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This model focuses on the behavior of capillary-tissue fluid exchange system when the diameter of the
capillary is less than that of red cell. In vivo and in vitro observations indicate that the width of the gap
between the red cell and the vessel wall is generally small compared to the radius of the capillary for a
single file flow of red cell in narrow vessel, particularly if the vessel diameter is less than about 6 p m
through squeezing flow of plasma in between the gap between a cell moving through a capillary of
smaller diameter than that of the cell. The study reveals the results for the resistance to flow for
different values of deformed red cell shapes, cell velocities and permeability. The analysis concludes
that the resistance to flow decreases as permeability decreases because of these changes, tissues
behaves like an impermeable surface. It has been shown that the resistance to flow in gap decreases as
cell velocity increases. The significance of the present model over the existing models has been pointed
out by comparing the results with other theories both analytically and numerically. This information of

blood could be useful in the development of new diagnosis tools for many diseases.

doi: 10.5829/idosi.ije.2012.25.04a.02

1. INTRODUCTION

Blood is a concentrated suspension, containing 40-45%
by volume of red blood cells (erythrocytes) suspended
in plasma. The mechanical properties of human RBCs
have been studied extensively [1, 2]. The unstressed
shape of a normal human RBC is a biconcave disc with
a diameter of 8 pm and a thickness of 2 pm. The interior
of the cell behaves as a viscous incompressible fluid.
The cell membrane consists of a lipid bilayer and a
cytoskeleton which consists of a network of protein
molecules. The membrane strongly resists area changes,
and its elastic modulus of isotropic dilation is ~500
dyn/cm, whereas its modulus of shear deformation is
about 0.006 dyn/cm [3, 4]. The lipid molecules that
comprise the lipid bilayer can slide past each other
relatively easily, but resist being pulled apart. The cell
membrane has a relatively small bending modulus,
about 1.8 x 10—12 dyn'cm [5]. The membrane also
possesses a viscous resistance to transient in-plane shear
deformations. The viscoelastic behaviour of the
membrane in shear can be represented by a Kelvin solid
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model, in which the total shear stress is represented as
the sum of viscous and elastic contributions [6, 7, and
8]. The viscous component arises from the fluid-like
behaviour of the lipid bilayer, and the elastic component
arises from the stretching of the cytoskeleton.

Blood flow is responsible for nutrient and waste
transport within the closed-loop, cardiovascular network
[9, 10, 11]. Typically flow is laminar in healthy arteries,
but the presence of abnormal flow conditions can
promote the development of cardiovascular disease
[12]. Blood flow in capillaries of diameters smaller than
that of a cell with a single file movement of a cell is of
great interest to physiologists involved in microvascular
research.

Fluid mechanical and biochemical processes
occurring during the movement of an erythrocyte
through the capillary are very complex [13, 14, 15]. The
red cells are typically deformed from their resting
biconcave disk shape to parachute, slipper or bullet like
shape depending on the pressure differences across the
cell membrane, the tube diameter and the hematocrit
[16, 17]. The stress exerted on the cell by the
surrounded plasma deform into the shapes of close
fitting within the tube, and there exist a layer of plasma
between the red cell and the tube wall due to the
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pressure developed. This layer is potentially important
in reference to both mass transfer, resistance to flow and
residence times of red cells and plasma in the capillary.
Therefore, in this paper a mathematical model for
the single file of red cells in a capillary of radius less
than 6 pum surrounded by tissue has been described. In
tissue, fluid flow is governed by Darcy’s law and
plasma by a Newtonian fluid. Unreformed cell shape
near the wall is assumed to be parabolic and the
deformation of the cell is depending on local pressure.

2. FORMULATION OF THE PROBLEM

The red blood cell is modeled as an axisymmitric
containing an incompressible fluid. Single file flow of
red blood cells is considered and cell to cell interactions
are neglected. ‘H’ is the thickness of the porous matrix.
uo is the velocity of the cell at Y=h',

h'=(a£p) (P-P)) + (x”/42) g the fluid film thickness. ‘a’

is the focal length of the initially assumed shape of
parabola and (@B)(®'-p)) is the further deformation due

to increased pressure in the wedge formed in between
the parabola and the capillary. The flow region is
divided into two regions and the governing equations
are written separately in two regions as given below.

2. 1. Region-I:
Capillary region-Equation of motion in capillary region
is given by:

Red blood cells
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where,  is the viscosity of the fluid and p' is the

pressure in the fluid film region.

Equation of continuity is given by

v av

ox' " ﬁiy’ B @

where, u” and v’ are the axial and transverse velocities
of the fluid in the capillary.

2. 2. Region-II:
Porous region- Using Darcy’s law, the velocity
components in porous matrix can be written as:

g Kop
pnox’' (3)
-_ Kop
V=-—— 4
o @

where y' and v' are the axial and transverse velocities of
the fluid in porous matrix, K is the matrix permeability
P'(X,y) is the pressure distribution in the porous matrix
introducing the equation of continuity. The governing
equation for pressure distribution in the porous matrix is
62 ﬁ! 62 ﬁ!
a x!Z + a y!Z

=0 )

2. 3. BOUNDARY AND MATCHING CONDITIONS
Following matching and boundary conditions are
introduced to solve the above equations

ou'

' = 6 — t =0

u (Gﬁx'j a y

u'= (_Eﬁpj at y'=0,
pox'

v'=0 at y'=h’'
- (6)

v':(-f p,j at y' =0,
noy

op =0 at x'=0

ox'

p' =0 at x'=I,
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op at X' =0
oy
p=P, at x'=0,

where o' is the slip parameter, Py is the reference
pressure, ¢, and B are the radial compliances of the
capillary and cell which are not separately significant,
but appear only in the linear combination (¢+B)’, 21 is

the effective length of the capillary and the initial gap at
the nip of the parabola much smaller and is assumed to
be than H the thickness of the porous layer and is taken
to be zero.

2.4.NON-DIMENSIONAL SCHEME Following non-
dimensional scheme is introduced to solve the above
equations:

=MH;  yyH;

p=p/R ; u=l;
e=puHu; v="u;

(@)= (o) /puy’);
p=pk; o=oH;
e=H/4a/; h=n{p-1)+ex’

(M

2. 5. BOUNDARY AND MATCHING CONDITIONS
Following boundary conditions and matching conditions
are introduced to solve the above equations:

u=1 at y=h,
u=-c 9o at y=0
oy
v=0 at y=h,
KP, op
v=- L a—p at y=0
nU H oy
oP
o 0 at x=0, ®)
I
p=0 at =—=1
p S H
P
&> 0 at y=-1,
oy
-1 at x==]
p T
p=p(x,0)

3. SOLUTION OF THE PROBLEM

Solving the equation of motion, equation of continuity
and boundary and matching conditions in capillary
region, the expression for the velocity distribution is
obtained as

_PHOp . (yo), . yo©
= —(y'- h*)+
Unox Y oy s ©)

On Solving the Laplace equation, the pressure
distribution in the porous region is obtained as:

p= Z2Encosh{a"(H+y)}cos(a"x) (10)

where @,=(2n+1)m/21) the value of En is obtained by

Fourier cosine series expansion, as:

En=-L sech(a, H) cos(nx) (11)
an

Using velocity profile in the equation of continuity,
the pressure distribution in capillary region and the
corresponding matching velocities at the common
boundary (y=0), we get
P=[Z (PA X +A x"+A x*)]- [Z (0, / 2)(Px*(A,/ 6)+x"(2A,/ 5)

X (A, /O)IFI-Z (PA A A FIZ (0" 1 2)(P,(A, / 6)H2A./5) (12)
+(A,/6))]

The Flow Resistance is obtained as:
R'= (1/Q)[Zn(P,A x'+A x*+A x*)]-[Zn(0,’ 2)(Px*(A, / 6)

+x"(2A1/5)+x4(ﬂA;/6))] (13)
where

Zn=[(3K/2H1(s)Z Ena ' sinho (H+y)] (14)
A =((-36/2n*)+(1/806)-(3/47n))

A, =(-(3¢'c/120’)+(e'/480m)-(3€'/247"))

A =(-(c/2n")+(1/8om)-(3/81%)) (15)

n=(H"P, (at+B)/pU,’)

4. RESULTS AND DISCUSSION

In order to have estimate of the quantitative effects of
various parameters involved in the analysis computer
codes were developed and to evaluate the analytical
results obtained for resistance to blood flow for normal
condition have been determine.

The results are shown in Figures 2-5 by using the
values of parameter based on experimental data in
capillary. The results of the analysis are presented
through the graphs in figures numbered from Figures 2—
5. Figure 2 represents the variation of resistance to flow
for different values of €.
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Figure 2. Variation of resistance to flow for different shapes
of cell
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As the value of ¢ increases, resistance to flow
decreases. Due to large variation of the pressure
developed in the wedge, the corresponding
deformations in the cell and the capillary wall occur
near the narrowest part in the gap region between the
cell and the tube wall affect the resistance to flow. The
increases in the pressure will naturally deform the cell
and this deformation will produce corresponding effect
on the resistance to flow.

Figure 3 presents the variation of resistance to flow
for different cell velocities. As cell velocity increases
the resistance to flow in the gap decreases.

According to the model, the changes in the cell
width with increasing cell velocity are accompanied by
decreasing flow resistance. This is due to the fact that at
low velocities the cells bulge outward almost filling a
6umcapillary and become more elongated and
streamlined with increasing velocity [16]. At high
velocity the increasing width of plasma layer between
the cell and the wall leads to reduction in flow resistance.
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Figure 3. Variation of resistance to flow with axial distance
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Figure 5. Variation of resistance to flow for different H

Figure 4 depicts the variation of flow resistance for
different values of permeability. As value of
permeability decreases the resistance to flow in the gap
between the cell and capillary wall decreases. In this
case, tissue behaves like an impermeable surface with
respect to fluid flow into the tissue and a lubrication
layer is maintained between cell and the wall necessary
to maintain the flow of red blood cell as discussed by
[4]. Figure 5 presents the variation of resistance to flow
for different values of H. As the values of H increases
the resistance to flow in the gap decreases. These results
are similar to the results of [12].

5. CONCLUSION

In this paper a model is used to focus the behavior of
capillary-tissue fluid exchange system when the
diameter of the capillary is less than that of red cell. The
study reveals the results for the resistance to flow for
different values of deformed red cell shapes, cell
velocities and permeability. The analysis concludes that
the resistance to flow decreases as permeability
decreases because of these changes, tissues behaves like
an impermeable surface. It has been shown that the
resistance to flow in gap decreases as cell velocity
increases. The significance of the present model over
the existing models has been pointed out by comparing
the results with other theories both analytically and
numerically. This model is able to predict the main
characteristics of the physiological flows and would be
helpful for the people working in the field of biomedical
science as well as to the medical practitioners.
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