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A B S T R A C T

This study presents an optimization problem for shape design of a 2-D radiant enclosure with 
transparent medium and gray-diffuse surfaces. The aim of the design problem is to find the optimum 
geometry of a radiant enclosure from the knowledge of temperature and heat flux over some parts of 
boundary surface, namely the design surface. The solution of radiative heat transfer is based on the net 
radiation method, where the configuration factors are obtained by the Hottel’s crossed-string approach 
by treating blockage and convex surfaces. The conjugate gradient method is used for minimization of 
an objective function, which is expressed as the sum of square residuals between estimated and desired 
heat fluxes over the design surface, and the sensitivity coefficients are calculated by the finite 
difference method. A regularization approach is proposed to numerically regularize the ill-ordered 
grids, which are commonly found during the iterative optimization process. Some example problems 
are presented to show the performance and accuracy of the method. The results show that the 
optimization procedure can successfully generate the optimum geometry of radiant enclosure.

doi: 10.5829/idosi.ije.2012.25.02c.10

1.  INTRODUCTION1

Optimum design of radiant enclosures has gained
considerable interest in semi conductor and food 
industries. The main goal of the design problem is to 
satisfy the uniform heat flux and temperature 
distributions over the surface of product, namely the 
design surface. This goal may be attained by 
regularization of the strengths or the locations of heat 
sources over the heater surface [1-4]. However, when 
setting a number of heaters with variable strengths or 
locations over the heater surface is difficult, expensive 
or non-practical, optimization of enclosure shape design 
may be the final solution. The shape optimization may 
also be combined with other optimization problems in 
order to achieve the best solution.
     In recent years, shape optimization problems have 
received much attention in a number of engineering 
applications. Practical applications are found from the 
optimization of mechanical structures [5-7] to 
aerodynamic design [8, 9]. In the field of heat transfer, 
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many efforts have been made to optimize the design of 
fin profiles to produce the maximum heat loss for a 
specified fin volume. Malekzadeh et al. [10, 11] used a 
combination of the differential quadrature element 
method and the golden section search method for 
maximizing the heat dissipation for any given fin 
volume with combined convective–radiative heat 
transfer. Kundu and Das [12] developed a generalized 
methodology for the optimum design of longitudinal 
fins, pin fins, and radial fins with uniform volumetric 
heat generation using the variational method.
     One of the powerful tools for optimization is the 
genetic algorithm. The genetic algorithm (GA) is an 
efficient searching method based on the mechanisms of 
natural selection for global optimization in complex 
systems. Fabri [13, 14] used the genetic algorithm for 
geometry design of a single fin in order to achieve the 
highest fin efficiency. The application of genetic 
algorithm for optimum shape design of fins with 
volumetric heat generation under the influences of free 
convection and radiation was presented by Azarkish et 
al. [15]. A few studies for optimum design of radiative 
enclosures were reported. Sarvari [16] applied the micro 
genetic algorithm for optimum design of a radiant oven 
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by improving the location of a number of control points 
representing the B-spline curve of the radiant oven to 
achieve the desired goal. Because the GA searches from 
a population of points, the probability of the search 
getting trapped in a local minimum is limited. However, 
the large size of the population makes it very poor in 
terms of convergence performance so that the iterative 
procedure, even for micro genetic algorithm which uses 
a population of five chromosomes, is time consuming. 
     Another tool for optimization of thermal systems is 
the gradient-based methods such as the Newton method 
or the conjugate gradient method (CGM) [17]. The main 
drawback of gradient-based methods is that the result 
depends on the initial guess. If there is more than one 
local optimum in the problem, the result will depend on 
the choice of the starting point, and a global optimum 
cannot be guaranteed. Another drawback of gradient-
based methods is that they depend on the existence of 
derivatives. For cases where the derivatives of the 
known parameter with respect to the unknown variables 
can be found in a straightforward manner, these 
methods have a good performance, but in most cases it 
is difficult or extremely expensive to calculate these 
derivatives precisely. In spite of the above-mentioned 
drawbacks, the gradient-based methods are more 
efficient in convergence rate. This advantage 
compensates the drawbacks of the gradient-based 
methods, and hence even today these methods are 
widely used for inverse design of complex systems. For 
example Daun et al. [18, 19] used the gradient based 
optimization methods for geometry design of a radiant 
oven through the optimization of locations of a few 
control points for the B-spline curves representing the 
geometry. Lan et al. [20] reported an approach 
combining the curvilinear grid generation and conjugate 
gradient methods for shape design of heat conduction 
problems. They proposed a redistribution approach to 
regularize the ill-ordered grids which are commonly 
generated during the iterative optimization procedure.
     In the present work, we attempt to find the optimum 
geometry of a radiant oven to produce the uniform 
thermal conditions over the design surface. A uniform 
heat flux is maintained over the heater surface, and the 
design surface is considered to be isothermal. Then, the 
aim of the design problem is to produce uniform heat 
flux distribution over the design surface through 
optimizing the profile of an adiabatic wall. The 
radiation transfer equation is solved by the net radiation 
method and the conjugate gradient method is used to 
optimize the locations of the nodal points which 
represent the profile of the adiabatic wall. An efficient 
regularization approach is used to remove the ill-
ordered points which are generated during the iterative 
procedure and replacing them with new points in 
alignment. The performance of the optimization method 
is examined by some numerical experiments and the 
effects of the initial guess are discussed.

2. DESCRIPTION OF PROBLEM

Figure 1 shows a schematic shape of a radiant 
enclosure. The design surface is placed horizontally, 
and the heater surface has a deviation angle  with the 

design surface. The nodal points shown in Figure 1 by 
),( mmm yxz are the dynamic nodal points that represent 

the shape of the adiabatic wall. Both the design surface 
and the heater surface are diffuse-black, and the 
medium is transparent. A uniform heat input is 
maintained over the entire heater surface. The aim of the 
design problem is to optimize the geometry of the 
adiabatic wall by optimizing the locations of dynamic 
nodal points to produce a uniform heat flux distribution 
over the temperature-specified design surface.

Figure 1. Schematic shape of the radiant oven and dynamic 
nodal points at the adiabatic surface

3. DIRECT PROBLEM

Consider a radiant enclosure with K discrete internal 
surfaces as shown in Figure 2a. The objective is to 
analyze the radiation exchange between the surfaces 
involving two types of boundary conditions; the 
surfaces with specified emissive power and the surfaces 
with specified heat flux. 
     The net radiation method is used to solve the 
radiation exchange in the radiant enclosure. In this 
method, the boundary is subdivided into surface 
elements. The equation of radiation exchange for 
surface elements with specified emissive power can be 
described by the following equation: 
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whereas, the radiative transfer equation for other surface 
elements with specified heat flux is given by [21]:  
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where kj is the Kronicker delta defined by:
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here, J , q and bE denote the radiosity, heat flux and 

the emissive power, respectively. The set of Eq. (1) is 
solved to calculate the outgoing heat fluxes, 

KjtJ j ,,1,)(  , then the unknown boundary condition 

(emissive power or heat flux) is determined by the 
following equation:

KkEJq kbkk

k

k 


1,
1

,


(3)

(a) (b)

Figure 2. (a) Schematic shape of a radiant enclosure and (b) 
parameters in the Hottel’s crossed-string method

The configuration factors are calculated by the Hottel’s 
crossed-string method (see Figure 2b).
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     Some considerations must be employed to treat the 
configuration factors of convex elements, and 
blockages. Figure 3a and b show these cases. 
     As shown in Figure 3a, the configuration factor of 

jkF  between the element k and the convex element j

must be vanished. However, the Hottel’s crossed-string 
method do not predict the zero value for 

jkF 
. In order to 

treat this case, the view between two elements k and j
must be checked before calculating the configuration 
factor. The configuration factor 

k jF  exists if the value 

of cross product of a counterclockwise vector along the 
element k with a connecting vector from any point on 
element k to any point on element j be positive, or 

1 2V V 0  (see Figure 3a).

(a) (b)

Figure 3. (a) Schematic shape of a radiant enclosure with 
convex surface elements and (b) schematic shape of a radiant 
enclosure with a blockage surface element

     In Figure 3b the element m makes a blockage 
between elements k and j. In such cases, we draw a line 
from the midpoint on element k to the midpoint point on 

element j (line ac ). If this line intersects with element 

m at point b ( acab  ), the value of jkF  is zero.    

4. CONJUGATE GRADIENT METHOD

For the inverse problem considered here, the desired 
heat flux distribution over the design surface is available 
for the analysis, and the coordinates of the points 
constructing the adiabatic wall is regarded as unknowns. 
The desired and estimated heat flux distributions over 
the design surface may be expressed as vectors of 
discrete elemental values, such as:
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where N is the number of surface elements on the design 
surface. The vector of unknown coordinates of the nodal 
points constructing the adiabatic wall is expressed as:

 T
,,1),( Mmyxz mmm Z (6)

where M is the number of nodal points over the 
adiabatic wall.
The solution is based on the minimization of the 
objective function given by:
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The minimization procedure is performed using the 
conjugate gradient method. The CGM is an iterative 
procedure in which at each iteration a suitable step size, 
is taken along a direction of descent in order to 
minimize the objective function so that:
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where the superscript  is the iteration number. Here 
d is the direction of descent vector and kβ is the 

search step size. The direction of descent can be 
determined as a conjugation of the gradient direction, 

G , and the direction of descent from the previous 
iteration as follows:
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where  is the conjugation coefficient given by:
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Eq. (7) with respect to the unknown parameter:

 )(2)( T ZqqSZ ed
 G (11)

where S is the sensitivity (or Jacobian) matrix. The 
elements of the sensitivity matrix are calculated by the 
finite difference approach such as:
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The estimated heat fluxes can be linearized with a 
Taylor series expansion and then minimization with 
respect to step size is performed to yield the following 
expression for the step size:
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The iterative procedure is stopped when the objective 
function becomes less than a pre-defined small value or 
the number of iterations reaches to a specified value. 

5. IMPROVEMENT OF THE ILL-ORDERED 
POINTS

During the iterative solution procedure of the shape 
optimization, it is possible to generate unphysical 
shapes because of ill-ordered nodal points. The ill-
ordered nodal points at the adiabatic wall represent 
abrupt changes in shape or unphysical profiles. Some 
various types of ill-ordered patterns, including out of 
alignment, twisted, and crossed grids are shown in 
Figures 4a-c, respectively. 
   A regularization approach is used to regularize the ill-
ordered grids for the subsequent iterations, where the
location of the nodal points at the adiabatic wall can be 
adjusted in order to have a smooth and continuous 
profile. The regularization approach considered in this 
study includes three steps: (i) detection, (ii) alignment, 
and (iii) redistribution. Next section represents the 
detailed description of the regularization approach.

5.1. Detection of Ill-ordered Grid   To recognize the 
ill-ordered nodal points due to the out of alignment and 
twisted grids (see Figures. 4a and b), a deviation 
coefficient is defined as:

(a) (b)

(c)

Figure 4. Ill-ordered grids (a) out of alignment grid, (b) 
twisted grid and (c) crossed grid
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where AB denotes the length of element AB . The 

value of  is selected by trial and error process. 
According to [20], the deviation coefficient is set to 0.3
in this study. A larger  means a higher tolerance level 
for the ill-ordered points. The twisted and out of 
alignment grids may be detected using Eq. (14). These 
detected points must be replaced by new nodal points.
   For detection of crossed grid, first the intersections of 
all non-successive elements are determined. Let the 

point P represents the intersection of the element AB

with the element CD (see Figure 4c), then the location 
of the intersection point is given by:
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where a and b denote the slope and the intercept of 
line, respectively. Now, the intersection point lies within 
both elements AB and CD if  ABPBPA  and 

CDPDPC  .   

5.2. Alignment Let the point B be the point detected 
by Eq. (14) which lies between two nodal points A and 
C (see Figure 4a and b). This ill-ordered point is to be 
removed, and a new nodal point in alignment is created 
to replace it. The new nodal point is assigned to be 
located as:
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where z may be x or y, and superscript * denotes the 
new value. Figure 5a and b show the shape of grids after 
alignment. 

(a)

(b)

(c)

Figure 5. Ill-ordered grids (a) out of alignment grid, (b) 
twisted grid and (c) crossed grid, after alignment

   For the case of a crossed grid, as depicted in Figure 
4c, the starting point of the first crossed element is 
connected to the ending point of the second crossed 
element, and the ill-ordered nodal points are distributed 
equally over the connecting line. Hence, the locations of 
ill-ordered points are modified according to the 
following equation:
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where n is the number of ill-ordered nodal points. The 
modified shape of crossed grid is shown in Figure 5c.
   In addition to existence of a crossed grid at the 
adiabatic wall, during the iterative procedure it is 
possible that the dynamic elements at the adiabatic wall 
profile cross the static elements at either the design 
surface or the heater surface. Figure 6a shows such a 
case where the adiabatic wall profile crossed the design 
surface. In order to remove the ill-ordered points, the 
nodal point just before the first cross is connected to the 
nodal point just after the last cross at the adiabatic wall 
profile, and the locations of ill-ordered nodal points are 
updated based on Eq. (17). Figure 6b shows the 
modified grid after alignment.

(a) (b)

Figure 6. Crossing the adiabatic wall with the design surface 
(a) before alignment, and (b) after alignment

5.3. Redistribution   After the alignment step, the 
nodal points may be distributed in a non-uniform 
manner, and thus the rate of convergence for iterative 
procedure may be decreased accordingly. In order to 
achieve a near uniform grid, we use a redistribution 
approach. First, the average length of elements is 
calculated by:
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where m is the length of the m-th element restricted to 

dynamic nodal points 1m and m . Then, the number 
of segments over the m-th element is determined by:
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here the operator “NINT” rounds its argument to the 
nearest integer number, and  is the coefficient of 

segmentation. The value of  is selected based on trial 

and error process. The value of  is set to be 10 in this 

study. Finally, the location of artificial nodal point i at 
the m-th element is calculated by:

1
, 1 , 1, , , 1, , 1m m

m i m m
m

z z
z z i i S m M

S




 
       

 
  (20)

Therefore, the new number of artificial sub-elements 
which must be laid between two dynamic nodal points 
is given by:
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The new location of the m-th dynamic nodal point 
becomes:   

Mmwz mm ,,1,*
  (23)

with 0
*
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*
1   MM zz .

Figure 7 shows the locations of the dynamic nodal 
points at the adiabatic wall before and after 
redistribution.

   

Figure 7. The schematic shape of the adiabatic wall profile 
before and after redistribution
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(a)

(b)
Figure 8. The geometry of the radiant oven for iteration 13 (a) 
before regularization and (b) after regularization  

Typical regularization procedures for different number 
of iterations are shown in Figures 8-10. As seen, 
although the dynamic nodal points are seriously twisted 
or out of alignment at the start of the regularization 
procedure, a well-ordered grid distribution can be 
obtained after few iterations. It is also observed that the 
uniformity of the element length could be improved 
through the redistribution.

5.4. The Stopping Criterion   The stopping criterion 
for the iterative procedure of nodal regularization is 
given by:

 



M

m
mm zz

1

2*  (24)

where  is a pre-defined small value.

(a)

(b)
Figure 9. The geometry of the radiant oven for iteration 82 (a) 
before regularization and (b) after regularization  

(a)

(b)
Figure 10. The geometry of the radiant oven for iteration 471
(a) before regularization and (b) after regularization  

6. GRID REFINEMENT FOR THE DIRECT PROBLEM

The surface elements of the adiabatic wall may be 
stretched during the regularization procedure, in such a 
way that the direct problem of solving the radiative 
transfer equation is influenced by the discretization 
error. In order to reduce the discretization error, the 
surface grid at the adiabatic wall must be refined in each 
iteration. The refinement approach used in this study is 
based on the segmentation of surface elements into a 
number of sub-elements so that the number of sub-
elements can be found by:

Mmk avemm ,,1,NINT   (25)

7. OVERALL COMPUTATIONAL ALGORITHM

The overall computational algorithm for shape 
optimization of a radiant enclosure is shown in Figure 
11. The flowchart shows the overall solution procedure 
containing the direct problem, conjugate gradient 
method and the nodal regularization approach. 

8. RESULTS AND DISCUSSION

The optimization technique based on the CGM and the 
regularization approach is now demonstrated by 
applying it for design of a radiant oven as depicted in 
Figure 1, for different values of  angle. All the 

surfaces are considered to be diffuse-black and the 
medium is transparent. A uniform heat input, 

2W/m1hq is posed over the heater surface. The aim of 

the design problem is to optimize the geometry of the 
adiabatic wall to produce a uniform heat flux 
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distribution of 2W/m1dq over the temperature-

specified design surface with an emissive power of 
2W/m1bE . The design and the heater surfaces are 

discretized into 10 surface elements, and the adiabatic 
wall is represented by a suitable number of dynamic 
nodal points. Figure 12a shows three initial guesses for 
the adiabatic wall profile of a radiant oven with a 

deviation angle of o120 . The final shapes of the 

adiabatic wall for three cases with different initial 
guesses are shown in Figure 12b. As shown, the 
obtained profile of adiabatic wall is highly dependent to 
the initial guess. This conclusion is verified by 
considering other case with a deviation angle of 

o150 as shown in Fig. 13.

     The accuracy of the optimization method is 
measured by the relative error and the root mean square 
error which are defined as follows:

  100,,,,  ndnendnrel qqqErr (26a)
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The relative error measures the deviation between 
desired and estimated values on each node, whereas the 
root mean square error measures the deviation between 
desired and estimated values over entire extent of the 
design surface.

The distributions of relative error over the design 
surface are shown in Figure 14a and b for the cases 
shown in Figures 12 and 13.
As demonstrated in Figure 14, the accuracy of the 
optimum shape is highly dependent to the initial guess. 
However, using a suitable initial guess, the optimum 
profile may be generated in an acceptable range of error.

Figure 11. The flowchart of the overall computational algorithm
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The values of maximum relative error, the root mean 
square error, the objective function, and the CPU time 
per iteration for cases with different values of angles of 
deviation are shown in Table 1. As seen in Table 1, 
although the maximum relative error for some cases is 
large, but the values of root mean square error for 
almost all cases are acceptable.    

(a)

(b)

Figure 12. (a) Three initial guesses for adiabatic wall profile, 
(b) the obtained profiles of the adiabatic wall for three initial 
guesses, o120

(a)

(b)

Figure 13. (a) Three initial guesses for adiabatic wall profile, 
(b) the obtained profiles of the adiabatic wall for three initial 
guesses, o150   

(a)

(b)

Figure 14. The distribution of relative error of estimated heat 
flux over the design surface for (a) o120 and (b) o150

TABLE 1. The maximum relative error, the root mean square 
error, the objective function and the CPU time per iteration for 
cases with different angles of deviation and different initial 
guesses

 Guess Errrel,max

(%)
Errms

(%)
G CPU time (s)

120o
1 3.87 0.018 0.003 1.89
2 65.03 0.413 0.171 1.13
3 4.66 0.029 0.008 1.78

150o
1 3.28 0.017 0.003 2.78
2 14.58 0.0763 0.058 2.54
3 0.96 0.006 0.003 29.33

Moreover, the CPU time is highly dependent to the 
number of nodal points, and the number of iterations for 
regularization of the locations of nodal points.

9. CASE STUDY

In order to check the performance of shape optimization 
method for reconstruction of a practical enclosure, we 
now consider a design problem of an oven with a 1-m
design surface which is located horizontally at a 
distance of mh 1 from a cylindrical heater (d=0.2 m), 

as depicted in Figure 15. The design surface is a diffuse-
gray surface with an emissivity of 7.0d which has a 

specified uniform emissive power of 2/1 mWEd  . The 

cylindrical heater is diffuse-black and produces a 
constant heat flux of )/(1 dqh  2/ mW . All other 

surfaces are adiabatic. The goal of the design problem is 
to identify the enclosure configuration to produce the 
uniform desired heat flux of 2/1 mWqd  over the 

design surface.
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Figure 15. Schematic shape of an enclosure consisting of a 
cylindrical heater and a design surface located horizontally

Because of symmetry, only half the points constructing 
the adiabatic wall are considered to be optimized during 
the iterative regularization approach. The final shape is 
indicated in Figure 16. The values of objective function, 
maximum relative error, root mean square error, and the 
CPU time per each iteration are reported in Table 2. 
Figure 17 shows the distribution of relative error over 
the design surface. As seen, the desired uniform heat 
flux distribution over the design surface is well satisfied 
by optimization of the adiabatic wall.

Figure 16. The obtained geometry for the case shown in 
Figure 15

Figure 17. The distribution of relative error of estimated heat 
flux over the design surface for the geometry shown in Figure 
16

TABLE 2. The maximum relative error, the root mean square 
error, the objective function, and the CPU time per iteration 
for the case described by Figure 15

Errrel,max (%) Errms (%) G CPU time (s)

0.76 0.003 0.0003 14.74

10. CONCLUSION

This article overviewed a gradient-based approach for 
geometric design of a radiant oven. The primary 
objective of the work was to find the optimal shape of a 
radiant enclosure to satisfy the uniform heat flux 
distribution over the temperature-specified design 
surface. The radiative transfer equation in the radiant 
enclosure with diffuse-gray walls, containing a 
transparent medium was solved by the net radiation 
method and the view factors were found by the Hottel’s 
crossed string method. The optimal shape of the 
enclosure was found by optimizing the locations of 
dynamic nodal points at the adiabatic wall. The 
optimization problem was solved by the conjugate 
gradient method. A regularization approach was posed 
to the nodal points in order to remove the ill-ordered 
nodal points and generate a smooth profile. The results 
show that the optimum shape can be successfully 
generated by the present method in an acceptable range 
of error. However, the final solution is highly dependent 
to the initial guess.  
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  چکیده

- در این مطالعه یک مسئله بهینه سازي جهت طراحی یک محفظه تابشی با محیط شفاف و سطوح پخشی

هدف مسئله طراحی یافتن هندسه بهینه یک محفظه تابشی با استفاده از اطلاعات . خاکستري ارائه شده است

حل انتقال حرارت . مرزي که سطح طراحی نام دارد می باشددما و شار حرارتی روي قسمت هایی از سطح 

تابشی براساس روش تابش خالص است که در آن ضرایب شکل با استفاده از روش تارهاي متقاطع هاتل با 

روش شیب مزدوج بمنظور کمینه کردن یک تابع هدف، . درنظر گرفتن موانع و سطوح محدب بدست می آیند

لاف بین شارهاي حرارتی مطلوب و ارزیابی شده روي سطح طراحی تعریف که بصورت مجموع مربعات اخت

. ضرایب حساسیت با استفاده از روش اختلاف محدود محاسبه می شوند. می شود، مورد استفاده قرار می گیرد

یک راهکار تنظیمی جهت تنظیم گره هاي درهم ریخته ارائه شده است که در یک فرآیند تکراري عمل می 

نتایج نشان می دهد که هندسه بهینه . ور نمایش عملکرد و دقت روش مثال هایی ارائه گردیده استبمنظ. کند

.محفظه تابشی بگونه اي موفقیت آمیز می تواند تولید شود
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