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Abstract In this paper, buckling behavior of moderately thick functionally graded rectangular plates
resting on elastic foundation subjected to linearly varying in-plane loading is investigated. The neutral
surface position for a functionally graded plate which its material properties vary in the thickness
direction is determined. Based on the first-order shear deformation plate theory and the neutral surface
concept, the equilibrium and stability equations are derived. An analytical approach is employed to
decouple the stability equations, as these equations are converted into two decoupled equations.
Employing Levy-type solution, the buckling equation is reduced to an ordinary differential equation
with variable coefficients! and solved exactly using power series method of Frobenius. To examine
accuracy of the present formulation and procedure, several convergence and comparison studies are
investigated. Furthermore, the effects of different parameters of plate and elastic foundation on the
critical buckling load of functionally graded rectangular plate are discussed.

Keywords Buckling analysis; Functionally graded material; Power series solution; Linear in-plane
loading; Elastic foundation; Mindlin plate.
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1. INTRODUCTION

The study on buckling of plate structures supported
by an elastic foundation is one of the most
important research areas in applied mechanics.
Pasternak’s two-parameter model [1] is commonly
adopted to describe the mechanical behavior of
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foundations, and the well-known Winkler’s model
[2] is one of its special cases. Many researchers
employed classical plate theory (CPT) to analyze
buckling behavior of thin plates. For example, Lam
et al. [3] studied the elastic bending, buckling and
vibration problems of rectangular thin Levy-plates
resting on elastic foundation. Buckling of

Vol. 25, No. 1, January 2012 - 89



orthotropic rectangular thin plates subjected to
uniaxial in-plane loading was analyzed by Harik
and Balakrishnan [4]. Yu and Wang [5] presented
an exact solution for buckling analysis of isotropic
rectangular thin Levy-plates on one-parameter
elastic foundation under different uniform loading
conditions. Since the classical plate theory neglects
the effects of transverse shear deformation plate, it
underestimates the deflection and overestimates
the natural frequencies and buckling loads of
moderately thick and thick plates. To modify the
classical plate theory for moderately thick plates,
the first-order shear deformation theory (FSDT)
was proposed by Mindlin and his co-workers [6,
7]. Brunelle [8] analyzed the elastic buckling of
transversely isotropic Mindlin plates with two
opposite edges simply supported and the remaining
two edges subjected to various boundary
conditions. Hosseini-Hashemi et al. [9] described
an investigation on exact solution for linear
buckling of rectangular Mindlin plates with two
opposite edges simply supported. According to the
literature survey, it can be found that most of the
buckling studies have dealt with rectangular plates
having uniformly distributed in-plane edge loads.
This is due to the fact that the governing stability
equations have constant coefficients which yield
exact solutions for buckling loads when two
opposite edges of the plate are simply supported.
Certainly, a plate may be loaded at the supported
edges by non-uniform in-plane loading. For
instance, in the case of I-beam or wide flanged
beam under bending moment at the ends or lateral
loads on the flange, the web of the beam is
subjected to non-uniform in-plane loads. In the
past decade, some works have been published for
static and dynamic analysis of rectangular plates
under non-uniformly varying in-plane loading. For
example, Romeo and Ferrero [10] investigated
analytical/experimental behavior of symmetric
laminated  simply-supported and  clamped
rectangular panels under linearly varying
combined loads. They indicated that there exists a
good correlation between analytical, numerical and
experimental results. Also, they believed that a
slight initial imperfection in the plate geometry has
a great effect on the discrepancy between
theoretical and experimental results. Bert and
Devarakonda [11] presented the buckling loads of
a simply supported rectangular thin plate under
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sinusoidal distribution of in-plane loading using
Galerkin method. In a series of articles, Leissa and
Kang [12] and Kang and Leissa [13, 14] have used
the classical plate theory and the power series
method to give the exact solutions for vibration
and buckling of the thin plate having two opposite
edges simply supported subjected to linearly
varying in-plane load. Liew and Chen [15] used
the radial point interpolation method to investigate
buckling of rectangular Mindlin plates subjected to
partial in-plane edge loads. By using Galerkin’s
approach, Jana and Bhaskar [16] investigated
buckling of a simply supported rectangular plate
under various non-uniform compressive edge
loads. Buckling analysis of simply supported
symmetric  cross-ply composite  rectangular
Mindlin plates under linearly varying edge loads
was investigated by Zhong and Gu [17]. Lopatin
and Morozov [18] presented the buckling solution
for the CCFF orthotropic composite thin plates
subjected to linearly distributed in-plane loads
using the method of lines for partial differential
equations and Galerkin’s method. Panda and
Ramachandra [19] presented the buckling load of a
composite plate subjected to linearly and
parabolically distributed in-plane loads by
adopting Galerkin’s approximation. The buckling
behavior of moderately thick plates under linear in-
plane loading was analyzed in a part of book
prepared by Shanmugam and Wang [20]. Bodaghi
and Saidi [21] investigated the stability analysis of
standing laminated rectangular Mindlin plates
subjected self-weight (or acceleration) and vertical
loading.

Recent advances in material processing
technology have led to a new class of materials
called functionally graded materials (FGMs). Due
to the advantages of being able to withstand severe
high-temperature gradient while maintaining
structural  integrity,  preliminary  structural
components, such as beams, plates and shells,
made of FGMs have been increasingly applied in
modern  engineering and industry. Many
researchers have analyzed the static and dynamic
behavior of structural elements made of
functionally graded materials [22- 26].

Inthe field of bucking analysis of FG plates, for
example, Cheng and Kitipornchai [27] presented
the exact explicit eigenvalues for compression
buckling, hygrothermal buckling and vibration of
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sandwich plates with dissimilar facings and
functionally graded plates resting on elastic
foundation via analogy with membrane vibration.
Wu [28] investigated the thermal buckling analysis
of a simply supported moderately thick rectangular
FG plate based on the first-order shear deformation
plate theory. Kazerouni et al. [29] presented
thermal buckling analysis of thin functionally
graded plates under two cases of thermal loadings
as the uniform and non-linear temperature rise
cases. Thermal buckling behavior of thick
functionally graded rectangular plate was
investigated by Bodaghi and Saidi [30] based on
the Reddy’s higher-order shear deformation plate
theory. Mohammadi et al. [31] investigated the
buckling analysis of moderately thick FG
rectangular plates under uniform in-plane loading
based on the FSDT.

Since, the material properties of functionally
graded plate vary through the thickness direction,
the neutral surface of such plate may not coincide
with its geometric middle surface. Therefore,
stretching and bending deformations of FG plate
are coupled. Some researchers [32- 36] have shown
that there is no stretching-bending coupling in
constitutive equations if the reference surface is
properly selected. Recently, Bodaghi and Saidi
[37] investigated the buckling of thin FG plates
under non-uniform in-plane loading in the
framework of the classical thin plate theory. They
used the neutral surface concept and showed that
the stability equations based on the classical plate
theory reduced to the single buckling equation
which can be solved by using the power series
method straightforwardly.

As mentioned earlier, the classical plate theory
is not adequate in providing accurate buckling
results when the thickness-to-length ratio of the
plate is relatively large. The objective of this
article is to obtain an exact analytical solution for
buckling analysis of moderately thick shear
deformable FG plates subjected to linear in-plane
loading resting on elastic foundation. The present
work is an extension of a previous authors’ work
[37] (which was valid for buckling analysis of thin
FG plates) and wuses the first-order shear
deformation plate theory which provides accurate
solution compared to the classical theory
especially for moderately thick FGM plates.

The first-order theory based on the exact position
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of neutral surface together with principle of
minimum total potential energy are employed to
extract the equilibrium equations of the
functionally graded rectangular plates resting on
elastic foundation. By wusing the adjacent
equilibrium criterion, the stability equations are
obtained. Unlike the CPT which leads to the single
stability equation [37], the FSDT results the three
highly coupled stability equations which have been
solved analytically in this paper. By definition of
two new analytic functions the three coupled
equations are reduced to two decoupled equations
in term of transverse displacement and a new
function called boundary layer function. By
considering a functionally graded rectangular plate
with two opposite simply supported edges and
employing the Levy-type solution, the buckling
equation is reduced to an ordinary differential
equation with variable coefficients. This equation
is exactly solved by the power series solution
method of Frobenius. Imposing different boundary
conditions along two other opposite edges of the
FG plate, the critical buckling loads are obtained.
Convergence study is first performed to evaluate
the sufficiency of the proposed method for
analyzing functionally graded plates under linear
in-plane loading resting on elastic foundation with
different boundary conditions. Then, the accuracy
of the present results is verified through
comparisons with the existing data reported in the
literature. Moreover, the effects of plate
parameters, power law index of FGM, foundation
stiffness coefficients and loading factor together
with various combinations of boundary conditions

on the critical buckling load of Al/ALO,

FG rectangular plate are discussed in detail.

2. PHYSICAL NEUTRAL SURFACE

FGMs are a special kind of composites in which
their material properties vary smoothly and
continuously due to gradually varying the volume
fraction of the constituent materials along certain
dimension (usually in the thickness direction). In
this study, the FG plate is made from a mixture of
ceramic and metal and the properties are assumed
to vary through the thickness of the plate. Due to
asymmetry of material properties of FG plates with
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respect to middle plane, the stretching and bending
equations are coupled. But, if the origin of the
coordinate system is suitably selected in the
thickness direction of the FG plate so as to be the
neutral surface, the properties of the FG plate
being symmetric with respect to it. To specify the
position of neutral surface of FG plates, two
different planes are considered for the
measurement of z, namely, z,, and z,, measured
from the middle surface and the neutral surface of
the plate, respectively, as depicted in Figure 1.

Full ceramic surface

Full metal surface

Figure 1. The positions of middle surface and neutral
surface for FG plates

The volume-fraction of ceramic (V,) can be
expressed based on z,, and z, coordinates as
[38]

v, {iéjp {ZNC +ljp M
h 2 h 2
where h is the plate thickness and p denotes the
power law index of FG plate (p>0) and the
parameter C is the distance of neutral surface
from the middle surface.
Since it is assumed that the FG plate is made

from a mixture of ceramic and metal, the effective
Young’s modulus (E) based on the Voigt model

[39] can be written as:
E(2)=E,V,(D)+EV.(2) ()

in which the subscripts m and c¢ represent the
metallic and ceramic constituents, respectively.
Also the volume fractions of metal and ceramic are
related as follows [38]:

Vo (2)+V,(2) =1 3)
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From Equations (2) and (3), the effective Young’s
modulus of FG plate can be rewritten as:

E(2)=E, +(E,-E,)V.(2) 4

The position of the neutral surface of the FG plate
is determined to satisfy the first moment with
respect to Young’s modulus being zero as follows
[34]:

[} EG)2, ~C)z,, =0 )

Consequently, the position of neutral surface is
obtained as:

h/2 E d
C= _h/o (st)zms st
h/2
[, E@,)dz,

—h/2

(6)

From Equation (6), it can be seen that the
parameter C is zero for homogeneous isotropic
plates, as expected.

3. GOVERNING EQUATIONS

A moderately thick FG rectangular plate with the
length a, width b and uniform thickness h,
resting on two-parameter elastic foundation is
considered as depicted in Figure 2.

ns

e ————> V.7

— Shearing layer (X )

S—— Winkler springs (X, )

Middle surface
Neutral surface  =-----

Clamped edge

0]

—N, I Free edge ‘ —N, X6
Figure 2. a) Configuration and coordinate system of a

FG rectangular plate resting on elastic foundation, b) A
SFSC plate under linearly varying in-plane loading
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The origin of the Cartesian coordinate system is
taken at the neutral surface of the FG plate. The
FG plate having two opposite edges simply
supported is subjected to linearly distributed in-
plane loading at these two edges, while the
remaining edges (y=0,b) may have any
combinations of clamped, free or simply supported
boundary conditions.

On the basis of the first-order shear deformation
plate theory and physical neutral surface concept,
the displacement components are assumed to be

U (XY,2,)=UX,Y)+Z,¥.(XY)
U, (%, Y,2,) =V(X, ) + 2, w7, (X, Y) (7)
U,(X,Y,2,) =W(X,Y)

where (u,v,w) are the displacements of neutral
surface of FG plate along the (X,Y,z,,) coordinate
directions, respectively, and w, and w, denote the

rotation functions. Substituting Equations (7) into
von-Karman nonlinear strain-displacement
relations [40], kinematic relations are obtained as:

fel =)+ 2, e
=1

where

-l m{“}

Yy

(®)

u,+(w,)*/2 Vyx
{5(0)}: Vy Tt (W,y)2 /2 ’{5(1)}: Vyy
u,y + V,x + \N,xvv,y lr//x,y + lr//y,x (9)

v, + W’y

where a comma denotes partial differentiation with
respect to the corresponding coordinate.

The linear constitutive relations for the plate in
the plane stress state are given by [41]:

lo}=[QlfeL.e}=a ) (10)

where
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XX TXZ
=1 {}H (11)
Oy
e |- E@) [1 0
Q- £% 00 1 o | [a]-52 0 ]
=90 0 @2 21+m[0 1

The parameter (v) is the Poisson’s ratio and since

its variation through the thickness is relatively

small, it is assumed to be constant [28-34].
According to the principle of minimum total

potential energy [42], the equilibrium equations of

the FG plate resting on two-parameter elastic

foundation can be obtained as:

N,,+N,, =0

N, +N,, =0

Mxx,x + Mxy,y _Qx =0

Mxv‘x + Myy‘y _Qy =0

Qx‘x + Qy‘y + NxxW,xx

2
+2N,w, +N w, —K w+KVw=0

(12)

where V* is two-dimensional Laplace operator,
and K, and K, are the transverse and shear
stiffness coefficients of the elastic foundation,
respectively. Also N,,M,, (i =XxX,yy,Xxy) are the
resultant forces and moments, respectively, and
Q,,(i=x,y) are the transverse shear forces which

are all defined by the following expressions:

NXX
h/2—
N}=iN, =" (o}dz,,
ny
MXX
My=im, =" {o}z,dz, (13)
M

In Equation (13), K* is the shear correction factor
which is assumed to be 5/6. By substituting
Equation (8) into Equation (10) and the subsequent
results into Equation (13), the stress resultants can
be expressed in terms of displacements as follows:
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N} =[Al” L im}=[Dl" L R}=[cly ™} (14)

where

[A)=[,. Q]

] JAh/Z C (15)
[c]=k ﬂ’f; [Q]dzns

In Equation (15), the matrices [A], [D] and [C]
are extensional, bending and transverse shear
stiffness matrices, respectively. It may be noted
that there is no extension-bending coupling matrix
and stretching-bending coupling in the constitutive
equations using the physical neutral surface
concept.

To obtain the stability equations of the FG
plate, the adjacent equilibrium criterion is
employed [40]. Assume that the equilibrium state
of a plate under in-plane loads is defined in terms

of the displacement components u’,v’,w’,y! and
l//(y) . Consider an infinitesimally small increment

from the stable configuration whose displacement
components differ by u',v',w',y, and v with
respect to the equilibrium position. Thus, the total
displacements of a neighboring configuration of
the stable state can be written as follows:

u->u'+u' ;vovi+v; wow +w

0 1 0 1 (16)
Vi DWWtV W, DY, T,
Substituting the relations (16) in Equations (14)
yields:

N} =N )
Mi=MO Mo} (17)

fl=le"}+ "}

where the terms with superscripts 0 are
corresponding to the equilibrium state and the
terms with superscripts 1 are linear parts of the
stress resultants increments corresponding to the
neighboring state. By substituting Equations (16)
and (17) into Equation (12), the terms in the
resulting equation with superscript 0 satisfy the
equilibrium condition and therefore omitted from
the equations. Also, the nonlinear terms with
superscript 1 are neglected because they are small
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compared to the linear terms [37]. The remaining
terms form the stability equation of FG plate as:

Nyx + Ny, =0

Niyx +Nyy, =0

Mx +My, —Q, =0 (18)
My,x+My,, —Qy =0

1 2001
Qx,x+ny+NxxWxx+2nyny+N W -KWw +KV'w =0

where the parameters N?,(i = Xxx,yy,Xxy) denote

the force resultants in the pre-buckling state.
By substituting the kinematic and constitutive
relations into the stability Equation (18), the
governing stability equations are obtained as

D11'//>1<,xx + DIZI//;,xy + D33('//>1<,yy + l//;,xy) - Cll(l//}( + W,lx) =0
Dll'//;,yy + D12'//>1<,xy +Dy3 (l//>1<,xy + '//;,xx) -Cy (‘//; + W,ly) =0
Ch (l//}(,x + W,lxx) +Cy (‘//;,y + W,lyy)

+Np W, 2N W+ Now, — K W'+ K VW =0 (19)

These equations are three coupled partial
differential equations in terms of rotation functions
and transverse displacement. They may be solved
by introducing the following auxiliary functions:

1 1
¢1 = l//X,)( + u/y,y

| : (20)
(e lr//><,y - l//y,x

Using above analytical functions and also by
considering  relations D, =D, -2D,; and

C,, =C,,, the governing stability Equation (19)
are reduced to the following simpler form:

Dll(”l,x + D}}(Dz,y - Cu(‘//i + W,lx) =0 (213)
Dll(pl,y - D33¢2,x - Cu(l//ly + W,ly) =0 (21b)

C(p +VWH+N W, +2Nw'
K W +K VW =0

(21¢)
+ N Wwwyy

From Equation (21c), the function ¢ can be

written in terms of W' as:

=—(N W 2N W +N W
C., (22)

-K W + K Vw)-vw
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By differentiation of Equations (21a) and (21b)
with respect to X and Y, respectively, and adding

the results, the following equation can be obtained:
D, Vg, —C, (¢ + VW) =0 (23)

Substituting Equation (22) into Equation (23),
yields:

_Dll

2 0,1 0,1 0 1 1
V7 (NgWiy + 2Ny Wi + Ny w' — K, w
11
+KV2Wh = D VAW + (N w!, + Ngyw}xy (24)

0,1 1 200N _
+Nyw, —Kw + K Viw') =0

Similarly, subtraction of the differentiation of
Equation (21a) with respect to y and Equation

(21b) with respect to X, it is concluded that:
D33V2(02 -Chp, =0 (25)

Therefore, three coupled governing stability
Equations (21) are converted into two independent
Equations (24) and (25). Equation (25) is known as
the edge-zone (or boundary layer) equation of the
plate, and the function ¢, is referred to the

boundary layer function.
Furthermore, by using Equations (21a), (21b) and

(22), the rotation functions w, and l//; can be

expressed in terms of W'and ¢, as follows:

l//>1< =—(Dy, /C121)((Cl1 + Ks,)VZW1 +(C121 /Dy - KW)W1
N W +2Ng Wi +NO W )+ (D33 /C )y

(26)
l//; =—(Dy, /C121)((C11 + Ks)vzwl +(C121 /Dy - KW)W1

0\l 0\l 0\l
+N W + 2N W + Ny w ) o — (D33 /Cpy)és

4. STABILITY ANALYSIS

4.1. Mechanical Loading  As shown in Figure 2,
the FG plate subjected to linearly varying in-plane
loading acting on two opposite edges simply
supported in Yy direction is considered.

The pre-buckling forces can be obtained using the
equilibrium conditions as:
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N ==N,(I-a(y/b)) , Nj =N, =0 27

where N, and o are the intensity of the
compressive force per unit length and a loading
factor, respectively. By changing the factor «,
various particular cases for linear in-plane loading
may be obtained. For instance, if « is set to zero,
the uniformly distributed compressive load is
obtained. By taking various values of « in the
range 0 <« <2, an eccentric bending is obtained,
which is a combination of pure bending and
uniform compression. Examples of these cases are

depicted in Figure 3.
=1

A

==
£

Figure 3. Examples of in-plane
N,, =—N,(1—an) along the edge x=0

a=1.5

loading

It may be noted that the case of ¢ <0 or a >2
are not considered because such cases are identical
with the cases of O0<a <2 as far as the edge
conditions are the same.

By substituting the pre-buckling forces given in
Equation (27) into the stability Equation (24), the
buckling equation is obtained as follows:

D
D, Viw' - —LV*(K w - K VW
11

+ N (1= a(y /D)W, ) + (KW' — K, VW' (28)
+ NO(I_a(y/b))Wlxx) =0

Introducing the  dimensionless coordinates
& =x/a and n =y/b, the buckling Equation (28)
can be rewritten in the dimensionless form as:
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K(1+ DK )W,,,,

+(2k*(1+D,K,) ~ DN K> (1—an)W
+((1+DK,) -~ DN"(1-an)W,..
+(2D,N'K’ ),
+(N"(1-an) - (DK, + K )W,
~k*(DK, + KW, +K W=0

S

&nn

(29)

where k=a/b is the aspect ratio of the plate.
Also, K,,K_,N",D, and W are the dimensionless
parameters which are given as follows:

I{w = Kwa4/D11
Ks :Ksaz/Dll (30)
N"=N,a*/D,

D, =D, /C,,a* ;Ww=w'/h

Furthermore, the boundary layer Equation (25) and
equations of the rotation functions (26) in
dimensionless form can rewritten as follows:

G o +KP,, —P,/D, =0 (31a)
W, f—(Df5)((KS +1/D)(W,, +k*W, ) G1b)
~ (K, —1/D))W~N"(1-an),,), + Dk,

¥, =—(D’kS) (K, +1/D)(W, +Kk*W,,) 610

~(K, —=1/D))W~N"(1-an)W,), - D:p,.

where the dimensionless parameters ¢,,D, and &

are defined as ag,, D,=D,,/C,a’ and h/a

respectively. It should be noted that rotation
functions have dimensionless form.

4.2. Solution Methodology For a rectangular
plate with simply supported edges at £=0 and 1,
the Levy-type solution procedure may be used to
solve the decoupled governing Equations (29) and
(31a). The transverse displacement and boundary
layer function can be assumed to be:

W(E ) = YT, () sin(mze) (32)
$.(Em) = Y O, () cos(m) (33)
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where m denotes the number of half-waves in the
& direction. It is seen that Equations (32) and (33)

exactly satisfy the simply supported boundary
conditions at £=0 and & =1. Substituting the

proposed series solution (32) into Equation (29)
yields the following ordinary differential equation
as:

LT, +(L, +LmT,”

(34)
+2L T +(L, + LT, =0

where T", T'* and T" are the fourth, second and

m

first derivatives of T, with respect to 77,
respectively. Also, the parameters L, (i=1..5) are
defined as follows:

L =k*(1+DK,)

L, =—(k*(K,D, +K,)

+(mz)*[2k*(K,D, +1) = N"D,k*])

L, =-N"Dk’a(mr)’ (35)
L, =(mz)*[(K.D, +1)~N'D,]

+(ma)*[(K,D, +K,)-N"1+K,

L, =N a(mz)’*(D,(mz)* +1)

Equation (34) is an ordinary differential equation
with variable coefficients. To solve this equation

the power series solution method of Frobenius [43]
is used. To this end, the function T () is written

as:
To(m=2.Cput” (36)
n=0

where C_ ’s are arbitrary constant coefficients.

Substitution of Equation (36) into Equation (34)
yields:

L, > n(n-1)(n-2)(n-3)C, 7"
n=4
+ Lzz n(n-1C,.n""
m 67
+L, (z n(n-1C,.n7"" + 22 nC,.n"")
n=2 n=1

ALY C "+ LY Con™ =0
n=0 n=0
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Shifting indices, Equation (37) becomes:

L i (N+4)(n+3)(n+2)(n+1Cy, 47"
n=0

+L, ) (n+2)(n+1Cpy 0,7
n=0 (38)

+L, O (+DNCpy 1" +2) - (N+1)Cy ™)

n=1 n=0

+L42Cm,n77n + Lszcm,n—lnn =0

n=0 n=1

After collecting the coefficients of similar powers
of 7 in Equation (38), one obtains from 7°:

-1
Chs= m@Lsz2 +2L,C  +L,C o) 39
1

and the coefficient of 7" (n=1,2,3,...) gives:

Crnia ==+ 2)(N+1D)(L,Cpy nya + L3Crynip) (40)
+L,Chn + LsCrypot} /{(N+H(N+3)(N+2)(n+ 1)L }

Relations (39) and (40) are the recurrence formulas
for C  when n>4. Thus, C ,,C ,,C , and

C., are arbitrary constant coefficients and the

m,3

m,0 2 ~m, > m,2

other coefficients C_ for n>4 are expressed in

terms of them. To solve Equation (31a),
substituting the proposed series solution (33) into
Equation (31a) yields an ordinary differential
equation, which its general solution is given by:

@, (1) =C, ,sinh(¢n) +C, , cosh(¢'77) (41)

where

¢ = (mz/k)* +1/(D,k?) (42)

The boundary conditions at other two edges of the
FG plate (n=0,1) which may have any
combinations of clamped, free or simply supported
boundary conditions are obtained from the
principle of minimum total potential energy in
dimensionless form as:

Clamped : W=y, =y, =0
Simply Supported: W=y, =M, =0 (43)
Free: M, =M, =Q, +kaK,DW, =0
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where:
M, =(1-2D,/ Dl)l/}x‘é + kl/}y‘n

M,, =(D,/D)W,, +kv,,) (44)
Q, =y, +kd,

4.3. Critical Buckling Load Parameter By
applying different boundary conditions at two
edges of the rectangular plate in & direction

(n=0 and n=1) a set of homogenous algebraic
equations is obtained in terms of the unknown

constant parameters
C Cc and the

m,-2°

C.,.C

m,—=12~m,0°> ~m,1°> C
buckling load parameter N” for each longitudinal
half-wave number (m). For a nontrivial solution,
the determinant of the sixth order coefficient
matrix must be set to zero which results in the
characteristic equation. Solving this equation, the
buckling load parameters of the FG plate are
calculated. The lowest value among all these N™’s
for each m is known as the critical buckling load

parameter (N)) and the corresponding m

C

m,2 > m3?

indicates the number of half-waves in the X
direction of critical buckling mode shape.

5. RESULTS AND DISSCUSION

In order to obtain the numerical results, an
Al/ALL,O; functionally graded plate composed of
Aluminum (E,, =70GPa) and  Alumina

(E, =380GPa)is considered. The Poisson’s ratio

of the plate is assumed to be constant through the
thickness and equal to 0.3.

5.1. Examination of Convergence The Exact
solution for the function stated in Equation (36) is
summation of an infinite series and the accuracy of
the results depends on the number of terms which
are considered in the power series solution. Based
on the degree of accuracy requirement in
numerical calculations, the upper limit of the
summation is truncated at a finite number (N). In
order to check the convergence rate of the power
series solution of Equation (36), the critical
buckling load parameter of a FG plate resting on
elastic foundation with all nine possible
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combinations of boundary conditions has been
listed in Table 1. It is seen that for all of boundary
conditions more than 24 terms is required to
achieve the critical buckling load parameter
accurately to six significant digits. Furthermore, it
can be seen that increasing the edge constraints
and also the number of half-waves in the buckling
mode shape, more terms of the power series must
be taken to represent the buckling behavior of plate
properly for six digits convergence. The bold
numbers in the table are those beyond which the
sixth digit does not change as N increases. As
more terms are considered, the critical buckling
load parameters converge to their exact values.

The numerical results from the power series
method which will be presented in the next
sections are obtained by taking sufficient terms
(N) to converge to the number of digits shown in

the tables.

5.2. Comparison Studies To validate the
present formulation and procedure, the present
results are compared with those available in the
literature for thin and moderately thick isotropic
plates subjected to linear in-plane loading [14, 20]
and also for moderately thick FG plates under
uniform load [31]. In Table 2, the critical buckling
moments obtained from present solution have been
compared with those reported by Kang and Leissa
[14] based on the classical plate theory. The
homogonous isotropic thin plate (p=0,6 =0.001)
is under pure in-plane bending and the critical
buckling moment M_ =N_ /(6k®) defined by
Kang and Leissa [14] has been presented. As this

table shows, there is an excellent agreement
between these results.

TABLE 1. Convergence test of the critical buckling load parameter (N_,) for the FG plate under linear in-plane
loading (« =0.5) resting on two-parameter elastic foundation (K, =50,K, =10, p=5,k =16 =0.1)

Boundary conditions

N SCSC SCSS SSSC SSSS SCSF SSSF SFSC SFSS SFSF
m=2  (m=2 (m=2) (m=) (m=) (m=) (m=) (m=]) (m=D
16 5.84342 4.83581 2.13431 0.80119 3.96002 0.69900 8.50141 2.56955 1.49012
18 9.73108 8.94081 6.33176 2.09124 9.57822 2.04997 9.98014 10.8740 9.89880
20 33.8179 9.45890 7.89910 7.17480 20.5893 8.73811 18.3589 30.3992 20.7149
22 83.7911 30.6894 25.6709 60.5797 50.0981 30.7116 29.78 35.9036 31.3256
24 94.8569 73.7891 83.2844 80.0112 54.5049 48.4992 38.3715 35.9038 31.3260
26 99.9047 86.2300 92.7001 82.8100 54.5160 48.4996 38.3716 35.9038 31.3260
28 101.176 93.6621 92.6282 82.8109 54.5170 48.4996 38.3716 35.9038 31.3260
30 101.408 96.1020 92.6301 82.8204 54,5171 48.4996 38.3716 35.9038 31.3260
32 101.443 96.6462 92.6401 82.8204 54.5171 48.4996 38.3716 35.9038 31.3260
34 101.447 96.6996 92.6411 82.8204 54.5171 48.4996 38.3716 35.9038 31.3260
36 101.448° 96.6996 92.6411 82.8204 54.5171 48.4996 38.3716 35.9038 31.3260
38 101.448 96.6996 92.6411 82.8204 54.5171 48.4996 38.3716 35.9038 31.3260
40 101.448 96.6996 92.6411 82.8204 54.5171 48.4996 38.3716 35.9038 31.3260

*N =Total number of terms used in the power series solution.

"The critical buckling load parameters in bold indicate the best convergent values in each column with the least N.

TABLE 2. Comparison of the critical buckling moments of the isotropic rectangular plates under pure in-plane bending

for k=23
Power series Boundary conditions
method SCsC SCSS SCSF SSSC SSSS SSSF SFSC SFSS SFSF
Ref. [14] 65.12) 65.12) 65.110 40.06 39.830 39.75M 3.9250 1.9940 1.610%
Present 65.1219 651200  65.112°  40.063%®  39.8320 39.7460 392540 199410 1.61017

The superscript numbers within the parenthesis indicate number of half-waves in the x direction of critical buckling mode shape.
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Another comparative study for evaluation of
critical buckling loads between the presented
solution and analytical solution developed by
Mohammadi et al. [31] based on the FSDT, is
performed in Table 3 for moderately thick FG
plate without elastic foundation and subjected to
uniform in-plane loading. From the results
presented in Table 3, it is observed that results
have a good agreement.

Furthermore, in Table 4, an interesting comparison
study of the present exact power series solution
with the extended Kantorovich method (EKM)
published by Shanmugam and Wang [20] is shown
for buckling analysis of moderately thick isotropic
plate subjected to linearly distributed in-plane
loading (a =1,2). This table indicates that our

presented results are accurate. Finally, three
comparative studies show that the results obtained
from the proposed method agree well with existing
analytical results in the literature which validate
the reliability and accuracy of the present
analytical approach.

5.3. Parametric Investigations  In this section,
to examine the effects of different parameters of
plate and elastic foundation on the critical buckling
load parameter a FG plate with all nine possible
combinations of boundary conditions, the
comprehensive results are tabulated in Tables 5
through 9.

In Table 5, the influence of aspect ratio on the
critical buckling load parameters (N_) of a FG

plate under linearly distributed in-plane loading
resting on elastic foundation is investigated. It is
observed that the critical buckling load increases
by increasing the aspect ratio. This observation
indicates that between two plates having identical
length a, thickness h and boundary conditions,
the one which has smaller width b buckles at
greater in-plane loading. Also, the number of half-
waves in the critical buckling mode shape (m),
except for SFSF plates, increases with increasing
the plate aspect ratio. Furthermore, the critical
buckling load parameter of SFSF plate increases
very slowly when the aspect ratio increases.

To examine the influence of foundation stiffness
coefficients on the critical buckling load
parameter, the values N, listed in Table 6 for the

FG plate under linearly distributed in-plane

IJE Transactions A: Basics

loading resting on elastic foundation with various
values of foundation stiffness coefficients;

(K, =0,10,10%,10°,K, =0,10,10%). As it can be
seen, with increase of the foundation stiffness

coefficients, critical buckling load parameter
increases. Also, the results show that the shear

stiffness coefficient (Ks) has more effect on
increasing the critical buckling load parameter than
the transverse stiffness coefficient (KW). Table 7

shows the buckling behavior of the FG plate
subjected to various linear in-plane loads. It can be
seen that the critical buckling load parameter of the
FG plate under linearly varying in-plane loading
increases as the loading factor (&) increases for

all boundary conditions. Also, it is seen that the
critical buckling load parameters of FG plate with
a=2 (pure in-plane bending) and clamped
boundary condition at the edge 7 =0 are almost

identical for various boundary conditions at the
other edge. This event can be partially described as
the compressive loading in one half of the plate
(0<n<1/2) destabilizes the FG plate while the

tensile loading in the other half (1/2<n<1)

stabilizes it, with both effects virtually negating
each other if the compression edge is clamped.
When the boundary condition in edge =0 is

simply supported, small differences can be
observed between their critical buckling load
parameters. For the remaining three cases, the
results show that the critical buckling load of
SFSC plate is greater than those of SFSS and
SFSF plates while the critical buckling loads of
these two plates are close to each other.

To gain a clear understanding of the buckling
behavior of FG plates subjected to pure in-plane
bending, the critical buckling mode shapes of the
buckled plates related to the last row Table 7 are
illustrated in Figures 4-6. From these figures, the
results similar to those for critical buckling load
parameters of FG plates with the same boundary
condition in edge =0 examined above can be
attained for the corresponding buckling mode
shapes. Table 8 illustrates the influence of the
thickness-side ratio on the critical buckling load
parameters. It can be observed that, as the
thickness-side ratio ¢ increases from 0.05 to 0.2,
the critical buckling load parameter decreases.
Such behavior is due to the effect of the transverse
shear deformation in the FG plates.
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TABLE 3. Comparison study of the critical buckling load (N, ) for a FG plate under uniform in-plane loading (a = 0)
versus the aspect ratio, thickness-side ratio and some power law indices

Boundary conditions
p s k SCSC SCSS SSSS SCSF SSSF SFSF

Ref. [31] 18.1745250 16.334756" 14.982947 10.687864™ 10.450346" 9.360683"

03 Presentstudy  18.17452540  16.33475620  14.9829468"  10.6878642"  10.4503465" 9.3606832"

o Ref. [31] 64.819473? 52.341359" 37.713203" 15.494974" 13.322055% 9.146917"
: Present study  64.8194728%  52.34135907  37.7132026" 154949739 13.3220554" 9.1469175®

: 05 Ref. [31] 16.204868" 14.850333% 13.805765% 9.915186" 9.728321" 8.750235
Presentstudy  16.2048682  14.85033350  13.80576537" 9.91518611 9.72832150 8.75023550

02 Ref. [31] 46.134692¢) 42.929636" 33.252680" 13.905245% 12.251502) 8.548311"
: Presentstudy  46.1346916@  42.92963607  33.2526797"  13.9052453" 122515016  8.54834110%

Ref. [31] 18.172610" 16.333362) 14.981870" 10.687136" 10.449673% 9.360119

ol 03 Presentstudy  18.17261010  16.33336217  14.9818697"  10.6871362"  10.4496731" 9.3601190"

Ref. [31] 64.796315@ 52.3314280 37.708938 15.4933420 13.321007 9.1463570

: Presentstudy  64.7963151%  52.33142841  37.7089377"  15.49334250  13.3210071" 9.1463570"

2 Ref. [31] 16.199079" 14.845829™ 13.802108" 9.912818" 9.726090" 8.748334M
03 Presentstudy  16.990787) 14.8458288"  13.8021080"" 9.91281771 9.7260898" 8.7483337"

02 Ref. [31] 46.091205@ 42.904167V 33.2394210 13.900689" 12.248297 8.546461M
Presentstudy  46.092052¢) 4290416730 3323942070  13.9006890"  12.2482972" 8.5464612"

The superscript numbers within the parenthesis indicate number of half-waves in the X direction of critical buckling mode shape.

TABLE 4. Comparison of the critical buckling load parameters (N, /z?) for an isotropic rectangular plate under two
case of in-plane loading versus thickness-side ratio (k =1)

Boundary Thickness-side ratio (J)
conditions
a Method 0.01 0.05 0.1 0.15 0.2
| EKM [20] 14.67989 13.9548? 12.15269 10.0708® 8.1695?
SCSC Power series 14.67981? 13.95485® 12.15264? 10.07076? 8.16952?
R EKM [20] 39.51319 36.2903? 29.1478® 20.8065% 14.1835%
Power series 39.51308? 36.29028? 29.147779 20.806527 14.18352®
: EKM [20] 7.8076" 7.70450 7.39910 6.9402) 6.38520"
Power series 7.80760" 7.704520 7.399130 6.940231 6.385200
SSSS 2 2 2 2 2
R EKM [20] 25.47939 24.3571? 21.40869 17.8109® 14.4145%
Power series 25.47933? 24.35709 21.40858? 17.81087? 14.414539
: EKM [20] 1.63940 1.6208" 1.57910 1.52010 1.44770
Power series 1.639440 1.62081" 1.579070 1.52006" 1.447740
SFSF T T T T T
5 EKM [20] 2.5990M 2.55090 2.4606" 2.34370 220860
Power series 2.59904® 2.550910 2.46056" 2.34366" 2.20856"

The superscript numbers within the parenthesis indicate number of half-waves in the X direction of critical buckling mode shape.
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TABLE 5. The critical buckling load parameter (N_,) for a FG plate subjected to linearly varying in-plane loading

(a =0.5) versus aspect ratio (KW =10, KS =10,p=16=0.1)
Boundary Aspect ratio (K)

conditions 0.5 0.75 1 1.5 2 2.5 3 3.5 4

SCSC 4233450 7171620 102.7856®  180.6462°  253.4071®  323.9195%  386.1915° 438.5575®  481.5189"

SCSS 40.5790"  62.55070  97.5648%  157.4859%  232.4162% 306.5035“ 37226000 427.5665¢  472.84517

SSsC 387217 5895851 932060  149.4060%  223.0771®)  296.9714%  363.2950%  419.5265©  465.84507

SSSS 3748730 5282941 77.9607"  132.3264%  203.1645%  270.9240®  341.1030“  404.0789°  457.1058©

SCSF 345019 4037910 483260  74.8770"  112.1929®  139.5282?%  176.6506®  223.2620®  256.9603%

SSSF 3342230 37.45450 4239240 56,0324 74.8880"  98.8737  127.8430"  150.8473?®  174.0650®

SFSC 2555230 28.8277M 339671  51.6480"  78.1938®  96.5891?®  121.8398®  155.3187®  179.4091¢%

SFSS 2542150 2794320 3135960  41.01130  54.44490 715703V 9227460 109.0040®  125.5919?

SFSF 25.03750 2591540 2629400 265001V 26.5123V  26.6709"  26.7791V  26.8126 26.9209"

The superscript numbers within the parenthesis indicate number of half-waves in the X direction of critical buckling mode shape.

TABLE 6. The critical buckling load parameter (N.,) of a FG plate under linearly varying in-plane loading (a =1)
with different foundation stiffness coefficients (p=2,k =0.5,6 =0.1)

Boundary conditions

(KW, KS) SCSC SCSS $SSC SSSS SCSF SSSF SFSC SFSS SFSF

(0,0) 34.60579 33.2153® 28.65220  27.7958" 311923 26.7246"  13.50307  13.4018""  13.34880
(0,10) 58.07820 57.04577  50.5137"  49.86520 5573910 49.0025" 2745210 27.4035"  27.2747
(0,10%) 234.3193?® 2342898  226.2815@  226.2797¢ 234.3382@ 226.2770® 151.31347  151.2586"  150.9459M
(10,0) 36.44450 35.15480 30.34770  29.55470 3347340 28.6607"  14.7239"  14.6931V  13.78930
(10,10) 59.85460 58.82570 52,1721 51.5586"  57.41920  50.78740  28.6825"  28.6337"  28.6156%
(10,10%) 234.6862%  234.66579  226.62847  226.6266@  234.77339  226.6240% 1525549  152.5133  152.4563"
(10%,0) 5271470 51.8906"0 4526697  44.86017  51.41420 4467750 2571360 257473 25.7118%
(10%,10) 75.6958" 75.08400 66.8602"  66.4857"  74.6704"  66.1994"  39.7455" 3971950 3958970
(10%,10%) 237.89399  237.89079  229.7474®  229.7458@ 23791659  229.7434%  163.6643"  163.6318"V  163.5931"
(10%,0) 10745607  107.43749  101.4387% 101.4378® 107.4209® 101.4375?  72.1988® 722002  72.2237@
(10°,10) 123.8482%  123.6805%  117.3961%  117.3953@  123.8268® 117.3950%  84.6247%  84.6242%  84.6242@
(10%,10%) 269.7107%  269.7011%  260.6861®  260.6854®  269.6803@  260.6846®  194.9369?  194.9369®  194.9369?

The superscript numbers within the parenthesis indicate number of half-waves in the X direction of critical buckling mode shape.
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TABLE 7. Effect of loading factor on critical buckling load parameter (N.,) for a FG plate subjected to uniformly and
linearly distributed in-plane compressive loading (K, =100,K, =0,p=0.5,k =1.5,5 =0.1)

loading Boundary conditions

factors SCsC SCSS SSsSC $SSS SCSF SFSC SSSF SFSS SFSF
a=0 121.1445®  100.8810%  100.8810¥  85.8430®  36.3951"  36.3951"  28.1686"  28.1686" 19.2240

a=05 160.8305®  137.6310%®  130.3370%  113.8509®  59.9910"  40.6281" 4472370 322241 24.9585"
a=1 229.9634%  209.7952®  180.2759®  164.1895%  159.6855") 458369  101.3876"  37.4356""  32.94670"

a=15 342.0180°  340.6393%  271.7698®  261.5581%  340.2203%  52.3357")  258.4898@ 4423980  42.3120"

a=2 479.71459  479.7095  405.9504%  405.8373%  479.7045“  60.5449"  405.7710®  53.2037"  52.6261%

The superscript numbers within the parenthesis indicate number of half-waves in the X direction of critical buckling mode shape.

TABLE 8. The critical buckling load parameter (N.,) for a FG plate subjected to linearly varying in-plane loading
(a =1.5) versus thickness-side ratio (K, =100,K, =10, p =3,k =0.75)
Boundary conditions

SCSC SCSS SCSF SSSC SSSS SSSF SFSC SFSS SFSF

(%)

0.05  179.8404%  179.79021®  179.3265%  149.9898®  149.7905%  149.7367®  50.6290  50.2124"  50.17237
0.1 160.1752%  160.1316®)  160.1248®  138.4178®  138.3878®  138.3827®  50.0345"  49.8511  49.81170"
0.15  137.8269%  137.8008®  137.7940%  123.4697® 123.4501%  123.4448® 4924420 4908347 49043307
0.2 117.0808®  117.0651®)  117.0603®  108.1495®  108.1374®  108.1327®  48.2926"  48.1556"  48.11530"

The superscript numbers within the parenthesis indicate number of half-waves in the X direction of critical buckling mode shape.

TABLE 9. The critical buckling load parameter (N" =N,a?/D,,.) for a FG plate under pure in-plane bending (a =2)

versus various power law indices (K,, =10, K, =10,k =1,5 = 0.1)

Boundary Power law index

conditions 0 0.5 1 2 5 10 100
scsc 310.9380% 208.7411% 163.0953% 126.8068% 101.4103® 88.7699% 62.7729%
SCSS 31093779 208.7409% 163.09519 126.8066 101.4100% 88.7696% 62.7728%
SCSF 31093719 208.7405% 163.0948% 126.8064% 101.4098% 88.7695% 62.7727%
SSSC 247.7828? 163.2372? 126.4293® 98.4943¢ 81.1775@ 72.5548? 50.6296%
SSSS 247.7453 163.2130? 126.4108? 98.4798% 81.1651? 72.5435% 50.6218?
SSSF 247.7201? 163.1961? 126.3975? 98.4695%) 81.1569? 72.5363® 50.6167%
SFSC 51.64200 33.5672" 25.8417" 20.1592 16.9745 15.4126" 10.6465%
SFSS 50.5186" 32.8293" 25.2709" 19.7144M 16.6064" 15.0822 10.4166"
SFSF 50.2949 32.6853" 25.1606" 19.6282" 16.5327 15.0146" 10.3702%

The superscript numbers within the parenthesis indicate number of half-waves in the x direction of critical buckling mode shape.
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Figure 4. The critical buckling mode shapes of the FG plates pure in-plane bending and clamped boundary condition at the
edge n =0
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Figure 5. The critical buckling mode shapes of the FG plates pure in-plane bending and simply supported boundary
condition at the edge 77 =0
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Figure 6. The critical buckling mode shapes of the FG plates pure in-plane bending and free boundary condition at the

edge =0
To investigate the effect of power law index on
the critical buckling load parameter, the values of
N,a’/D,, (D, denotes the parameter D,, of FG o0 -
plate when power law index is equal to zero) are 0.14f
presented in Table 9. It is observed that with the -
increase of power law index the critical buckling 012
load parameter decreases. This is due to the fact ol
that increasing the power law index increases the '
volume fraction of metal. fo_og /
Finally, in order to gain a better understanding O
of the location of the neutral surface, the variation 0.06
of dimensionless parameter C/h is illustrated in i
Figure 7 versus the power law index. It can be 004F
found that the dimensionless parameter C/h o0z k
increases with increasing p and reaches maximum -
value of 0.15795 for p = 3.3, then the curve drops e ToR—Tow TR o

down and approaches zero asymptotically. Also, it p

can be seen that when the power law index

becomes zero (pure ceramic plate) or infinity (pure

metallic plate); the neutral surface coincides on the Figure 7. Variation of the neutral surface position
middle surface, as expected. versus power law index
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6. CONCLUSION

In the present study, buckling behavior of
functionally graded rectangular plates subjected to
linearly varying in-plane loading acting on two
opposite simply supported edges has been
investigated on the basis of the first-order shear
deformation plate theory. By using the principle of
minimum total potential energy, the equilibrium
equations of the FG plate resting on two-parameter
elastic foundation have been derived. Introducing
two auxiliary functions and carrying out some
algebraic manipulations, the coupled stability
partial differential equations have been decoupled.
Then, considering Levy-type solution procedure,
the buckling equation has been reduced to an
ordinary differential equation with variable
coefficients and solved using power series method
of Frobenius. After appropriate convergence study,
to ensure the accuracy of the derived formulations,
the results obtained by the present solution have
been compared with those reported in the
literature. A good correlation has been observed
between the present results and the available data
in literature. Several parametric studies have been
performed to show the effects of aspect ratio,
foundation stiffness coefficients, plate thickness,
in-plane loading condition and also power law
index on the critical buckling load parameter of
functionally graded rectangular plate with different
boundary conditions. Finally, some general
conclusions can be drawn as follows:

1) Good correlation can be seen between the
buckling results of present power series solution
and existing results from other analytical solutions.
2) By increasing the edge constraints and also the
number of half-waves in the buckling mode shape,
more terms of the power series solution are needed
to represent the buckling behavior of FG plate
properly.

3) The critical buckling load increases by
increasing the aspect ratio. However, it decreases
when the thickness-side ratio increases.

4) By increasing the power law index, the critical
buckling load parameters normalized by D,,,
decreases.

5) The shear stiffness coefficient (KS) exerts a

greater influence on the critical buckling load
parameter compared to the mnormal stiffness

coefficient (K,,).

IJE Transactions A: Basics

6) The critical buckling load parameter of the FG
plate under linearly varying in-plane loading
increases as the loading factor («) increases for

all boundary conditions.

7) The critical buckling load parameters for the
case of FG plate under pure in-plane bending
(a =2) are almost identical when the compression

side of the FG plate is clamped.
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