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A B S T R A C T  

   

This model focuses on the behavior of capillary-tissue fluid exchange system when the diameter of the 
capillary is less than that of red cell. In vivo and in vitro observations indicate that the width of the gap 
between the red cell and the vessel wall is generally small compared to the radius of the capillary for a 
single file flow of red cell in narrow vessel, particularly if the vessel diameter is less than about 6 µ m 
through squeezing flow of plasma in between the gap between a cell moving through a capillary of 
smaller diameter than that of the cell. The study reveals the results for the resistance to flow for 
different values of deformed red cell shapes, cell velocities and permeability. The analysis concludes 
that the resistance to flow decreases as permeability decreases because of these changes, tissues 
behaves like an impermeable surface. It has been shown that the resistance to flow in gap decreases as 
cell velocity increases. The significance of the present model over the existing models has been pointed 
out by comparing the results with other theories both analytically and numerically. This information of 
blood could be useful in the development of new diagnosis tools for many diseases. 
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1. INTRODUCTION1 
 
Blood is a concentrated suspension, containing 40-45% 
by volume of red blood cells (erythrocytes) suspended 
in plasma. The mechanical properties of human RBCs 
have been studied extensively [1, 2]. The unstressed 
shape of a normal human RBC is a biconcave disc with 
a diameter of 8 μm and a thickness of 2 μm. The interior 
of the cell behaves as a viscous incompressible fluid. 
The cell membrane consists of a lipid bilayer and a 
cytoskeleton which consists of a network of protein 
molecules. The membrane strongly resists area changes, 
and its elastic modulus of isotropic dilation is ~500 
dyn/cm, whereas its modulus of shear deformation is 
about 0.006 dyn/cm [3, 4]. The lipid molecules that 
comprise the lipid bilayer can slide past each other 
relatively easily, but resist being pulled apart. The cell 
membrane has a relatively small bending modulus, 
about 1.8 × 10−12 dyn·cm [5]. The membrane also 
possesses a viscous resistance to transient in-plane shear 
deformations. The viscoelastic behaviour of the 
membrane in shear can be represented by a Kelvin solid 
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model, in which the total shear stress is represented as 
the sum of viscous and elastic contributions [6, 7, and 
8]. The viscous component arises from the fluid-like 
behaviour of the lipid bilayer, and the elastic component 
arises from the stretching of the cytoskeleton.  

Blood flow is responsible for nutrient and waste 
transport within the closed-loop, cardiovascular network 
[9, 10, 11]. Typically flow is laminar in healthy arteries, 
but the presence of abnormal flow conditions can 
promote the development of cardiovascular disease 
[12]. Blood flow in capillaries of diameters smaller than 
that of a cell with a single file movement of a cell is of 
great interest to physiologists involved in microvascular 
research.  

Fluid mechanical and biochemical processes 
occurring during the movement of an erythrocyte 
through the capillary are very complex [13, 14, 15]. The 
red cells are typically deformed from their resting 
biconcave disk shape to parachute, slipper or bullet like 
shape depending on the pressure differences across the 
cell membrane, the tube diameter and the hematocrit 
[16, 17]. The stress exerted on the cell by the 
surrounded plasma deform into the shapes of close 
fitting within the tube, and there exist a layer of plasma 
between the red cell and the tube wall due to the 
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pressure developed. This layer is potentially important 
in reference to both mass transfer, resistance to flow and 
residence times of red cells and plasma in the capillary.  

Therefore, in this paper a mathematical model for 
the single file of red cells in a capillary of radius less 
than 6 µm surrounded by tissue has been described. In 
tissue, fluid flow is governed by Darcy’s law and 
plasma by a Newtonian fluid. Unreformed cell shape 
near the wall is assumed to be parabolic and the 
deformation of the cell is depending on local pressure. 
 
 
2. FORMULATION OF THE PROBLEM 
 
The red blood cell is modeled as an axisymmtric 
containing an incompressible fluid. Single file flow of 
red blood cells is considered and cell to cell interactions 
are neglected.  ‘H’ is the thickness of the porous matrix. 
u0 is the velocity of the cell at y h′ ′= , 

' 2
0h =(α β) (P -P ) + (x' / 4a')′ ′±  is the fluid film thickness. ‘a’ 

is the focal length of the initially assumed shape of 
parabola and (α ±β) (p - p )0

′ ′

 
is the further deformation due 

to increased pressure in the wedge formed in between 
the parabola and the capillary. The flow region is 
divided into two regions and the governing equations 
are written separately in two regions as given below. 
 
2. 1. Region-I:  
Capillary region-Equation of motion in capillary region 
is given by: 
 
 

 
Figure 1. (a): Red Cells 

 
Figure 1. (b) Deformation of Red Cells 
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Figure 1. (c) Blood Vessel 
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where, µ is the viscosity of the fluid and p′ is the 
pressure in the fluid film region. 
Equation of continuity is given by 

u' v'+ = 0
x y

∂ ∂
′ ′∂ ∂

 
(2) 

where, u’ and v’ are the axial and transverse velocities 
of the fluid in the capillary. 
 
2. 2. Region-II:  
Porous region- Using Darcy’s law, the velocity 
components in porous matrix can be written as: 

K pu'= -
μ x

′∂
′∂

r  
(3) 

K pv'= -
μ 'y

′∂
∂

r  
(4) 

where u'
r

and v'
r

are the axial and transverse velocities of 
the fluid in porous matrix, K is the matrix permeability 
p (x, y)′  is the pressure distribution in the porous matrix 
introducing the equation of continuity. The governing 
equation for pressure distribution in the porous matrix is 

2 2

2 2
p p+ =0

x y
′ ′∂ ∂

′ ′∂ ∂
 

(5) 

 
2. 3. BOUNDARY AND MATCHING CONDITIONS  
Following matching and boundary conditions are 
introduced to solve the above equations  

u'u' = -σ at y = 0
x'

k pu' = - at y'= 0,  
μ x'

v' = 0 at y = h

k pv' = - at y = 0, 
μ y

p =0 at x =0
x

p =0 at x =1 ,

 ∂ ′  ∂  
 ∂  ∂  
′ ′ 


′ ∂ ′  ′∂  
′∂ ′ ′∂ 
′ ′ ′ 

 

(6) 
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0

p =0 at x =0
y

p =P at x =0,

′∂ ′ ′∂ 
′ ′ 

 

where ′σ  is the slip parameter, P0 is the reference 
pressure, α  and β are the radial compliances of the 
capillary and cell which are not separately significant, 
but appear only in the linear combination (α+β)’, 2l is 
the effective length of the capillary and the initial gap at 
the nip of the parabola much smaller and is assumed to 
be than H the thickness of the porous layer and is taken 
to be zero. 
 
2. 4. NON-DIMENSIONAL SCHEME      Following non-
dimensional scheme is introduced to solve the above 
equations: 

( )

0 0

0 0

3 2
0

0
2

x=x /H' ; y=y/H' ;
p= p/P ; u =u'/u ;
e =ρu H/μ ; v=v'/u ;

(α+β) = (α+β) / H' /ρu ;

p = p'/P ; σ =σ /H' ;

ε =H/4a'/; h = η(p -1) +εx

′ ′ 
′ 

′ 
′

′ 

 
(7)  

 
2. 5. BOUNDARY AND MATCHING CONDITIONS  
Following boundary conditions and matching conditions 
are introduced to solve the above equations: 

0

0

u=1 at y=h,   
ωu=-σ at y=0
y

v=0 at y=h,   
KP pv=- at y=0
μU H y

P = 0 at x=0,   
x

l'
p=0 at x= =l

H'
P = 0 at y=-1,  
y

l'p=1 at x= = l
H'

p=p(x ,0)
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(8) 

 
 

3. SOLUTION OF THE PROBLEM 
 
Solving the equation of motion, equation of continuity 
and boundary and matching conditions in capillary 
region, the expression for the velocity distribution is 
obtained as 

2 20

0

P H p (y-σ ) y-σu = (y - h )+
U μ x (h-σ ) h-σ

∂
∂

 
(9) 

On Solving the Laplace equation, the pressure 
distribution in the porous region is obtained as: 

n n
n=0

p = 2En cosh{α (H+y)}cos(α x)
∞

∑  
(10) 

where n
α =(2n+1)π/21)  the value of En is obtained by 

Fourier cosine series expansion, as: 

n

n

1En = sech(α H) cos(nπ)
α

 
(11) 

Using velocity profile in the equation of continuity, 
the pressure distribution in capillary region and the 
corresponding matching velocities at the common 
boundary (y=0), we get  

2 4 2 2 4 6

n 0 1 2 3 n n 0 1 2

4 2

3 n 0 1 2 3 n n 0 1 2

3

P = [Z (P A x +A x +A x )]- [Z (α / 2)(P x (A / 6)+x (2A / 5)
+x (A / 6))]+1-[Z (P A +A +A )]+[Z (α / 2)(P (A / 6)+(2A /5)
+(A /6))]

 

(12) 

The Flow Resistance is obtained as: 
( )* 2 4 2 2 4

0 1 2 3 n 0 1

6 4

2 3

R = (1/Q)[Zn P A x +A x +A x ]-[Zn(α /2)(P x (A / 6)
+x (2A / 5)+x (A / 6))]

 
(13) 

where 
2 3

n n
n=0

Zn=[(3K/2H σ) Enα sinhα (H+y)]
∞

∑
 

(14) 

2

1A =((-3σ/2η )+(1/8σ)-(3/4η)) , 
3 2

2A =(-(3ε σ/12η )+(ε /48ση)-(3ε /24η ))′ ′ ′  
3 2

3A =(-(σ/2η )+(1/8ση)-(3/8η ))  

2 2

0 0η= (H P (α+β)/ρU )  

(15) 

 
 
4. RESULTS AND DISCUSSION 
 
In order to have estimate of the quantitative effects of 
various parameters involved in the analysis computer 
codes were developed and to evaluate the analytical 
results obtained for resistance to blood flow for normal 
condition have been determine.  

The results are shown in Figures 2-5 by using the 
values of parameter based on experimental data in 
capillary. The results of the analysis are presented 
through the graphs in figures numbered from Figures 2–
5. Figure 2 represents the variation of resistance to flow 
for different values of ε .  
 
 

 
Figure 2. Variation of resistance to flow for different shapes 
of cell 
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As the value of ε  increases, resistance to flow 
decreases. Due to large variation of the pressure 
developed in the wedge, the corresponding 
deformations in the cell and the capillary wall occur 
near the narrowest part in the gap region between the 
cell and the tube wall affect the resistance to flow. The 
increases in the pressure will naturally deform the cell 
and this deformation will produce corresponding effect 
on the resistance to flow.  

Figure 3 presents the variation of resistance to flow 
for different cell velocities. As cell velocity increases 
the resistance to flow in the gap decreases. 

According to the model, the changes in the cell 
width with increasing cell velocity are accompanied by 
decreasing flow resistance. This is due to the fact that at 
low velocities the cells bulge outward almost filling a 
6µmcapillary and become more elongated and 
streamlined with increasing velocity [16]. At high 
velocity the increasing width of plasma layer between 
the cell and the wall leads to reduction in flow resistance. 

 
 

 
Axial Distance 

Figure 3. Variation of resistance to flow with axial distance 

 

 
Figure 4. Variation of resistance to flow different permeability   
 

 
Figure 5. Variation of resistance to flow for different H 

Figure 4 depicts the variation of flow resistance for 
different values of permeability. As value of 
permeability decreases the resistance to flow in the gap 
between the cell and capillary wall decreases. In this 
case, tissue behaves like an impermeable surface with 
respect to fluid flow into the tissue and a lubrication 
layer is maintained between cell and the wall necessary 
to maintain the flow of red blood cell as discussed by 
[4]. Figure 5 presents the variation of resistance to flow 
for different values of H. As the values of H increases 
the resistance to flow in the gap decreases. These results 
are similar to the results of [12]. 
 
 
5. CONCLUSION 
 
In this paper a model is used to focus the behavior of 
capillary-tissue fluid exchange system when the 
diameter of the capillary is less than that of red cell. The 
study reveals the results for the resistance to flow for 
different values of deformed red cell shapes, cell 
velocities and permeability. The analysis concludes that 
the resistance to flow decreases as permeability 
decreases because of these changes, tissues behaves like 
an impermeable surface. It has been shown that the 
resistance to flow in gap decreases as cell velocity 
increases. The significance of the present model over 
the existing models has been pointed out by comparing 
the results with other theories both analytically and 
numerically. This model is able to predict the main 
characteristics of the physiological flows and would be 
helpful for the people working in the field of biomedical 
science as well as to the medical practitioners.   
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  چکیده
  
  

این مدل رفتار تغییرات سیال را در بافت مویرگ زمانیکه قطر مویرگ کمتر از سلول قرمز است را مورد بررسی قرار داده 
رگ به طور کلی در مقایسه با شعاع دیواره مشاهدات درون و برون بافتی نشان می دهند که فاصله بین سلول قرمز و . است

در میان فاصله بین سلول رگ ال سلول قرمز در رگ، کوچک باشد به ویژه اگر قطر جریان سی مویرگ براي یک تک
این مطالعه نتایج .  باشد 6µm حدوداً کمتر از متحرك درون مویرگی با قطر کوچکتر از سلول، تحت فشار جریان پلاسما 

نتایج انالیز . قابلیت نفوذ سلول را اشکار می سازدمقاومت جریان براي مقادیر متفاوت از تغییر شکل سلول قرمز، سرعتها و 
کاهش می یابد و به علت این تغییرات ، رفتار بافت ها  ،نشان می دهد که مقاومت جریان بر اساس کاهش نفوذپذیري

مت جریان در شکاف با کاهش سرعت سلول دهد که مقاواین مطلب نشان می . همانند سطوح غیرقابل نفوذ می گردد
اهمیت این مدل در مقایسه با مدلهاي موجود در این است که نتایج را به صورت عددي و تحلیلی مورد . ابدکاهش می ی

  .این یافتهاي خونی، در توسعه ابزار جدید تشخیص بسیاري از بیماري ها می تواند مفید واقع شود. بررسی قرار می دهد
 
doi: 10.5829/idosi.ije.2012.25.04a.02

 
 


