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A B S T R A C T  

   

This paper considers the Tchebychev distance for a facility location problem with a probabilistic line 
barrier in the plane. In particular, we develop a Mixed-Integer Nonlinear Programming (MINLP) 
model for this problem that minimizes the total Tchebychev distance between a new facility and the 
existing facilities. A numerical example is solved to show the validity of the developed model. Because 
of difficulty in solving this problem while increasing the number of existing facilities, we propose and 
design an efficient meta-heuristic algorithm, namely differential evolution (DE), for the given problem. 
Finally, the associated results are compared with the exact solution and lower bound for the different-
sized problems. 
 

doi: 10.5829/idosi.ije.2012.25.04c.04  
 

 
1. INTRODUCTION1 
 
In this paper, we present a new mathematical model for 
a Weber location problem with the Tchebychev distance 
in the presence of a probabilistic line barrier, which is 
known as 1 ∕ ℝ ∕ ℬ = a probabilsitic line  ∞ ⁄ Σ⁄  in 
Hamacher and Nickel [1]. We introduce a statement of 
the problem as follows. In facility location problems, 
the class of lp distance metrics, called lp-norm, is the 
most common features of discussion among researchers. 
lp distance metrics for the n-dimensional space location 
problem is shown by:   = (∑ (|  −   | )    )     (1) 

where    are the coordinates of the existing facilities 
and    is the n dimensional vector location of the new 
facility. It is clear that for n = 2 and  = ∞, we 
encounter with the planar Tchebychev distance metric. 
However, for  = 1 and  = 2, the rectilinear and 
Euclidean distance metrics are appeared, respectively.      = |  −   | + |  −   |  (2)     =  (  −   ) + (  −   )   (3) 
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Moghaddam) 

    = max{|  −   |, |  −   |}  (4) 

In this paper, we focus on the Tchebychev distance 
metric where in spite of widely applications in the fields 
of material handling systems operations, CNC tool path 
planning, and manufacturing in real location problems, 
it is rarely mentioned by researchers in this area. 
Following are some of the related reviews. 

Special feature of a continuous or Weber location 
problem is that for example, many researchers consider 
some restrictions in Rn, in which the locating or 
travelling may be prohibited. Most of the common 
restricted planar location problems, in which 
establishing and/or travelling through some area is not 
permitted, fall into one of the following categories; 
firstly, forbidden regions (e.g., national parks or other 
protected areas, in which the establishing of a facility is 
prohibited but traveling through the regions is 
permitted), secondly, congested regions (e.g., big lakes 
or forest, in which establishing of a facility is prohibited 
but travelling through the region is possible with a 
penalty), thirdly, barrier regions (e.g., military areas, 
mountain ranges, big rivers and the lake, where both 
establishing and travelling are forbidden). Hamacher 
and Nickel [2] surveyed location problems with 
forbidden regions extensively. Based on the 
classification of location problems in Hamacher and 
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Nickel [1], the above problem statement is presented as 
follows:1 ∕ ℝ ∕ ℬ = 1 probabilsitic line  ∞ ⁄ Σ⁄ , where the 
first position shows the number of new facility, the 
second position indicates the solution space, the third 
position shows the special features of location problems 
(e.g., forbidden regions R or barriers B in the planar 
case or a ● if no special features are to be considered), 
the fourth position represents the information about the 
relation between of new and existing facilities, and the 
fifth position contains the objective function.  

Consider a plane with m existing facilities and a 
line-shaped barrier, which randomly occurs on a pre-
determined horizontal route. It is desired to find a new 
facility location in the plane such that the total 
Tchebychev barrier distance from the new facility to the 
existing facilities is minimized. In general, the p-norm 
distance Weber location problem with a barrier can be 
written as:    = min∑   .     ( ,   )      (5) 

where    is the positive weight between the i-th existing 
facilities and the new facility. The coordinates of the 
new and existing facilities in the plane are presented as  = ( ,  ) and   = (  ,  ), respectively. To identify 
the concept of    , called the p-norm barrier distance, 
consider two arbitrary points  , ∈  , where 1 ≤  ≤
∞.     (X, Y) is defined as inf{ l(PX-Y): PX-Y is feasible 
X,Y path}, where l(PX-Y) is the length of the feasible X-Y 
path. Let   (X,Y) be the p-norm distance between  , ∈  . Two arbitrary points (i.e.,  and  ∈  ) are 
called p-visible if the p-norm barrier distance between   and   is equal to the p-norm distance (i.e.,    ( , ) =   ( , ), that is the presence of a barrier has no effect 
on visibility of two points   and  .  

On the other hand, if the p-norm barrier distance 
between the two points   and   is greater than the p-
norm distance,    ( ,  ) >   ( ,  ), then the p-norm 
distance between  , ∈   is called p-shadow (i.e., 
barrier affects on the p-norm distance between two 
points  , ∈  ). Considering this definition, for one 
feasible point  ∈  , the set of visible points is defined 
as:  

visiblep ( )={
 
 ∈  :   ( , )=   ( , )}.  (6) 

In other words, points from the feasible region, Y, 
which are p-visible with a given feasible point X. For a 
feasible point ∈  , the set of shadow points is defined 
as:  

Shadowp( ) ={ ∈  :   ( , )>    ( , )} (7) 

It means that if distance between   and   is p-
shadow, then it becomes barrier distance, (see 
Klamroth, [3]). In this paper, the Tchebychev distance 

metric is emphasized (i.e., p =∞). For a feasible point  ∈   the set of shadow points is defined as:  

Shadow∞( ) ={ ∈  : ∞ ( , )>   ∞ ( , )} (8) 

and the set of visible points are defined as: 

visible∞ ( )={
 
 ∈  :  ∞ ( , )=  ∞ ( , )}. (9) 

 Therefore, the Tchebychev distance single facility 
Weber location problem in the presence of the 
probabilistic line barrier can be stated by:  min∑   . ∞  ( ,  )           (10) 

The organization of the paper is presented as 
follows. In Section 2, we provide a literature review of 
the papers related to the location problems with barriers. 
In Section 3, we present the Mixed-Integer Nonlinear 
Programming (MINLP) model and the expected barrier 
distance function is given. In Section 4, we illustrate a 
numerical example. Section 5 proposes a meta-heuristic 
algorithm based on Differential Evolution (DE). Section 
6 introduces a lower bound for the presented model. 
Section 7 compares the computational results of these 
algorithms for different size samples of this problem. 
Finally, Section 8 contains the remarking conclusions 
and further research directions. 

 
 

2. LITERATURE REVIEW 
 
Because of the mathematical nature of the Tchebychev 
distance, many researchers in the field of operations 
research applied the transformation for this metric to 
other metrics for the ease of solving the problem. 
Francis et al. [4] introduced a technique for the minimax 
location problem with the help of the diamond-covering 
problem using the transformation the Tchebychev space 
to rectilinear space. They found that the rectilinear 
distance between any two points of the diamond was the 
same as the Tchebychev distance between any two 
points of the square. Hwang and Lim [5] described a 
single facility location problem in an automated storage 
and retrieval system (AS/RS). This problem is 
converted to the Tchebychev minimax location 
problem. Gaboune et al. [6] discussed on the distances 
between points distributed uniformly and pairs of co-
planar rectangles as well as pairs of rectangular 
parallelepipeds. They derived the expected distances 
using the rectilinear, the Euclidean, and the Tchebychev 
metric. Gass and Witzgall [7] introduced the 
Tchebychev minimax problem and an approximation of 
this problem using linear programming techniques to 
find a circle that is the closest to a given set of customer 
points. Nickel and Puerto [8] and Farahani and 
Hekmatfar [9] introduced the transformation rules of 
each lp-norm to the others in details. They stated that 
transformation is useful while analyzing and solving  a 
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problem with a given metric distance is difficult. 
Parthasarathy et al. [10] expanded a single facility 
location problem with the Tchebychev distance metric 
in the three-dimensional space and developed a new 
algorithm for solving the elusive three-dimensional 
case. Then, they found near-optimal solutions in 
practical computational times. 

Although facility location problems with a barrier 
are so applicable in the real world (e.g., industrial plant 
design and urban planning), relatively little attention has 
been received in the location literature, especially with 
Tchebychev distance. Katz and Cooper [11] studied the 
Euclidean Weber problem and one circular barrier for 
the first time. To solve the problem, they proposed a 
heuristic method based on the sequential unconstrained 
minimization technique (SUMT). Bischoff and 
Klamroth [12] took the advantage of the Weiszfeld 
technique and genetic algorithm (GA) to solve the same 
problem. Aneja and Parlar [13] studied the Euclidean 
Weber problem, in which two cases of forbidden and 
barrier regions are considered. The authors considered a 
solution procedure that generates some candidate 
locations using simulated annealing. Then, they 
constructed a visibility graph to evaluate possible 
solutions in the barrier case. McGarvey and Cavalier 
[14] modified the Big Square Small Square (BSSS) 
method to approximate the global optima of the 
Euclidean Weber problem with the convex polyhedral 
barriers. This method, which works based on the 
Branch-and-Bound (B&B) technique, was originally 
proposed by Hansen et al. [15] in order to solve 
continuous location problems. Batta et al. [16] 
generalized the results of Larson and Sadiq [17] by 
considering both arbitrary shaped barriers and convex 
forbidden regions. A similar discretization for a general 
class of distance functions was derived by Hamacher 
and Klamroth [18].  

Dearing and Segars [19] found an equivalent result 
for single facility location problems with the rectilinear 
distance in the presence of barriers. Dearing and Segars 
[20] improved the computational efficiency of these 
methods significantly.  

They explained that the consideration of a reduced 
dominating set is sufficient to solve the problem. 
Subsequently, Dearing et al. [21] studied the same 
problem using the block norm distances in place of the 
rectilinear distances. Savas et al. [22] first considered 
the location of a single finite-size facility in the 
presence of the arbitrary shaped barriers with the 
Manhattan (i.e., rectilinear) distance. Klamroth [23] 
presented the Weber problem in the presence of line 
barriers with a finite number of passages. She proved 
that the time complexity of the problem exponentially 
grows by increasing the number of passages. Klamroth 
and Wiecek [24] proposed an algorithm for multi-

criteria location problems with line barriers considering 
various distance functions. 

For the first time, Canbolat and Wesolowsky [25] 
introduced the rectilinear distance Weber problem with 
a probabilistic line barrier and proposed an algorithm to 
solve the problem.  

In this paper, we consider the Tchebychev distance 
Weber problem with a probabilistic line barrier. 
Canbolat and Wesolowsky [25] did not present any 
mathematical model and they just solved small-sized 
problem. Amiri-Aref [26] and Amiri-Aref [27] 
considered the same problem in the case of center 
problem and multi-period respectively. However, we 
generate and solve an MINLP model with the LINGO 
software. In addition, we propose a meta-heuristic 
algorithm based on Differential Evolution (DE) for 
finding a good solution for the large-sized problems that 
cannot be solved optimally by any exact solution in 
reasonable time. To the best of our knowledge, there is 
no published paper in this field. We utilize the proposed 
DE because of its efficiency. DE is a well-known meta-
heuristic algorithm than can be applied for non-
differential nonlinear models. It is first introduced by 
Storn and Price [28] to solve global optimization over 
continues space in order to fulfill the following four 
requirements expected from a practical minimization 
technique: 
v Ability to handle non-differentiable, nonlinear, and 

multimodal cost functions. 
v Parallelizability to cope with computation intensive 

cost functions. 
v Ease of use (i.e., few control variables to steer the 

minimization). These variables should also be robust 
and easy to choose. 

v Good convergence properties (i.e., consistent 
convergence to the global minimum in consecutive 
independent trials). 

Lampinen and Zelinka [29] utilized DE to 
manufacturing optimization problems with mixed-
integer discrete-continuous variables that design 
mechanical elements (e.g., gear train, pressure vessels 
and springs). Babu and Sastry [30] used DE for the 
estimation of effective heat transfer parameters in 
tricklebed reactors using radial temperature profile 
measurements fermentation process. Ponsich and Coello 
Coello [31] proposed the DE method to solve a Mixed-
Integer Non-Linear Programming (MINLP) for batch 
plant design problems and compared its results with an 
exact optimization method (i.e., B&B) and with a 
Genetic Algorithm (GA). The results repeatability was 
found for the DE method is much better than for the 
GA. Lampinen and Zelinka [29], Babu, and Sastry [30] 
also used DE for a number of test problems and showed 
that DE is very robust in obtaining the global minimum 
in comparison to other direct search methods. 
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3. PROBLEM FORMULATION 
 
In the following, some indices and parameters to 
produce a mathematical programming model for the 
desired problem are introduced. 

 
3. 1. Indices and Parameters 
 
i Index of the existing facilities 

m Number of the existing facilities 

L Length of the barrier    Weight of the i-th facility    x-coordinate of the i-th facility    y-coordinate of the i-th facility 

B Location of the barrier    Lower limitation of the uniform distribution    Upper limitation of the uniform distribution    =  1 if facility    locates in the above halfplane  .0 Otherwise                                                                 
 
3. 2. Decision Variables 
 

X x-coordinate of the new facility 

Y y-coordinate of the new facility 
 
 

 
Figure 1. Probabilistic line barrier. 

 
 

In this section, a general model for the Weber 
problem is presented that minimizes the total traveled 
Tchebychev distance in the presence of a probabilistic 
line barrier. Since there is a probabilistic barrier, 
calculating the expected barrier distance should be 

considered. So, the objective Function (5) can be 
reformulated by:   ( ) = min ∈  ∑   . [   ( ,  )]      (11) 

Following is the computation of  [   ( ,  )]. We 
also consider a horizontal line barrier with length l that 
has a fixed y-coordinate at b and a probabilistic x-
coordinate. Let Xs, which is a continuous random 
variable with known parameters, be the starting point of 
the line barrier. Then, the ending point of the line 
barrier, called Xe, can be calculated by Xe =Xs+l (see 
Figure 1). Canbolat and Wesolowsky [25] considered all 
possible cases of locating the existing and the new 
facility related to a line barrier position on the plane. 
They showed when the conditions 0 ≤ x-Xs ≤ l and 0 ≤ 
xi-Xs ≤ l are met, then the distance between new and 
existing facility can be called the barrier distance. Since 
the barrier randomly occurs on a horizontal line barrier, 
they proved that the barrier conditions can be 
represented in the following form. max{ −  ,   −  } ≤   ≤ min{ ,   },     ∀  .  (12) 

It means that the barrier can affect on the x-
coordinate of the distance between two arbitrary points. 
In other word, the barrier cannot affect the y-coordinate 
of the distance. So, the y-coordinate of the distance 
becomes the regular Tchebychev distance.   min ∑   . max { [   ( ,   )], [   ( ,  )]}     =min ∑   . max { [   ( ,  )], | −   |}       (13) 

Furthermore, computing the expected barrier 
distance is completely discussed in Canbolat and 
Wesolowsky [25]. They illustrated that the expected 
barrier distance of x from xi can be generally written by:  [   ( ,   )]       = (  |    |)   + | −   |;  | −   | <  | −   |;                               | −   | ≥   ;  ∀      

(14) 

Some auxiliary variables, which check the barrier 
conditions, are introduced as follows: 
 
1) Condition I checks the visibility of the new facility 
and existing facility i.   =  1 | −   | <  0 | −   | ≥    ∀   (15) 

 
2) Condition II checks the correlation of the new 
facility and existing facility i, in which they are located 
in the same half-plane or in different half-planes.    =  1 | −   | = 10 otherwise          ; ∀   (16) 

where 

(x, y) 
 

(xi, yi) 
 

Xs 
 

Xe 
 

y= b 
 

y 
 

x 
 

l 
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  =  1   >  0   ≤                   ; ∀   (17) 

 =  1  >  0  ≤      (18) 

 
3) Condition III determines the length of the distance 
between new facility and existing facility i according to 
the Tchebychev distance function. It means that if for a 
given i we have max{| −   |, | −   |} = | −   |, 
then regular Tchebychev distance is considered and the 
line barrier has not affect on the distance; else, the 
barrier may influence on the distance, related to the two 
conditions stated before.   =  1 max{| −   |, | −   |} = | −   |0 max{| −   |, | −   |} = | −   |   (19) 

In general, the objective Function (6) can be 
reformulated in the form of the MINLP model. min    ∑   × {  (    (  |    |)  (     ) ) ×   ×   +| −   |) × (1 −   ) +   × | −   |}  

(20) 

s.t.  | −   | × (2 ×   − 1) ≤ (2 ×   − 1) ×| −   |  ;   ∀   (21) 

| −   | × (2 ×   − 1) ≤ (2 ×   − 1) ×         ;        ∀   (22) 

 × (2 ×  − 1) ≥ (2 ×  − 1) ×         (23)   × (2 ×   − 1) ≥ (2 ×   − 1) ×         ;       ∀     (24)     –  =                                                         ;       ∀   (25)   ,   ,  ,   ∈ {0,1}                                          ;       ∀      (26)  , ≥ 0  (27) 

Objective Function (15) minimizes the total 
expected weighted Tchebychev barrier distance between 
new and existing facility, in which the first term of this 
function is calculated when the three barrier conditions 
stated before are satisfied simultaneously. When the 
barrier conditions are not met together, the second term 
of this objective function will be computed. Constraint 
(16) specifies the distance from the new facility to each 
existing facility, which is the reformulation of Condition 
III. Constraint (17) determines the visibility condition 
between the new facility and each existing facility that 
verify the Condition I. Constraints (18) and (19) 
investigate the position of the new and each existing 
facility whether in the upper or lower half plane, 
respectively. They are the restatement form of 

Constraints (12) and (13). Constraint (20) checks the 
position of the new and each existing facility to each 
other that checks Condition II. The binary and 
nonnegative variables are expressed in Constraints (21) 
and (22). 

 
 
4. A NUMERICAL EXAMPLE 
 
For better understanding, we consider an example that 
we find the location of the new facility between eight 
existing facilities and a probabilistic line barrier with the 
fixed length 4. The x-coordinate of a barrier has the 
uniform distribution between (3, 8) and y-coordinate 
fixed at 6. Table 1 provides the data for this example. 
Then, we solve this example with LINGO 9 and 
illustrate the example in Figure 2. Furthermore, we 
compare the results obtained from the problem without 
a barrier. Table 2 shows the optimal location of a new 
facility and their objective function in the presence of a 
barrier and without barrier. 

 
 
 

TABLE 1. Data of the existing facilities. 
i xi yi wi 

1 11.16 4.48 1 

2 7.59 9.62 1 

3 9 11.61 1 

4 9.81 5.5 1 

5 6.06 4.8 1 

6 10.03 8 1 

7 12 7.5 1 

8 6 9.46 1 

 
 

 
Figure 2. Optimal location of a new facility and location of 
the existing facilities. 
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TABLE 2. Optimal location of a new facility and its objective 
function. 
  ∗   ∗   ∗  
With barrier 9.235 7.975 21.22 

Without barrier 9.048 7.488 15.38 

 
 

TABLE 3. Parameters of the proposed DE. 
Name Symbol Explanations 

Mutation rate F Difference weighting factor 

Population size Np Number of vectors in each 
generation 

Stopping condition       Usually select a certain number for 
the maximum iteration of a 
generation 

 
 

1 2 ….. Np 

X1 X2 ….. Xnp 

Y1 Y2 ….. Ynp 

Figure 3. Representation of the initial population. 

 
 
 

5. DIFFERENTIAL EVOLUTION 
 

The differential evolution (DE) is a well-known meta-
heuristic algorithm, which is applicable for the non-
differential nonlinear models. It is first introduced by 
Storn and Price [28] to solve the global optimization 
over the continues space. Lampinen and Zelinka [29], 
Babu, and Sastry [30] have also used DE for a number 
of test problems and showed that DE is very robust in 
obtaining the global minimum in comparison to other 
direct search methods. 

The DE algorithm is a parallel direct search method, 
which utilizes a number of d-dimensional parameter 
vectors as the initial population (Np) chosen randomly 
and is fixed during the minimization process. DE 
generates new vectors for the next generation by three 
operations, namely (1) mutation that adds the weighted 
difference between two population vectors to a third 
vector to yield the so-called noisy vector, (2) crossover 
where the noisy vector’s parameters are then combined 
with the parameters of target vectors, in which the result 
vector is called the trial vector, and (3) selection. If the 
objective function of the trial vector is lower than the 
target vector, it replaces the target vector in the 
following generation. In each generation, each of Np 
vectors should to be a target vector once. There are 
different strategies of DE that differences are in the 

target vector selection and difference vector creation. 
We use the DE/rand/1 strategy in this paper. We explain 
Parameters of the proposed DE in Table 3.  
The modification of the DE algorithm for the given 
problem is briefly introduced below. 
 
5. 1. Representation    Let Np be the population size 
and d be the number of dimensions. So, a new facility 
location should be shown with a vector with two 
dimensions. We create a set of Np vector randomly as 
initial population (pop) as shown in Figure 3. 
 
5. 2. Mutation     For each target vector, we select 
three vector randomly (r1, r2 and r3).  Calculate the noisy 
vector   , ,  as follows.    , ,   =      , , +  ×       , , −      , ,    (28) 

 
5. 3. Crossover    Because of increasing the diversity 
of the perturbed parameter vectors, crossover is 
proposed. With probability Cr, we select the parameters 
value from the noisy vector; otherwise, from target 
vector. The result vector is trial vector   , ,  (i=1,…,np; 
j=1,…,d; G=1,…,    ).  
 

5. 4. Selection       We compare the cost function value 
of the trial and target vectors. The one with a lower cost 
survive for the next generation. 
 
5. 5. Repairing Strategy      The proposed DE 
algorithm has also a repair strategy when the illegal 
vector is created. After initialization and each operation 
(i.e., mutation and crossover) in the proposed DE 
algorithm, if the value of parameter vector for each 
population is out of the range of the existing facilities, 
we replace it by a random legal vector in this range. We 
find the best combination of the DE parameters by 
experiment that we fix the population size and a number 
of the existing facilities, and then tune between the 
difference weighting factor (F) and the crossover rate 
(Cr). We run the proposed DE for some combination of 
DE parameters and compare the objective function. 
Finally, we achieve the best combination of Cr = 0.7 
and F = 0.9. The pseudo code of the proposed DE is 
presented in Appendix 1. 

 
 
6. LOWER BOUND 
 
Since location problems with barriers are generally 
difficult global optimization problems, problem 
relaxations allowing for the determination of good 
bounds are essential for their solution. Klamroth [3] 
considered a simple way for finding a lower band for 
the location problem with a barrier that is the problem 
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without the corresponding constraints of a barrier. Due 
to this definition, we solve the problem of type 
1/ℝ /●/  /Σ  instead of the problem of type 1/ℝ / ℬ −1                    /   /Σ. The mathematical model 
of this problem is presented in Appendix 2. 
 
 
7. COMPUTATIONAL RESULT  

 
In this section, we compare the computational results 
obtained from the DE algorithm and the lower bound as 
well as SLP (one of the strategy directions for solving 
non-linear problems in the LINGO software) for the 
variety size of test problems, which are shown in Table 
4. In all test problems, we assume that the length of a 
line barrier is equal to 50 and its y-coordinate is 55. It is 
supposed that the start point of the line barrier follows 
the uniform distribution function U (30, 80). We use 
MATLAB.7.5.0 software for running algorithms. The 
system utilized is a personal computer with Intel 
Pentium (R) Dual CPU E2180 @ 2GHZ and 2 GB 
RAM. Following are the explanation of Table 4.The 
result shows that SLP algorithm found the optimal 
solution except test problems 7 to 10. The results found 
by DE show the same value as SLP until test problem 6. 
We can state that our DE algorithm is robust because 
the variance of five iterations of each test problem is 
zero. We also show the DE convergence rate in Figure 
4. It can be observe that the DE converges to optimal 
value after almost ten generations. We then compare DE 
and SLP running time duration in Figure 5. SLP cannot 
achieve global optimum in a reasonable time for a larger 
size of the given problems (for example, in test problem 
6, LINGO is able to find the optimal value after 2.36 

hours). We also run our proposed DE algorithm for a 
larger size of this problem for five hours without 
stopping the condition criteria. The computational 
results are the same as shown in Table 5. For test 
problems 7-10 that the exact solution cannot find the 
global optimum, we compare our DE results with a 
lower bound (i.e., column LB in Table 5). Furthermore, 
we can state our proposed DE algorithm is an efficient 
algorithm to solve both small and large-sized problems. 
 
 
 

TABLE 4. explanation of columns 
Column Explanation 

No. Number of problem 

M Number of  facility 

LB Lower Bound 

MINLP:  ∗(SLP) The objective function value obtained from 
the SLP solver of the LINGO 

Time  Computing time of LINGO 

DE: Best  Best objective values for five times iteration 
of the DE algorithm 

Mean  Mean objective values for five times iteration 
of the DE algorithm 

STDV Standard deviation  are computed for each 
sample problem and are depicted 

CN Closeness ratio are computed for each sample 
problem  

Time  Computation time of DE algorithm for each 
sample problem 

 

 
 
 

TABLE 5. Computational result 

No m LB 
MINLP: DE:  ∗(SLP) Time (s) Best Mean STDV CN Time (s) 

1 10 224.72 226.52 17 226.521 226.521 0 0 .32 

2 20 440.26 449.34 112 449.338 449.338 0 0 .59 

3 40 718.165 956.17 550 956.173 956.173 0 0 1.28 

4 60 1236.7 1453.2 1944 1453.15 1453.15 0 0 2.7 

5 80 1424.4 1829.8 5127 1829.8 1829.8 0 0 3.31 

6 100 1749.2 2331.7 8498 2331.7 2331.7 0 0 4.16 

7 150 2584.9 2909.5* 10800 3531 3531 0 0 5.39 

8 200 3648.4 1801.1* 10800 4929.5 4929.5 0 0 6.39 

9 250 4549.5 554.4* 10800 5842.2 5842.2 0 0 9.67 

10 500 9178.9 1115.2* 10800 11931 11931 0 0 12.48 
* Returned by the optimization software as an objective bound after 3-hour computational time. 
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Figure 4. DE convergence 

 
 

 
Figure 5. DE and SLP executive time for different number of 
existing facility 
 
 
8. CONCLUSION 
 
The purpose of this paper was to find the optimal 
location of a new facility in the presence of a 
probabilistic line barrier under the Tchebychev distance 
norm. After investigating the visible and shadow region 
as well as their relevance to a barrier condition, we 
developed a mathematical model for this problem. We 
use the SLP algorithm to solve this model. The 
computational results showed that this exact algorithm 
could not achieve any solution but an objective bound. 
Therefore, we proposed the differential evolution (DE) 
algorithm for the presented model and compared its 
result with the exact solution and lower bound. As 
future research, considering another type of a barrier or 
combination more than one barrier can be the extension 
for this problem. Another extension can be the use of 
another meta-heuristic algorithm for this problem. In 
addition, it can be supposed that the location of the 
existing facilities or the barrier length is not crisp. 
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APPENDIX 1 
 
Following is the pseudo code of the proposed DE. 
Begin 
G=0 
Create a random initial population      ,   ;  ∀ i  

(i=1,…,np) 
Evaluate f(    , )  ;  ∀ i  (i=1,…,np) 
For  G=1  to        do 
For  i=1  to  np     do 
Slecct randomly     ≠   ≠           =randint(1,d) 
For  j=1  to  d     do   , ,   =     , ,  +F×(      , ,  -      , , ) 
If(     [0,1) ≤     or j=      ) then   , ,   =  , ,    
Else    , ,   =    , ,  
End  If 
End  For 
If (  f(  ,   ) ≤ f(     , )  ) then      ,   =  ,    
Else       ,   =     ,  
End  If 
End  for 
G=G+1 
End for 

End 
 

 
APPENDIX 2 
 
Following is the mathematical model for the lower band 
of our problem.  
    min    ∑   × {      | −   | × (1 −   ) +   ×| −   |}  (20) | −   | × (2 ×   − 1) ≤ (2 ×   − 1) ×| −   |   ;   ∀   (30)   ∈ {0,1}                         ;    ∀      (31)  , ≥ 0 (32) 

 

 
 
 
 
 
 



                                      F. Mahmood-Soltani et al. / IJE TRANSACTIONS C: Aspects   Vol. 25, No. 4, (December 2012)  293-302                          302 
 

 

 
A Facility Location Problem with Tchebychev Distance in the Presence of a 
Probabilistic Line Barrier 
 
F. Mahmood-Soltani a, R. Tavakkoli-Moghaddam b, M. Amiri-Aref a  
 
a Department of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Iran  
b Department of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran 

 
 
P A P E R  I N F O   

 
 
 

Paper history: 
Received 3 December 2011 
Received in revised form 10 May 2012 
Accepted 30 August 2012 

 
 

Keywords:   
Location problem 
Tchebychev distance 
Line barrier 
Differential evolution 
 
 

 

  چکیده
   

. گیرداین مقاله، یک مسأله مکانیابی تک تسهیل را در حضور یک مانع خطی در صفحه با فاصله از نوع چبیشف در نظر می
نحوي که مجموع شود، بهریزي عدد صحیح غیر خطی مختلط براي این مسأله توسعه داده میطور خاص، یک مدل برنامهبه

براي صحه گذاري مدل ریاضی، یک مثال عددي حل . شوددار بین تسهیل جدید و تسهیلات موجود را کمینه میوزنفاصله 
نام علت سختی ایجاد شده در حل این مسأله با افزایش تعداد تسهیلات موجود، یک الگوریتم فراابتکاري کارا بهبه. شودمی

در خاتمه، مقایسه نتایج مربوطه با روشهاي . شودیشنهاد و طراحی میتکامل تفاضل براي حل این مسأله در اندازه بزرگ پ
 .شوده میئهاي مختلف از این مسأله  ارادقیق و حد پایین براي اندازه
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