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A B S T R A C T

This paper presents an incompressible smoothed particle hydrodynamics (SPH) model to simulate 
wave propagation in a free surface flow. The Navier-Stokes equations are solved in a Lagrangian 
framework using a three-step fractional method. In the first step, a temporary velocity field is provided 
according to the relevant body forces. This velocity field is renewed in the second step to include the 
viscosity effects. A  Poisson equation is employed in the third step as an alternative for the equation of 
state in order to evaluate pressure. This Poisson equation considers a trade-off between density and 
pressure which is utilized in the third step to impose the incompressibility effect. The computations are 
compared with the experimental as well as numerical data and a good agreement is observed. In order 
to validate proposed algorithm, a dam-break problem is solved as a benchmark solution and the 
computational results are compared with the previous numerical ones.
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NOMENCLATURE

V particle velocity q=r/h non-dimensional distance between particles
V* particle first temporary velocity A a field variable
V** particle second temporary velocity B a vector

V̂ particle corrected velocity without using XSPH D shear strain rate

V particle velocity by using XSPH correction T period of signals

P particle pressure Greek letters

t time  density of water

g gravitational acceleration * a temporary density

r position vector 0 initial density

x horizontal coordinate  shear stress tensor

y vertical coordinate  a scalar or vector quantity

W interpolation kernel  small number to avoid singularity

h smoothing distance  constant viscosity of water

m particle mass  constant XSPH correction

1. INTRODUCTION1

The study of wave propagation in free surface flows has 
many benefits and is being given great attention in 
                                                          
*Corresponding Author Email: namanif@guilan.ac.ir  (N. 
Amanifard)

practice. Surface water waves have a high potential to 
cause damages and losses of lives in coastal areas. 
Predicting the damage of these waves is of importance 
when assessing risk and magnitude of flooding in these 
areas. 

Previous investigations have been focused on the 
studies of wave propagation and overtopping through 
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using the experimental, analytical and numerical 
approaches. For example, Cox and Ortega [1] carried 
out an experimental study on the wave overtopping over 
a fixed deck using irregular and transient waves. 

Unfortunately, due to the complexity of this 
phenomenon, number of reliable laboratory and field 
data is limited. Therefore, numerical methods are 
widely used for simulating of wave propagation. 

Most of the numerical works on the recent wave 
problems have been carried out using the Eulerian grid-
based methods with quite satisfactory results, such as 
finite element, finite volume and finite difference 
methods. These methods have provided many useful 
and satisfactory results. However, their successes 
largely rely on good quality meshes. The construction of 
such high quality mesh configurations is usually a 
difficult and time-consuming task, since it must be 
ensured that the aspect ratios of all elements are neither 
very large nor very small and thus the connectivity 
between nodes and elements must be carefully and 
accurately found and recorded. In addition, elements 
can frequently become over-distorted during the 
simulation of water wave evolutions. The over-distorted 
elements may be amended by remeshing. However, 
remeshing can be as expensive as the generation of 
original meshes and may take a major proportion of 
computational costs considering when this has to be 
done almost every time step.

A new class of methods has recently been 
developed, which can overcome the problems 
associated with mesh-based methods. These methods do 
not need using any mesh to discrete computational 
domains and they are only based on randomly-ordered 
and –distributed nodes. Many meshless (or particle) 
methods have been reported in the literature, such as 
meshless local Petrove–Galerkin (MLPG) method [2], 
moving particle semi-implicit (MPS) method [3], 
smoothed particle hydrodynamics method (SPH) [4] and 
so on. Among them, the SPH method has been used 
widely to simulate water wave problems [4-6].

The SPH method uses a purely Lagrangian approach 
and has been successfully employed in a wide range of 
applications, such as incompressible fluid flow, 
multiphase flow, turbulence, heat and mass transfer, 
elasticity and fracture, and etc [7]. Recently, SPH has 
also been employed to simulate fluid-structure 
interaction [8-10]. The meshless characteristic of SPH 
makes the method needless of using data connectivity as 
needed by the finite volume and finite element methods. 
This gives the method a very useful feature when 
dealing with complex flows exhibiting large 
deformations and/or free-surfaces.

The method was originally developed by Lucy [11] 
and Gingold and Monaghan [12] to solve compressible 
astrophysical problems, and then it was later extended 
to incompressible flows by Monaghan [4]. Several other 

researchers have contributed to the method and solved 
various engineering problems including turbulent flows, 
interfacial flows and sloshing problems [13-15]. 

Dalrymple et al. [5] and Gomez-Gesteira et al. [16] 
employed this method to study the wave overtopping 
over coastal structures. In the previous simulations of 
incompressible flows using the SPH model, the 
incompressibility was achieved by employing an 
equation of state and the fluid was assumed to be 
slightly compressible. This approach is denoted as the 
weakly compressible SPH, since a large enough sound 
speed has to be introduced into the pressure equation to 
ensure the numerical stability. Based on the semi-
implicit algorithm of the MPS method [3], a truly 
incompressible version of the SPH [17] has been 
proposed, in which the free surfaces were identified and 
tracked by particles without numerical diffusion. The 
key difference between the original weakly 
compressible SPH [11, 12] and the incompressible SPH 
[17] lies in that the former calculates the pressure using 
an equation of state, while the latter employs a strictly
incompressible SPH formulation, in which the pressure 
is not an explicit thermodynamic variable but obtained 
implicitly through solving a pressure Poisson equation 
derived from the mass and momentum equations. In this 
sense, it is also very similar to the pressure projection 
method widely used in grid based methods and the 
projection SPH of Cummins and Rudman [18].

In this paper a new incompressible SPH algorithm 
based on Shao et al.[17] is presented to simulate gravity 
wave propagation in free surface flow problems. Before 
this simulation, in order to show the ability of the 
method for simulating of free surface problems, a dam-
break problem is modeled as a benchmark and the 
results are compared with the results of standard SPH 
method. 

The proposed algorithm is similar to three step 
explicit SPH algorithm proposed by Hosseini et al. [19] 
for simulation of incompressible fluid flows. In the first 
step of this algorithm, the momentum equation is solved 
in the presence of the body force neglecting all other 
forces. The calculated temporary velocities are renewed 
in the second step to include the viscosity effect. A  
Poisson equation is employed in the third step as an 
alternative of the equation of state in order to evaluate 
pressure of the particles. This Poisson equation 
considers a trade-off between density and pressure 
which is utilized in the third step to impose the 
incompressibility effect.

In fact there is no difference between the presented 
algorithm and the SPH algorithm proposed by Hosseini 
et al. [19], the purpose of this paper is to explore the 
potential of newly developed SPH method for modeling 
the propagation of nonlinear water waves. Wave 
propagation problems are of great importance to 
offshore engineering and any new numerical method, 



241        N. Amanifard et al/IJE TRANSACTIONS A: Basics   Vol. 25, No. 3, (July 2012) 239-247

even successfully applied to other fluid problems, is 
usually required to be carefully refined when it is 
applied to water waves. The SPH computations are 
compared with the experimental data of Cox and Ortega 
[1] and the numerical results of Gomez-Gesteira et al. 
[16]. 

2. GOVERNING EQUATIONS

The governing equations for simulating free surface 
flow in 2-D dimensions are the mass and momentum 
conservation equations. With regard to fluid particles, 
they are written in Lagrangian form as:
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Equation (1) is in the form of a compressible flow. 
The purpose is that the deviation of fluid densities at the 
particle can then be used to enforce incompressibility in 
the correction step of time integration.

3. SPH FORMULATION

The SPH formulations as developed by Monaghan [20] 
are obtained by interpolating from a set of points that 
may be disordered. The interpolation is based on the 
theory of integral interpolants using kernels that 
approximate a delta function. The interpolants are 
analytic functions that can be differentiated without the 
use of grids. If the points are fixed in position, the 
equations reduce to finite difference equations, with 
different forms depending on the interpolation kernel. 
The SPH equations describe the motion of the 
interpolating points, which can be assumed as particles. 
Each particle carries a mass m, a velocityV , and other 
properties, depending on the problem.

3. 1. Interpolation     Using the above concepts, any 
quantity of particle i, whether scalar or vector, can be 
approximated by the direct summation of the relevant 
quantities of its neighboring particles j
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where i and j= reference particle and its neighbors.

3. 2. Kernel    The use of different kernels is the SPH 
analogue of using different schemes in finite difference 
methods. While different equations can have different 
kernels, usually the same kernel is used throughout all 
formulations in one model. By balancing the 

computational accuracy and efficiency, the following 
kernel based on the spline function and normalized in 2-
D is adopted [20]
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The smoothing distance or kernel range h determines 
the degree which a particle interacts with neighboring 
particles.

This kernel has the advantage of possessing compact 
support, the second derivative being continuous and the 
dominant error term in the integral interpolant being the 
order of h2. The continuity of the second derivative 
means that the kernel is not too sensitive to particle 
disorder and the errors in approximating the integral 
interpolants by summation interpolants are small 
provided the particle disorder is not too large.

3. 3. Gradient, Divergence and Laplacian     The 
formulation of the gradient term in the Navier–Stokes 
equation has different forms depending on the 
derivation used [20]. The following symmetric forms 
are employed for gradient of a scalar A and divergence 
of a vector B since it conserves linear and angular 
momentum exactly 
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where the summation is over all particles other than 
particle i and  ijiW gradient of the kernel taken 

with respect to the positions of particle i. In practice 
only near neighbors contribute, because the kernel has a 
finite range.

A simple way to formulate the Laplacian operator is 
to envisage it as dot product of the divergence and 
gradient operators. This approach proved to be 
problematic as the resulting second derivative of the 
kernel is very sensitive to particle disorder and when 
dealing with the Navier-Stokes equations can easily lead 
to pressure instability and decoupling in the 
computation due to the co-location of the velocity and 
pressure. In this paper, the following alternative 
approach is adopted [17]
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where 
jiijjiij rrrAAA  , and  is a small 

number introduced to avoid a zero denominator during 
computations and is set to 0.1h.
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4. THREE-STEP INCOMPRESSIBLE SPH ALGORITHM

In this section, an algorithm is presented to show the 
sequence of computation of each term in the governing 
equations. In this paper, a fully explicit three-step 
algorithm is used. In the first step of this algorithm, the 
momentum equation is solved in the presence of the 
body forces neglecting all other forces. As a result, an 
intermediate velocity is computed as 

tgVV t * (8)

Our experience has shown that it is important to 
impose the body forces in the first step of the solution 
algorithm especially in highly viscous fluids. In the 
second step, the calculated intermediate velocities are 
employed to compute the divergence of the stress 
tensor. Generally speaking, viscosity of incompressible 
generalized Newtonian fluids depends only on the 
second principal invariant of the shear strain 
rate 2/)( TVVD  , i.e.,
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A classical constitutive law for these generalized 
Newtonian fluids is given by

 DD  (10)

For Newtonian fluids the familiar form D 2 is 

recovered.
Consequently, the stress tensor   can be calculated 

for any specified constitutive law. In this work, the 
divergence of the stress tensor in the momentum 
equation is obtained as:
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At the end of second step, the velocity components 
of each particle is updated according to:
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At this stage, each particle is moved according to its 
second intermediate velocity  ****** ,vuV  .

Thus far no constraint has been imposed to satisfy 
the incompressibility of the fluid and it is expected that 
the density of some particles change during this 
updating. In fact, with the help of the continuity 
equation one can calculate the temporal fluid density of 
each particle as:
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The velocity field   vuV
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, which is needed to 

restore the density of particles to their original values is 
now calculated. To do this, in the third step of the 

algorithm, the momentum equation with the pressure 
gradient term as a source term is combined with the 
continuity Equation (1) as
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to obtain the following pressure Poisson equation 
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Equation (16) can be discretized according to 
Equation (7) to obtain the pressure of each particle as:
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Using Equation (17) for the pressure of each 
particle, one can calculate V


according to Equations 

(15) and (5) as
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Finally, the velocity of each particle at the end of 
time-step will be obtained as:
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and the final position of particles are calculated using a 
central difference scheme in time.

 tttttt VV
t

rr 


  2
(20)

This completes the computations required for one 
time-step. The procedure should be repeated for every 
other time-step till a desired time is reached 

5. TREATMENT OF FREE SURFACE AND WALL 
BOUNDARY CONDITION

No special treatment was applied on free surface 
particles in the computational domain. In fact in this 
SPH method free surface is modeled naturally and this 
is one of the main advantages of the method. 

Generally, the solid walls are also simulated by 
particles, which balance the pressure of inner fluid 
particles and prevent them from penetrating the wall. 
Special provisions must be made at the edges of these 
wall particles in order for the motion of the adjacent 
fluid to be modeled correctly. The wall boundary 
conditions can be modeled either by fixed particles 
exerting a repulsive force on inner fluid particles 
through a force function [21], or by image particles that 
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mirror the physical properties of inner fluid particles, so 
that boundary conditions are strictly satisfied along the 
solid walls [18].

Here we follow the treatment used by Koshizuka et 
al. [22] to model the wall boundaries by fixed wall 
particles, which are spaced according to the initial 
configuration. The Poisson Equation (16) is solved on 
these wall particles to repulse the inner flow particles
accumulating in the vicinity of the wall. In this sense, 
the wall particles are dependent on the inner flows. For 
example, the pressure of wall particles increases when 
the particle density in the vicinity of the wall increases 
and thus the inner fluid particles are repelled from the 
wall, and vice versa. 

6. MODEL VERIFICATION

In order to validate of the present model, a dam-break 
problem is solved as a benchmark problem and the 
computational results are compared with other 
numerical works.  A schematic of the dam break model 
is presented in Figure 1. In this model, the tank is 

mL 22.3 long and mH 02. high. A column of 
water ( mLw 21. and mH w 60. ) is located in the 

left side of the tank.
Figure 2 presents some snapshots of the flow at 

different times. The computed results are compared with
the numerical results in which the standard SPH method 
is used to simulate the global development of fluid flow 
in dam-break problem [14].

At time t = 0s (not shown in the figure) the water 
column is allowed to flow. A relatively high velocity 
and shallow water depth flow in the x direction quickly 
forms (e.g. t = 1.19s). As time progresses, the flow 
impacts on the vertical wall at the opposite side of the 
tank. An upward water jet is suddenly formed that rises 
until gravity overcomes the upward momentum (around 
t = 1.19s). At this moment, the jet becomes thicker and 
the flow starts to reverse. Due to the oncoming flow, an 
adverse momentum gradient is created that results in an 
overturning wave (around t = 1.415s). This wave 
formation continues until the wave tip reconnects with 
the incident shallow water flow that now has less 
forward momentum. (Before t = 1.526s).   

Figure 1. General layout of dam-break problem

Figure 2. Dam-break flow and impact against a vertical wall. 
a) Calculation by using standard SPH [14] b) Simulation by present 
incompressible SPH method

A good agreement in free surface shapes is observed 
by comparing between the results of standard SPH and 
present incompressible SPH method.

7. THE WAVE PROPAGATION PROBLEM

In this section, the presented incompressible SPH model 
is employed for simulating waves generated by a wave-
maker to reproduce the experimental data and previous
numerical results.

7.1. Introduction of Experiment      The detailed 
laboratory experiment can be found in Cox and Ortega 
[1]. In this experiment the wave flume was 36.0m long 
by 0.95m wide and 1.5 m high and equipped with a 
programmable wavemaker. The constant water depth in 
the flume was 65.0cm. The wavemaker signals 
consisted of two cycles of period t=1.0s sinusoidal 
waves followed by two and half cycles of period t=1.5s 
sinusoidal waves with a higher amplitude. The wave 
flume was long enough to prevent the reflections from 
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the far wall. The free surface positions were measured 
to cover the area of interest in the experiment.

7. 2. Computational Parameters     Following the 
experimental setting of Cox and Ortega [1], the 
numerical tank is taken to be 17.3 m long and 1.2 m 
high. The length of numerical tank is shorter than the 
experimental one due to the constraint of the CPU time. 
The initial water depth is 0.65 m. The numerical wave 
tank used in this paper is shown in Figure 3.

The incident wave is generated by moving a 
numerical wave paddle located at the offshore 
boundary. The numerical wave signals are similar to 
those used by Gomez-Gesteira et al. [16]. 

Figure 3. Numerical wave tank

Figure 4. Particle configurations during wave propagation 
computed by the present method at different times.

7. 3. Discussion of Results    In this section, particle 
configuration due to the movement of the wavemaker is 
presented in Figure 4 at different times. In this 
computation, fluid particles are initially placed on a 
regular and equally spaced Cartesian grid with dx = dy 
= 0.04 m and thus approximately 9000 particles are used 
in the simulation. This number of particles ensures the 
accuracy of computations with respect to reduce the 
CPU time. A constant time step (dt = 0.00001s) and an 
initial particle velocity and pressure (V = P = 0) are
used in the computations. The main computations using 
these quantities can be finished within 6 hours by a CPU 
1.87GHz and RAM 1.0GB PC.

Figure 5. Free surface measurements. Comparison between 
presented incompressible SPH method (heavy black line), 
experimental results (blue line) and previous weakly 
compressible SPH method (red line).
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Figure 6. Pressure field of fluid during wave propagation at different times

The generated waves move toward the right wall 
corresponding to the wavemaker movement. The figure 
illustrates the stability of the present method to simulate 
the problems for long times.

In order to compare our results to the experimental 
ones [1] and numerical results in which the weakly 
compressible SPH is used to simulate propagation of 
waves in the tank [16], the numerical free surface 
position at different times is shown in Figure 5. The 
four frames correspond to the different positions from 
x=7.0 to 10.0 m, measured from the wavemaker. The 
numerical signal is observed to be in good agreement 
with the experimental one, both in phase and amplitude, 
although there are several slight discrepancies between 
the experimental and numerical profiles.

This is probably due to the fact that the numerical 
signal was filtered using a low pass filter, in such a way 
that sharp peaks are considerably smoothed out. 
Moreover, it is evident that the results provided by the 
current presented SPH algorithm shows more
compatible results with experiments than those reported 
by weakly compressible SPH [16] especially in the case 
of amplitude.

It is noteworthy that in the previous simulations 
using weakly compressible SPH a tendency to form 
clump has been reported. However, investigation of 
Hosseini et al. [8] illustrates that the three step SPH 
algorithm shows no tendency to particle clustering. 
Although this numerical instability is insignificant in 
fluid simulations, it can result in an artificial surface 
tension. This characteristic prevents forming high 

curvature regions because of large density 
discontinuities.

In Figure 6 the computed pressure field at different 
times is presented. These pressure contours show that 
the pressure of free surface particles is about zero and 
grows gradually with increase in water depth, hence the 
maximum pressure of fluid (about 7000 pa) belongs to 
the beneath particles.

8. CONCLUSION

In this paper, the application of an incompressible SPH 
method for numerical simulation of free surface 
problems e.g. gravity wave propagation in free surface 
flows is investigated. One of the main differences 
between the utilized algorithm and the previous 
standard SPH lies in the pressure computation. By 
employing a new form of source term to the Poisson 
equation of pressure and using a three-step fractional 
algorithm, accuracy of this method in comparison with 
weakly standard SPH method is improved whereas, no 
special treatment is applied on free surface particles in 
the computational domain. In fact, by using the SPH 
form of the continuity equation (Equation (13)) instead 
of the density summation interpolant, which is common 
in SPH simulation, as well as using the Poisson 
equation, sensitivity of the method to density 
discontinuities is decreased. The computational results 
were in good agreement with the experimental data and 
previous numerical results. 
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  چکیده

سازي انتشار موج در جریان سطح آزاد  را براي شبیه) SPH(ناپذیر هیدرودینامیک ذرات هموار  این مقاله، یک مدل تراکم

در گام . شوند اي حل می صورت لاگرانژي با استفاده از یک الگوریتم سه مرحله استوکس، به - معادلات ناویر. دهد ارائه می

این میدان سرعت در گام دوم، با اعمال اثرات . آید دست می هاول، با استفاده از نیروهاي حجمی، یک میدان سرعت میانی ب

گرفته کار عنوان جایگزین معادله حالت براي محاسبه فشار به در گام سوم، یک معادله پواسون به. شود لزجت، تجدید می

ناپذیري  کند که از آن در گام سوم براي اعمال تراکم بین چگالی و فشار ایجاد می اي را این معادله پواسون، موازنه. شود می

. نتایج محاسبات با نتایج عددي و آزمایشگاهی دیگر مقایسه شده و توافق خوبی مشاهده شده است. شود استفاده می

دست آمده  هي حل شده و نتایج با عنوان یک مسأله پایه منظور بررسی صحت روش ارائه شده، مسأله شکسته شدن سد، به به

  .هاي عددي دیگر مقایسه شده است با نتایج حاصل از روش
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