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A B S T R A C T  

   

In this study, by using a multi-objective optimization technique, the optimal design points of forced 
convective heat transfer in tubular arrangements were predicted upon the size, pitch and geometric 
configurations of a tube bank to gain to wide range of design point candidates, and a novel multi-
objective and variable prediction model. In this way, the main concern of the study is focused on 
calculating the most favorable geometric characters which may gain to a maximum heat exchange as 
well as a minimum pressure loss. Gathering the required wide range of set of design information, a 
numerical simulation of various configurations of the elliptic tubular arrangements was performed 
using the FLUENT software. Afterwards, the group method of data handling (GMDH)-type neural 
network and the evolutionary algorithm (EAs) were used to model the effects of design parameters, i.e. 
horizontal diameter of ellipse (a), vertical diameter of ellipse (b), transverse pitch (Sn), and longitudinal 
pitch (Sp) on pressure loss (ΔP) and the temperature difference (ΔT) to achieve a meta- model through 
a prediction procedure using evolved GMDH neural network. Finally, the model was used to gain the 
multi-objective Pareto-curves to depict the optimal design zones. 
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1. INTRODUCTION1 
 
Designing optimal shapes for practical engineering 
applications has been the subject of numerous 
publications during the last decade [1-4]. A variety of 
optimization methods can be found in the literature, 
based on different strategies. In the current work, the 
multi-objective optimization problem is the main 
concern, since it covers many interesting application 
fields. As a matter of fact, most times, engineers 
responsible for design of industrial devices have to face 
problems with more than one objective to be fulfilled at 
the same time. Moreover, the objectives of the 
optimization process are often concurrent (a simple 
example is the quality/price trade-off). 

In a tube bank heat exchanger optimization problem 
consists of finding the best geometry of the tubes to 
increase heat exchange as well as minimizing the 
pressure loss. The two corresponding numerical 
parameters are average temperature difference (ΔT) and 
the pressure loss (ΔP). These two objectives are 
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obviously inter-related. If the exchange surface increase, 
the heat exchange will be favored and the temperature 
difference between the inflow and outflow enhances. 
However, simultaneously, this may cause higher 
pressure loss at the same mass flow rate. 

System identification and modeling of complex 
processes using input-output data have always attracted 
many research efforts. In fact, system identification 
techniques are applied in many fields in order to model 
and predict the behavior of unknown and/or very 
complex systems based on given input-output data 
([5],[6],[7],[8],[9]). 

The authors previously examined the mentioned 
method in micro-channel optimal design [10], in aero-
dynamic control of stall inception over an airfoil [11], 
and aero-thermodynamic optimal design of turbo- prop 
engines [12]. 

Optimal designs in engineering cases has always a 
great role to achieve robust systems. The techniques 
used to gain to an optimal design in multi-component 
system has played the main role of optimization. 
Among these techniques, the single and the multi 
objective methods has been introduced in [13], [14] and 
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[15]. These studies may conclude that the advantage of 
evolutionary algorithms is very fruitful to solve many 
real-world optimal design or decision making problems 
which are indeed multi-objective. The evolutionary 
algorithms showed that there are a set of optimal points 
that may chosen and the pareto fronts may give the 
limits of such sets ([16], [17]).  

In this paper, GMDH-Type neural networks are first 
used to determine the effects of tube’s sizes and pitches 
on both temperature difference (ΔT) and pressure loss 
(ΔP) in different configurations. The total number of 
data resulted from simulation are 80 from which 65 are 
used for training whilst the remaining 15 data in merely 
used for model evaluation. The obtained polynomial 
neural models are then used in a Pareto-based 
optimization approach to find the best possible 
combination of temperature difference (ΔT) and 
pressure loss (ΔP) known as the Pareto front. The 
corresponding variations of design variables, namely, 
horizontal diameter of ellipse (a), vertical diameter of 
ellipse (b), transverse pitch (Sn) and longitudinal pitch 
(Sp) known as Pareto set constitute some important 
design principles which can be effectively used for 
optimal design of tube bank heat exchanger. 
 
 
2. MODELING 
 
As it was mentioned before, the GMDH-type neural 
networks are used for medelling. As it was reported by 
N. Narimanzadeh et al. [8], the literature gives that a 
wide range of evolutionary design methods even in 
architectures or connection weights of neural networks 
separately.  

 
3. SIMULATION 

 
As a thermal engineering application by coupling 
Genetic Algorithms and CFD codes, a two-dimensional 
model of an ellipse sectional tube bank heat exchanger 
is considered here. The simulated staggered 
configuration is shown in Figure 1 and in-line 
configuration is shown in Figure 3. Computing the flow 
as a steady two-dimensional flow is in this case a very 
acceptable approximation of the true physics, as the 
tube length in the z direction is very large compared to 
its width. 

Air with constant flow rate 
.

m 0 . 5 k g s= enters the 
domain at kTinlet 293=  and warmed up by passing 
through the tubes in which a hot fluid flows in the 
corresponding practical application. The tubes are 
supposed to have a constant outer wall temperature, 

kTwall 333= . The outlet is at atmospheric pressure. 
By using circular tube bank tables to obtain 

acceptable geometry for elliptic tube bank: 

2510 ≤≤ a   mm a: horizontal diameter of ellipse 
2510 ≤≤ b   mm b: vertical diameter of ellipse 

5030 ≤≤ pS   mm Sp: longitudinal pitch 
5030 ≤≤ nS   mm Sn: transverse pitch   

 

80 states design variables is defined using Hammersely 
Sequence Sampling for simulation and profile contour 
(tubes) from design variables is generated. 

For the different simulations, the boundary 
conditions are the same, only the computational 
geometries differ. After defining the computational 
geometry and obtaining a corresponding mesh, the 
numerical simulation can be performed. The two-
dimensional fields of pressure and temperature are 
obtained in this way. 
 
 

kTinlet 293=        kTwall 333=  

 
Figure 1. Schematic description of the tube bank heat 
exchanger at an staggered configuration. 

 
 

kTinlet 293=         kTwall 333=  

 
Figure 2. Schematic description of the tube bank heat 
exchanger at an in-line configuration. 
 
 
4. EVALUATION OF THE OBJECTIVES 
 
In present case, the evaluation of an individual set of 
parameters requires four steps: 
(1) The generation of the profile contour from the 

design variables; 
(2) The generation of an appropriate mesh for the 

obtained geometry; 
(3) The CFD simulation, the solution of the governing 

coupled equations for the flow variable and the 
energy on the mesh generated in the previous step; 

(4) The post-processing of the obtained results to 
extract the values of the objective functions for 
these specific design variables. 
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After having defined the geometry, the mesh is 
produced in an automatic manner by GAMBIT 
software. The internal fluid region is meshed using 
triangular cell elements using the “pave” algorithm. 
This automatic mesh generation has worked in many 
cases without effective errors. The adequate mesh has 
been obtained on a grid dependence study which is not 
preferred to be presented here with some other details 
on CFD approaches.   

The discretized governing equations are solved 
iteratively in a segregated manner using a finite-volume 
description by FLUENT solver. To improve the 
accuracy of second-order discretization is systemically 
used for all variables, along with a double-precision 
computation. The normalized residuals are computed 
for all the iterations. As soon as all of these residuals 
fall below a prescribed value, convergence is reached. 
In our case, the fixed prescribed value is 104 for the 
flow equations and 106 for the temperature equation, 
providing a sufficient accuracy for an acceptable time.  

The mass flow-pressure coupling is treated with the 
standard SIMPLEC method. In most cases, the 
convergence is achieved in 500-700 iteration steps.  

The inlet (left side in Figures 1 and 2) boundary is 
considered as a mass flow inlet with imposed conditions 

for flow rate, set to skgm 5.0
.

= , and temperature 
kTinlet 293= . Wall boundary conditions with constant 

temperature kTwall 333=  are prescribed on all tubes. 
Periodic conditions are applied in between the tubes on 
the top and bottom. On the right, a pressure outlet 
condition relaxing to the atmospheric pressure is 
imposed. 

After convergence, the temperature difference 
between the inlet (uniform constant value) and averaged 
value along the outlet is computed as well as the 
pressure loss to provide the two objective parameters. 
The computed temperature and pressure fields from one 
of the optimum solutions are presented as a sample in 
Figures 3 – 6. 
 
 
5. MODELLING OF TEMPERATURE DIFFERENCE 
AND PRESSURE LOSS 
 
The input-output data sets used in such modeling 
involve two different data tables obtained from 
simulation. The first table consists of four variables as 
inputs namely, horizontal diameter of ellipse (a), 
vertical diameter of ellipse (b), transverse pitch (Sn), 
longitudinal pitch (Sp) and one output which is pressure 
loss (ΔP). The second table consists of the same four 
variables as inputs and another output which is 
temperature difference (ΔT).  These tables consist of the 
total 80 pattern numbers which have been obtained from 

the simulation to train such GMDH-type neural 
networks. However, in order to demonstrate the 
prediction ability of evolved GMDH-type neural 
networks, the data has been divided into two different 
sets, namely, training and testing sets. 
 
 

 
Figure 3. A sample temperature field in Kelvin, for one of the 
optimum solutions, at staggered configuration. 
 

 
Figure 4. A sample pressure field in Pascal for one of the 
optimum solutions at staggered configuration (same solution 
as Figure 4). 
 

 

 
Figure 5. A sample temperature field in Kelvin, for one of the 
optimum solutions, at in-line configuration. 
 

 

 
Figure 6. A sample computed pressure field in Pascal for one 
of the optimum solutions at in-line configuration (same 
solution as Figure 6). 
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The training set, which consists of 65 out of 80 inputs-
output data pairs, is used for training the neural network 
models using the evolutionary method of this paper. The 
testing set, which consists of 15 unforeseen inputs-
output data samples during the training process, is 
merely used for testing to show the prediction ability of 
such evolved GMDH-type neural network models 
during the training process. 

The very good behavior of such GMDH-type neural 
network models are also depicted in Figures 7 -10 for 
training data and testing data of both pressure loss and 
temperature difference, at staggered and in-line 
configuration respectively.  

It is clearly evident that the evolved GMDH-type 
neural network in terms of simple polynomial equations 
can successfully model and predict the output of testing 
data that has not been used during the training process. 

The models obtained in this section can now be 
utilized for a Pareto multi-objective optimization of tube 
bank heat exchanger considering pressure loss (ΔP) and 
temperature difference (ΔT) as conflicting objectives. 
Such study may unveil some interesting and important 
optimal design principles that would not have been 
obtained without the use of a multi-objective 
optimization approach. 
 
 
6. MULTI-OBJECTIVE OPTIMIZATION 

 
The Multi objective optimization techniques and its 
details such as the mathematical relations, the definition 
of the pareto characteristics and their basis are the same 
asmetioned in previous works [18] and [19].   

This is necessary to highlight that as it was metioned 
in [19], using the Evolutionary algorithms with their 
parrallel os population-based search character highly 
may reduce the deficiencies which may be face in 
classical methods. 

 
 

7. PARETO OPTIMIZATION OF THE TUBE BANK 
USING POLYNOMIAL NEURAL NETWORK MODELS 

 
In order to investigate the optimal performance of the 
tube bank in different conditions of size, pitch and 
configuration, the polynomial neural network models 
obtained in previous sections are now deployed in a 
multi-objective optimization procedure. The two 
conflicting objectives in this study are pressure loss 
(ΔP) and temperature difference (ΔT) to be 
simultaneously optimized with respect to the design 
variables, ,namely, horizontal diameter of ellipse (a), 
vertical diameter of ellipse (b), transverse pitch (Sn), 
longitudinal pitch (Sp). Evidently, it can be observed 
that the temperature difference (ΔT) is maximized 

whilst pressure loss (ΔP) is minimized in the set of 
objective functions (ΔT, ΔP).  
 
 

 
Figure 7. Comparison of simulation values of pressure loss 
with the predicted values using evolved GMDH neural 
networks at staggered configuration 
 
 

 
Figure 8. Comparison of simulation values of temperature 
difference with the predicted values using evolved GMDH 
neural networks at staggered configuration. 
 
 

 
Figure 9. Comparison of simulation values of pressure loss 
with the predicted values using evolved GMDH neural 
networks at in-line configuration. 
 
 

 
Figure 10. Comparison of simulation values of temperature 
difference with the predicted values using evolved GMDH 
neural networks at in-line configuration. 
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Figure 11. Optimal Pareto front of conflicting objective 
functions pressure loss (ΔP) and temperature difference (ΔT) 
at staggered configuration. 
 
 

 
Figure 12. Optimal Pareto front of conflicting objective 
functions pressure loss (ΔP) and temperature difference (ΔT) 
at in-line configuration. 

 

 
The corresponding Pareto front of two objectives 

(ΔT) and (ΔP) at staggered and in-line configuration has 
been shown in Figures 11 and 12, using the hybridized 
approach.  

It is clear from these figures that choosing 
appropriate value for horizontal diameter of ellipse (a), 
vertical diameter of ellipse (b), transverse pitch (Sn), 
longitudinal pitch (Sp), to obtain a better value of one 
objective would cause a worse value of another 
objective. However, if the set of decision variables is 
selected based on each of the Pareto set, it will lead to 
the best possible combination of those two objectives. 
In other words, if any other decision variables (a), (b), 
(Sn) and (Sp) is chosen, the corresponding values of the 
pair of objectives, (ΔP) and (ΔT), will locate a point 
inferior to the Pareto front. 

Clearly, there are some important optimal design 
facts between the two objective functions which have 
been discovered by the Pareto optimization of the 
polynomial neural network models using data resulted 
from simulation of the tube bank heat exchanger. Such 
important design facts could not have been found 
without the multi-objective Pareto optimization of those 
polynomial models. From Figures 11 to 12, two sections 
can be seen which demonstrate these important optimal 
design facts. First section exhibits increase of 

temperature difference (ΔT) whilst pressure loss (ΔP) is 
nearly constant. Second section exhibits a significant 
increment of pressure loss (ΔP) with a small change in 
temperature difference (ΔT). Therefore, changing the 
horizontal diameter of ellipse (a), vertical diameter of 
ellipse (b), transverse pitch (Sn), longitudinal pitch (Sp), 
in conjunction with configuration as decision variables 
should be in such a way that the operating condition of 
the heat exchanger in terms of temperature difference 
(ΔT) and pressure loss (ΔP) lies between this two 
sections (marked section) of the Pareto optimal front. 
This will not only ensure the optimal behavior of the 
heat exchanger but also prohibit such deficiency 
involved in those two sections. 
 
 
8. CONCLUSION 
 
In this paper, a meta model have been found by evolved 
Gs-GMDH type neural networks using input-output data 
obtained from simulation. The derived polynomial 
models have been used in an evolutionary multi-
objective Pareto based optimization process so that 
some interesting and informative optimum design 
aspects have been revealed for the tube bank heat 
exchanger. The combined application of GMDH neural 
network modeling of input-output data resulted from 
simulation and subsequent Pareto optimization process 
could highly improve the efficiency and the required 
assurance of having multiple optimal designs.  

As the main conclusions, the modeling and the 
multi- objective optimization technique provided a 
novel tool for heat exchanger designers as well as a 
wide range of optimum design zone. 
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  چکیده
   

سازي چند هدفی، نقاط بهینه طراحی انتقال حرارت اجباري در یک دسته لوله بر  ه در مقاله حاضر با استفاده ازروش بهین
هاي هندسی  در این ارتباط تمرکز کار بر محاسبه ویژگی. هایی هندسی پیش بینی شده است اساس سایز، گام و دیگر ویژگی

هاي لازم براي مدلسازي و طراحی  به منظور حصول داده. گردد است منجر به بیشترین تبادل حرارتی و حداقل افت فشار می
بندي  پس از این بخش، روش گروه. سازي و حل معادلات جریان استفاده شده است بهینه از نرم افزار فلوئنت براي شبیه

همراه الگوریتم تکاملی براي حصول به یک مدل چند متغیره  بکه عصبی بهسازي ش عنوان نوعی از مدل به  GMDHي ها داده
عنوان متغیر  هاي عرضی و طولی به مورد استفاده قرار گرفته است و پارامترهاي قطر افقی بیضی، قطر عمودي بیضی، گام

هاي مدل براساس  بینی پیش براي این امر ابتدا. براي توابع هدف افت فشار و اختلاف دما مورد استفاده قرار گرفته است
  .هاي پرتو طراحی بهینه ارایه شده است هاي مدل موجود منحنی اي موجود ارزیابی و سپس با استفاده ار داده داده

 
doi: 10.5829/idosi.ije.2012.25.04c.07

 
 

 
 


