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A B S T R A C T  

   

This paper focuses on a hydraulic radius separation approach used to calculate the boundary shear stress in 
terms of bed and wall shear stress proposed in a trapezoidal channel. The average bed and sidewall shear 
stress in smooth trapezoidal open channels are derived after using Guo and Julien’s early equations, taking 
a part of an investigation to cover both rectangular and trapezoidal channels. On the basis of the conformal 
mapping procedure, a numerical solution is obtained for a case of constant eddy viscosity without 
concerning secondary currents effect. In comparison with laboratory measurements data, the first 
approximation for a rectangular channel overestimates the average bed shear stress measurement by about 
4.8% and by decreasing a sidewall slope, overestimation increases. It, however; underestimates the 
average sidewall shear stress by about 6.88%; in this case, underestimation increases while sidewall slope 
is decreasing. A second approximation is then presented by introducing two lumped empirical correction 
factors for taking into account the effects of secondary currents, variable eddy viscosity and else. Using 
experimental data, in terms of average bed shear stress, the second approximation agrees very well (at 
least R2>0.99, and an average relative error less than 5.35%) over a wide range of width to depth ratios. In 
terms of average wall shear stress, the second approximation returns acceptable results despite the scatter 
data with an average relative error less than 5.95% and by R2>0.93 where it seems to be reasonable. 
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1. INTRODUCTION1 
 
The distribution of boundary shear stress around the 
wetted perimeter in open channels is known to depend 
upon the shape of the cross section [1-9], the 
longitudinal variation in planform geometry [10], the 
boundary roughness distribution [11-14] and the 
structure of secondary flows [15-19]. The importance of 
understanding boundary shear stress distributions is 
demonstrated by the use of local or mean boundary 
shear stress in many hydraulic equations concerning 
resistance, sediment, and dispersion or cavitation 
problems. Furthermore, to estimate the bed-load 
transport in open channel flows, one must separate the 
bed shear stress from the total shear stress. Similarly, 
one must know about the sidewall shear stress to study 
channel migration or to prevent bank erosion. 
Moreover, a sidewall correction procedure is often 
needed in laboratory flume studies of velocity profiles, 
bed form resistance and sediment transport [120-22]. 
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However, accurate computation of the local or mean 
shear stress is a difficult task even using sophisticated 
turbulence models. As an alternative, various empirical, 
analytical or simplified computational methods were 
developed [15, 23-33].  

Some of them relies on splitting the channel cross-
section into sub-regions inside which, the weight of 
fluid is balanced by shear force acting along the 
corresponding wall sections for computation of the 
local, mean wall, and the mean bed shear stress in 
straight and prismatic channels [34]. The idea of 
mapping the channel cross-section and defining those 
sub-regions by the way of bounding orthogonals to the 
isovels is attributed to Leighly [35].  

Those orthogonals were assumed to be ‘surfaces of 
zero shear’ [34], meaning that the weight of water 
flowing within the sub-region volumes had to be exactly 
balanced by the shear forces acting on the 
corresponding parts of the channel wall. In an appendix 
Leighly [35] and Einstein [36] proposed the hydraulic 
radius separation method that permits dividing a cross-
sectional area into two areas Ab and Aw , as it is shown 
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in Figure 1. The division of the channel into 3 regions is 
achieved by computing the balance between shear force 
exerted on each wall  section and the adjacent weight of 
water.  

However, although the separation concept embraced 
by many, the calculation of the division lines is difficult; 
Keulegan [37] proposed a geometrical method based on 
the bisector of the base angle and Chiu and Chiou [38] 
suggested a mathematical model for the isovels, 
permitting the application of Leighly’s idea. 

Interestingly, Einstein [36] neither provides a sketch 
nor offers details to how such division lines would be 
computed.  

In a subsequent discussion, Haywood  plotted 
straight lines obtained iteratively, so that (a) there was 
no friction along the lines, and (b) the weight of fluid 
matched the wall shear force. This is different from the 
first sketch reported by Yang and Lim [31] which was 
based upon the assumption that an absence of friction at 
the division interface, uses a piece-wise linear curve 
approach obtained from energy dissipation 
considerations. Subsequently, Guo and Julien [25] 
proposed an analytical approach by analyzing the 
continuity and momentum equations to establish the bed 
and wall shear stress. 

This paper points towards using a method of Guo 
and Julien [25] as a part of an investigation for the 
calculation of average bed and wall shear stress in 
straight prismatic trapezoidal channels.  

Although their method provided some good results, 
it was only presented for rectangular cross section 
channels.  

Starting with the Guo and Julien’s [25] equations for 
a steady uniform flow, the objective of this paper is first 
to achieve a theoretical basis for the boundary shear 
stress in trapezoidal open channels. Then, by assuming 
various sidewall slopes, as a first approximation, a 
numerical solution is possible to calculate the boundary 
shear stress using conformal mapping procedure, after 
neglecting secondary currents and assuming a constant 
value for eddy viscosity term. A second approximation 
is then presented by introducing two lumped empirical 
correction factors for the effects of secondary currents, 
variable eddy viscosity and other possible effects. 
Finally, another numerical study is achieved to 
generalize the concluded average bed and wall 
equations to cover sidewall slopes of trapezoidal 
channels from °30  to °90  sidewall angles. The 
experimental data documented by Javid [39] are used 
for validation purposes of equations obtained. 

 
 

2. THEORETICAL ANALYSIS 
 
Guo and Julien’s [25] method starts to consider control 
volume BCHGB [Ab] in Figure 1, that has a unit length  
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Figure 1. Comparison partition of cross-sectional area for bed 
shear stress and sidewall shear stress 
 
 
in the flow direction x and assumes delimitations of BG 
and CH that are symmetric with respect to the axis z and 

°= 90θ . The flow direction defined the axis x, and the 
cross-sectional plane y–z as it is shown in Figure 2. In 
addition, the main flow velocity in the axis x denoted as 
u, and the secondary currents in the plane y–z are v and 
w, respectively. They analyzed the continuity and the 
momentum equations to demonstrate that the bed shear 
stress is comprised of three terms, namely the 
gravitational (I), the secondary flows (II), and the 
interfacial shear stress (III) in the following equation: 

( ) ( )2 2b
b yx zxL L

gSA u vdz wdy dz dy
b b b

ρ
τ ρ τ τ= − − + −∫ ∫  (1) 

For the case of steady uniform flow in a rectangular 
open channel; in which g=gravitational acceleration; 
ρ=mass density of water; S=channel bed slope; b is the 
channel width; and yxτ  and zxτ = shear stress in the flow 
direction x applied on the z–x plane and the y–x plane, 
respectively. One can prove that although Equation (1) 
was derived for a smooth rectangular channel, they are 
valid for all types of cross sections as long as BG and 
CH are symmetric [25, 40]. Similarly, in case of 
trapezoidal channels, the average sidewall shear 
stress, wτ , can also be derived from the force balance in 
an arbitrary control volume, BGEB or CFHC in Figure 
1. However, a short way to derive the average sidewall 
shear stress is to consider the overall force balance in 
the flow direction. That is 

( )hmhbgSbmh bw +=++ ρττ212  (2) 

in which the first term on the left-hand side is shear 
force on the two side walls, the second term is shear 
force on the channel bed, and the right-hand side is the 
component of water gravity in the flow direction. 

Applying Equation (2) in Equation (1) gives the 
average wall shear stress as: 

( ) ( ) ( )
2 2 22 1 1 1

yx zxb L L
w

u vdz wdy dz dygS b mh A h

m h m h m

ρ τ τρ
τ

− −+ −
= + −

+ + +

∫ ∫  (3) 

where, h is the flow depth and θCotm = . 
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3. FIRST APPROXIMATION WITHOUT 
SECONDARY CURRENTS 
 
To estimate the boundary shear stress, using Equations 
(1) and (3), one must know the main velocity u and 
secondary currents, v and w, shear stress yxτ  and zxτ , 
and the integration path CH. On the other hand, to solve 
for velocity field, one must know the boundary shear 
stress. This interaction between velocity and shear stress 
makes a solution for boundary shear stress or velocity 
profiles very complicated, as shown by Chiu and Chiou 
[38]. As a first approximation, one may neglect the 
effects of secondary currents and the fluid shear stress. 
Thus, Equation (1) becomes 

b
gSAb

b
ρτ =    or (4a) 

bh
A

ghS
bb =

ρ
τ  (4b) 

and Equation (3) becomes 
( )

212 m

hAmhbgS b
w

+

−+
=

ρ
τ    or 

(5a)  

( )( )
212

1

m

ghShbm
ghS

bw

+

−+
=

ρτ
ρ
τ  (5b) 

The remaining problem is to find the area, bA , 
which is equivalent to finding the delimitations BG and 
CH, in Figure 2. 
 
3. 1. Delimitations BG and CH   One can show that 
the corresponding momentum equation in the flow 
direction x is 

zy
gS

z
uw

y
uv zxyx

∂
∂

+
∂

∂
+=








∂
∂

+
∂
∂ ττ

ρρ  (6) 

The convective accelerations on the left-hand side of 
Equation (6) accounts for secondary currents. The first 
term on the right-hand side is the gravity component in 
the flow direction, and the other two are net shear stress 
applied on a differential element of fluid. The first 
approximation assumes that: (1) secondary currents are 
neglected; and (2) the eddy viscosity tυ  is constant. 
Applying these two assumptions to Equation (6) gives: 

constgS
z
u

y
u

t
=

+
−=

∂
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+

∂

∂
υυ2

2

2

2
 (7) 

in which, ( ) yutyx ∂∂+= /υυρτ ; ( ) zutzx ∂∂+= /υυρτ ; and 
=υ water kinematic viscosity. The above equation is 

called as the Poisson equation and can be solved by a 
conformal mapping procedure [25, 41]. That is, the 
orthogonals of the velocity contours used to delineate 
BG and CH in Figure 2. Although a solution for 
Equation (7) gives a laminar velocity profile,  and  the 
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Figure 2. Coordinate system in open-channel flows 

 

 
Figure 3. Estimated isovels and orthogonals pattern 

 
 
orthogonals provide a first approximation of the 
boundary shear stress. 

To delimitate the potential lines and the streamlines, 
Schwarz–Christoffel transformation [42, 43] used an 
assumption of a trapezoidal cross-section channel by 
width b and flow depth h from Figure 2 and a channel 
sidewall aspect ratio (1:1). The related transformation 
between physical flow domain (ω -plane) and a half-
upper plane ( plane−ζ ) is: 

( ) ( ) 4/14/1
1 2/2/ −− −+= bbk

d
d

ζζ
ζ
ω  (8) 

in which, izy +=ω  and ηξζ i+= ; 1k  is transformation 
constant; 2/b−  and 2/b+  are arbitrary values for left 
and right toes of channel cross-section in 
transformation, respectively. In other words, the values 
of streamline crossing from corners equals to 2/b−  
and 2/b+ . Applying the theorem of integration to the 
above gives:         

( ) ( )
( )

3 / 4 1/ 4
1

2 1/ 4

2 2 2 4

3 2
1 3 7 1            2 1 , , ,
4 4 4 2

k b
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b
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− + +
= + ×

+
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(9) 

in which,  2  1HyperGeom etric F  is known as 
Equation (10) and 2k  is constant of integration.  
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It is notable that 21 , kk  can be specified by 
applying the channel toes condition in Equation (9). In 
order to obtain the isovels and orthogonals pattern, over 
than 100,000 various points for each parameter b , ξ  
and η  in Equation (10) were applied to use the 
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Mathematica Software Package. Figure 3 shows the 
results of this numerical analysis; in which b/η  and 

b/ξ  are dimensionless values for isovels and 
orthogonals, respectively. Likewise, Equation (11) 
estimates over than 1000 points by applying the 
streamline condition which crosses from right toe of the 
channel ( 2/b=ξ  and various values for η ) in Equation 
(9) to delimitate division line CH as: 

( )bzExpby /57.05.0/ −=  (11) 

as shown in Figure 1. 
 
3. 2. Average Bed and Sidewall Shear Stress   With 
reference to Figure 1, after considering symmetry with 
respect to the channel centerline, the area bA  can be 
estimated as follows: 

( )[ ]bhExpbydzA
h

b /57.017544.12
0

2 −−== ∫  (12) 

Substituting Equation (11) into Equation (4b) gives 
the average bed shear stress as: 

( )[ ]bhExp
h
b

ghS
b /57.017544.1 −−=

ρ
τ  (13) 

So, the average wall shear stress may be calculated 
by substituting Equation (13) into Equation (5b). 
 
 
4. SECOND APPROXIMATION WITH CORRECTION 
FACTORS 
 
The first approximation also implies that the maximum 
velocity occurs at the water surface. However, studies 
by Javid [39] and Javid and Mohammadi [44] illustrate 
that the secondary flow cells’ specific performance in 
trapezoidal channels change the pattern of flow lines 
and potential lines, especially in the corners and surface 
water. So, the second approximation aims at improving 
upon the first approximation by introducing two lumped 
empirical correction factors in the first approximation. 
Substituting Equation (12) into Equation (4b) gives: 

( )∫ −=
h

b bz
bhghS 0

/57.0exp1
ρ

τ  (14) 

Applying the theorem of integration by parts and 
then the mean value theorem for integrals to the above 
gives: 

( ) ( )bhExp
b

hbhExp
ghS

b /.57.0.57.0/57.0 λ
λ

ρ
τ

−−−=  (15) 

To include the effects of secondary currents, 
variable eddy viscosity and other possible effects, two 
lumped empirical correction factors 1λ  and 2λ  are 
introduced in Equation (15). In other words, using 
Equations (14) and (15) one can assume: 

( ) ( )bhExp
b
hbhExp

ghS
b /57.0/57.0 21 λλ

ρ
τ

−−−=  (16) 

Substituting Equation (16) into Equation (4b) gives 
the second approximation for the average sidewall shear 
stress. For as much as m=1 for trapezoidal channel with 
sidewall aspect ratio (1:1), Equation (5b) reduces to 
Equation (17): 

[ ]






 −+= ghS
h
b

ghS b
w ρτ

ρ
τ

/11
4
2  (17) 

in which ghSb ρτ /  is estimated by Equation (16). To 
ensure the validation of the above two equations in both 
narrow and wide channels, Equations (16) and (17) 
were analyzed together with experimental 
measurements from Yuen [22] by SPSS Software 
Package. Analysis indicates that the first empirical 
correction factor, 1λ , is not sensitive to hb /  ratio, and 
changes of average bed and sidewall shear stress are 
negligible by various hb /  ratios, like what was found 
in Guo and Julien’s [25] work for rectangular cross-
section channels. However, analysis of the results 
yields: 

33.01 ≅λ  (18) 
But second empirical correction factor, 2λ , is very 
sensitive to hb /  ratio value and 2λ  decreases by 
increasing hb / . By comparison between the value of 

2λ  and empirical data, Equation (19) is estimated: 

( )bhLn /04.325.42 +=λ  (19) 

This could be due to the influence of the wall 
distance variation in height along the channel symmetry 
axis which is fixed in rectangular channels with vertical 
walls, and thus results in a constant value [25]. Finally, 
with Equations (18) and (19), the second approximation 
of the average bed shear stress, Equation (16) reduces 
to: 

0.57 0.33 0.57 4.25 3.04b h h h hExp Exp Ln
ghS b b b b
τ

ρ
     = − − − +     

     
 (20) 

and the sidewall shear stress can be calculated by 
substituting Equation (20) in Equation (17). It is also 
noticeable that Equation (20) is based on extensive 
range in trapezoidal channel for a given geometrical 
shape and covers both subcritical and supercritical 
flows, and may also be extended to deal with non 
smooth channels, although that is not needed here. One 
can demonstrate that for a very wide channel where 

∞→hb / , Equation (20) reduces to: 
1/ =ghSb ρτ  (21) 

This coincides with the result in a two-dimensional 
flow. However, the average sidewall shear stress for 
large width–depth ratios is not zero, which can be 
clearly seen by incorporating the condition ∞→hb /  in 
Equation (17) which yields: 

6549.0/ =ghSw ρτ  (22) 
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TABLE 1. Coefficients and calculated correction factors 

Sidewall Slope Experimental data source α λ1 β κ 

30° Javid [26, 44, 39] -0.2374 0.0545 10.850 5.2680 

45° Yuen [22] -0.5696 0.3273 4.2433 3.0333 

68° Flintham and Carling [11] -1.4376 -0.0974 -0.5679 0.9251 

90° Knight et al. [4, 45] -2.7877 -1.4355 0.6000 -0.1845 
 

 
 
TABLE 2. Average error and correlation coefficients between 
estimated equations compared with results of analysis 

 α λ1 β κ 

Error 2.5% 3.8% 1.0% 5.9% 

R2 >0.999 

 
 

 
5. TRAPEZOIDAL CHANNEL WITH SIDEWALL 
SLOPES 30°, 68°, 90° 
 
Equations for determining the average bed and wall 
shear stress in trapezoidal channel with sidewall slopes 
30°, 68° and rectangular channel obtained by 
performing the described procedures for the channel 
with sidewall slope of 45° which represented in the 
prior part. Consider Equation (11) as: 

( )bzExpby /..5.0 α=  (23) 

then, corresponding average bed shear stress as a first 
approximation is: 

( )[ ]bhExp
h
b

ghS
b /.11

α
αρ

τ
−−=  (24) 

and for second approximation consider Equation (20) 
as: 


























+−






=
b
hLn

b
hExp

b
h

b
hExp

ghS
b .1 κβαλα

ρ
τ  (25) 

thus, experimental data used to determine the correction 
factors ,1λ ,β κ  and coefficients of Equations (24) and 
(25) which change by variation of sidewall slope,α , are 
summarized in Table 1 for various sidewall slopes of 
trapezoidal channels. 

Then, the experimental data is not available for 
every trapezoidal channels sidewall slope, therefore, to 
generalize the calculated coefficients, Equations (26) to 
(29) estimate the values of ,α ,1λ  β  and κ , 
respectively. 

( )235.00121.0482.7667.7 −+−= θα Cos  (26) 

( ) 100/093.07.8172 2
1 θθλ −+−=  (27) 

( ) 100/583.078.863149 2θθβ +−=  (28) 

( ) 100/092.052.19996 2θθκ +−=  (29) 

in which θ  is in degree. If one define the relative error 
as 

measured
measuredcalculatedError −

=  (30) 

The average relative error and corresponding correlation 
coefficient for Equations (26) to (29) and the respective 
data are listed in Table 2. Therefore, by the above 
estimated relations, the average bed and the sidewall 
shear stress can be obtained for a trapezoidal channel 
with sidewall slopes of 30° to 90°. For example, to 
obtain the average bed and sidewall shear stress in a 
trapezoidal channel with a sidewall slope of 66°, at first 

,α ,1λ  β  and κ  should be calculated from Equations 
(26) to (29). Then by substituting the calculated 
parameters in Equations (24) and (25), the first and 
second approximation to determine the average bed 
shear stress for arbitrary values of the fluid flow and 
slope of the given channel geometry can be obtained, 
respectively. The related sidewall shear stress can also 
be calculated by substituting the calculated average bed 
shear stress from Equation (24) or (25) in Equation (5b). 
The authors believe that the presented relations are valid 
for trapezoidal channels with sidewall slope of less than 
30°, may be additional laboratory studies are needed, 
but for channels with sidewall slopes 30° to 90° many 
numerical studies have been conducted which all prove 
the validation of presented relations. 

 
 

 
Figure 4. Comparison of first and second approximation for 
average bed shear stress with the measurements (θ=45°) 
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6. COMPARISON WITH EXPERIMENTAL DATA 
 
The existing experimental data in smooth trapezoidal 
and rectangular open channels have been well 
documented by Javid [39]. The data set includes those 
of Cruff [46], Ghosh and Roy [1], Kartha and 
Leutheusser [47], Myers [48], Knight and Macdonald 
[49], Noutsopoulos and Hadjipanos [50], Knight et al. 
[45], Flintham and Carling [11] and Yuen [22] and also 
the results of some laboratory studies on trapezoidal 
channels with sidewall slope of °30  provided by Javid 
[39]. In order to validate the proposed method, one can 
choose the rectangular and trapezoidal channel with 
sidewall slope of °45  to peruse.  
 
6. 1. Trapezoidal Channel with 45° Sidewall Slope 
Presented model herein has been applied to the data 
taken for smooth trapezoidal channel with a sidewall 
slope of °45  provided by Yuen [22]. Mean bed and 
mean sidewall shear stress computed by first and second 
approximation are shown in Figures 4 and 5 
respectively, together with the experimental 
measurements. In terms of the average bed shear stress, 
one can see that the first approximation Equation (24) 
overestimates the average bed shear stress about 24.8% 
as shown in Figure 4. This result reveals that except for 
gravity, the effects of secondary currents and interface 
shear stress should be considered at least empirically. 
The second approximation denoted by the solid line, 
agrees very well with the experimental data. The 
relative error between Equation (25) and the data is 
about 5.2%. If the two largest relative errors are 
excluded, the average relative error then reduces to 
1.57% and correlation coefficient will be greater than 
0.997. The odd wave is obtained only with second 
approximation in narrow channels emphasizing the 
influence of the secondary currents and the Reynolds 
shear stress. In terms of the sidewall shear stress, unlike 
those of the average bed shear stress, the first 
approximation denoted by a dashed line, is 33% less 
than the experimental data when the width–depth ratio 
becomes large. This finding shows that the first 
approximation does not agree with the average sidewall 
shear stress. However, the second approximation 
improves the first approximation greatly, as it is denoted 
by the solid line in Figure 5.  
 
6. 2. Rectangular Channel     The average bed and 
wall shear stress predicted by first and second 
approximation in a rectangular channel was compared 
with the experimental data taken by Knight et al. [45]. 
In terms of the mean bed shear stress, the first 
approximation provides noticeably the same prediction 
likewise the second approximation. In this case, the 
average relative error  by excluding the three largest 

relative errors are, about 4.8 and 3.5%, respectively, as 
shown in Figure 6. In terms of the average wall shear 
stress, one can see in Figure 7, the first approximation 
denoted by dashed line, predicts reasonably well results 
with an average relative error of about 7.37%. It has a 
little perceptible difference in comparing with the 
results obtained by using the second approximation 
denoted by solid line. However, the second 
approximation agrees very well with the experimental 
data by an average relative error of about 5.5% without 
excluding any measurement data used here. To 
summarize the study results, relative calculated average 
error and correlation coefficients for different sidewall 
slopes by first and second approximations are listed in 
Table 3. 
 
 

 
Figure 5. Comparison of first and second approximation for 
average wall shear stress with the measurements (θ=45°) 
 

 
Figure 7. Comparison of first and second approximation for 
average wall shear stress with the measurements (θ=90°) 
 

 
Figure 6. Comparison of first and second approximation for 
average bed shear stress with the measurements (θ=90°) 
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TABLE 3. Summary of relative average error and correlation coefficients between calculated first and second 
approximations compared with experimental data 

 First Approximation Second Approximation 

30° 45° 68° 90° 30° 45° 68° 90° 

Average Bed Shear Stress 
Err (%) 17.0 24.88 14.49 4.80 2.46 5.25 2.81 5.35 

R2 (%) 99.1 97.7 99.3 99.1 99.2 99.7 99.4 99.0 

Averse Wall Shear Stress 
Err (%) 4.82 25.46 21.77 6.88 1.61 2.48 4.96 5.95 

R2 (%) 96.1 97.0 96.7 91.9 99.9 97.3 98.8 93.3 

 
 
 
7. CONCLUSIONS 
 
In this research, Guo and Julien’s [25] method was used 
as a part of investigation for calculating the average bed 
and wall shear stress in straight prismatic trapezoidal 
channels. A numerical solution is possible for the case 
where the eddy viscosity is a constant value and 
secondary flow cells are negligible. Exerting the 
Schwarz–Christoffel transformation, a numerical 
solution is obtained. Using the Mathematica Software 
Package, related values of isovels and rays extracted. 
This leads to Equation (24) presented for calculating the 
average bed shear stress as a first approximation. In 
addition, Equation (5b) derived to calculate the average 
wall shear stress for each of two approximations. 
Comparing with the experimental measurements listed 
in Table 3, this first approximation by decreasing the 
sidewall slope of a trapezoidal channel, the model 
overestimates the measured average bed shear stress. 
However, in case of average wall shear stress by 
decreasing the sidewall slope, the first approximation 
underestimates the measurements. A second 
approximation is then proposed after introducing two 
empirical coefficients. The second approximation   
[Equation (25)] yields a better agreement with the 
experimental measurements (by R2>0.93) and an 
average relative error is less than 5.95% for the average 
bed shear stress despite the scatter of data. Finally, 
herein the second approximation is, therefore, 
recommended for practical purposes.  
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  چکیده
   

ها در مقاطع  هاي برشی متوسط بستر و دیواره در این تحقیق با استفاده از نظریه تفکیک شعاع هیدرولیکی به محاسبه تنش
اي رو باز با جداره صاف با تکیه بر  ها در مقاطع ذوزنقه هاي برشی متوسط بستر و دیواره تنش. شود اي پرداخته می ذوزنقه

با استفاده از نگاشت . شوند اي، محاسبه می ها به مقاطع مستطیلی و ذوزنقه معادلات اولیه گو و جولیان براي بسط آن
عنوان فرض اول با صرف نظر از اثرات جریانات  هاي برشی متوسط به عددي مقادیر تنشهاي  همدیس و با کمک تحلیل

دست آمده از فرض  هاي آزمایشگاهی، روابط به در مقایسه با داده. شوند ثانویه و تغییرات ویسکوزیته دینامیکی محاسبه می
کند و با کاهش شیب  زیاد بر آورد می% 8/4هاي برشی متوسط بستر را در حدود  اول براي مقاطع مستطیلی، مقادیر تنش

کند که با کاهش شیب  کم برآورد می% 88/6هاي برشی متوسط دیواره را در حدود  یابد و تنش ها این خطا افزایش می دیواره
ت در ادامه با در نظر گرفتن دو ضریب اصلاحی تجربی براي در نظر گرفتن اثرات جریانا. یابد ها این خطا افزایش می دیواره

هاي  مقایسه داده. گردند هاي برشی متوسط محاسبه و تعیین می عنوان فرض دوم تنش ثانویه و سایر عوامل ممکنه به
هاي برشی متوسط بستر حاکی از مطابقت این  دست آمده از فرض دوم براي تنش آزمایشگاهی با نتایج حاصل از روابط به

همچنین در مورد نتایج . با نتایج آزمایشگاهی دارد% 99رگتر از و ضریب همبستگی بز% 35/5روابط با خطایی کمتر از 
هاي آزمایشگاهی، فرض  رغم پراکندگی داده دهد علی ها، مطالعات متعدد نشان می هاي برشی متوسط دیواره مقایسه تنش

  .دهد می ارائه% 93و ضریب همبستگی حداقل بزرگتر از % 95/5دوم نتایج قابل قبولی با خطایی در حدود کمتر از 
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