatter of data. Finally,
herein the second approximation is, therefore,
recommended for practical purposes.
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