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Abstract   In this paper, buckling behavior of moderately thick functionally graded rectangular plates 
resting on elastic foundation subjected to linearly varying in-plane loading is investigated. The neutral 
surface position for a functionally graded plate which its material properties vary in the thickness 
direction is determined. Based on the first-order shear deformation plate theory and the neutral surface 
concept, the equilibrium and stability equations are derived. An analytical approach is employed to 
decouple the stability equations, as these equations are converted into two decoupled equations. 
Employing Levy-type solution, the buckling equation is reduced to an ordinary differential equation 
with variable coefficients! and solved exactly using power series method of Frobenius. To examine
accuracy of the present formulation and procedure, several convergence and comparison studies are 
investigated. Furthermore, the effects of different parameters of plate and elastic foundation on the
critical buckling load of functionally graded rectangular plate are discussed. 

الاستیک و  ربر روي بستساخته شده از مواد هدفمند  یلیمستط يهاورق ینشرفتار کمادر این مقاله    چکیده

 -
 تئوريبراساس. ن شده استییکند تعیر مییورق هدفمند که خواص آن در جهت ضخامتش تغ يبرا یخنث ي

به دست آمده  يداریاپ، معادلات تعادل و یکیزیف ياخنث يصفحهو مفهوم ورقاول يمرتبه یبرشغییر شکلت

ن یکه ا يااست به گونه به کار گرفته شده یلیش تحلروک ی ي،داریاپدلات امع زيبه منظور جداسا. است

 يک معادلهیکمانش به  ي، معادلهيل لوحروش با استفاده از . اندل شدهیمستقل تبد يمعادلات به دو معادله

وس یفروبن یتوان يوش سررده از ابا استفبه صورت دقیق سپس و  لیر تبدیب متغیاربا ضدیفرانسیل معمولی 

ن یهمچن. انجام شده است ییو همگرا ياسهیمطالعه مقا چنددقت حل حاضر  یرسربه منظور ب. است شدهحل 

ده از مواد شالاستیک روي بار بحرانی کمانش ورق مستطیلی ساخته و بستر مختلف ورق  ير پارامترهایتاث

.استقرار گرفته  یمورد بررسهدفمند 

1. INTRODUCTION

The study on buckling of plate structures supported 
by an elastic foundation is one of the most 
important research areas in applied mechanics. 
Pasternak’s two-parameter model [1] is commonly 
adopted to describe the mechanical behavior of 

foundations, and the well-known Winkler’s model 
[2] is one of its special cases. Many researchers 
employed classical plate theory (CPT) to analyze 
buckling behavior of thin plates. For example, Lam 
et al. [3] studied the elastic bending, buckling and 
vibration problems of rectangular thin Levy-plates 
resting on elastic foundation. Buckling of 
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orthotropic rectangular thin plates subjected to 
uniaxial in-plane loading was analyzed by Harik 
and Balakrishnan [4]. Yu and Wang [5] presented 
an exact solution for buckling analysis of isotropic 
rectangular thin Levy-plates on one-parameter 
elastic foundation under different uniform loading 
conditions. Since the classical plate theory neglects 
the effects of transverse shear deformation plate, it 
underestimates the deflection and overestimates 
the natural frequencies and buckling loads of 
moderately thick and thick plates. To modify the 
classical plate theory for moderately thick plates, 
the first-order shear deformation theory (FSDT) 
was proposed by Mindlin and his co-workers [6, 
7]. Brunelle [8] analyzed the elastic buckling of 
transversely isotropic Mindlin plates with two 
opposite edges simply supported and the remaining 
two edges subjected to various boundary 
conditions. Hosseini-Hashemi et al. [9] described 
an investigation on exact solution for linear 
buckling of rectangular Mindlin plates with two 
opposite edges simply supported. According to the 
literature survey, it can be found that most of the 
buckling studies have dealt with rectangular plates 
having uniformly distributed in-plane edge loads. 
This is due to the fact that the governing stability 
equations have constant coefficients which yield 
exact solutions for buckling loads when two 
opposite edges of the plate are simply supported. 

edges by non-uniform in-plane loading. For 
instance, in the case of I-beam or wide flanged 
beam under bending moment at the ends or lateral 
loads on the flange, the web of the beam is 
subjected to non-uniform in-plane loads. In the 
past decade, some works have been published for 
static and dynamic analysis of rectangular plates 
under non-uniformly varying in-plane loading. For 
example, Romeo and Ferrero [10] investigated 
analytical/experimental behavior of symmetric 
laminated simply-supported and clamped 
rectangular panels under linearly varying 
combined loads. They indicated that there exists a 
good correlation between analytical, numerical and 
experimental results. Also, they believed that a 
slight initial imperfection in the plate geometry has 
a great effect on the discrepancy between 
theoretical and experimental results. Bert and 
Devarakonda [11] presented the buckling loads of
a simply supported rectangular thin plate under 

sinusoidal distribution of in-plane loading using 
Galerkin method. In a series of articles, Leissa and 
Kang [12] and Kang and Leissa [13, 14] have used 
the classical plate theory and the power series 
method to give the exact solutions for vibration 
and buckling of the thin plate having two opposite 
edges simply supported subjected to linearly 
varying in-plane load. Liew and Chen [15] used 
the radial point interpolation method to investigate 
buckling of rectangular Mindlin plates subjected to 
partial in-plane edge loads. By using Galerkin’s 
approach, Jana and Bhaskar [16] investigated 
buckling of a simply supported rectangular plate 
under various non-uniform compressive edge 
loads. Buckling analysis of simply supported 
symmetric cross-ply composite rectangular 
Mindlin plates under linearly varying edge loads 
was investigated by Zhong and Gu [17]. Lopatin 
and Morozov [18] presented the buckling solution 
for the CCFF orthotropic composite thin plates 
subjected to linearly distributed in-plane loads 
using the method of lines for partial differential 
equations and Galerkin’s method. Panda and 
Ramachandra [19] presented the buckling load of a 
composite plate subjected to linearly and 
parabolically distributed in-plane loads by 
adopting Galerkin’s approximation. The buckling 
behavior of moderately thick plates under linear in-
plane loading was analyzed in a part of book 
prepared by Shanmugam and Wang [20]. Bodaghi 
and Saidi [21] investigated the stability analysis of 
standing laminated rectangular Mindlin plates 
subjected self-weight (or acceleration) and vertical 
loading.
     Recent advances in material processing 
technology have led to a new class of materials 
called functionally graded materials (FGMs). Due 
to the advantages of being able to withstand severe 
high-temperature gradient while maintaining 
structural integrity, preliminary structural 
components, such as beams, plates and shells, 
made of FGMs have been increasingly applied in 
modern engineering and industry. Many 
researchers have analyzed the static and dynamic
behavior of structural elements made of 

example, Cheng and Kitipornchai [27] presented 
the exact explicit eigenvalues for compression 
buckling, hygrothermal buckling and vibration of 

Certainly, a plate may be loaded at the supported 

functionally graded materials  [22- 26].  
In the field of bucking analysis of FG plates, for 
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sandwich plates with dissimilar facings and 
functionally graded plates resting on elastic 
foundation via analogy with membrane vibration. 
Wu [28] investigated the thermal buckling analysis 
of a simply supported moderately thick rectangular 
FG plate based on the first-order shear deformation 
plate theory. Kazerouni et al. [29] presented 
thermal buckling analysis of thin functionally 
graded plates under two cases of thermal loadings 
as the uniform and non-linear temperature rise 
cases. Thermal buckling behavior of thick 
functionally graded rectangular plate was 
investigated by Bodaghi and Saidi [30] based on 
the Reddy’s higher-order shear deformation plate 
theory. Mohammadi et al. [31] investigated the 
buckling analysis of moderately thick FG 
rectangular plates under uniform in-plane loading 
based on the FSDT.
     Since, the material properties of functionally 
graded plate vary through the thickness direction, 
the neutral surface of such plate may not coincide 
with its geometric middle surface. Therefore, 
stretching and bending deformations of FG plate 

that there is no stretching-bending coupling in 
constitutive equations if the reference surface is 
properly selected. Recently, Bodaghi and Saidi 
[37] investigated the buckling of thin FG plates 
under non-uniform in-plane loading in the 
framework of the classical thin plate theory. They 
used the neutral surface concept and showed that 
the stability equations based on the classical plate 
theory reduced to the single buckling equation 
which can be solved by using the power series 
method straightforwardly. 
     As mentioned earlier, the classical plate theory 
is not adequate in providing accurate buckling 
results when the thickness-to-length ratio of the 
plate is relatively large. The objective of this 
article is to obtain an exact analytical solution for 
buckling analysis of moderately thick shear 
deformable FG plates subjected to linear in-plane 
loading resting on elastic foundation. The present 
work is an extension of a previous authors’ work 
[37] (which was valid for buckling analysis of thin 
FG plates) and uses the first-order shear 
deformation plate theory which provides accurate 
solution compared to the classical theory
especially for moderately thick FGM plates.

The first-order theory based on the exact position 

of neutral surface together with principle of 
minimum total potential energy are employed to 
extract the equilibrium equations of the 
functionally graded rectangular plates resting on 
elastic foundation. By using the adjacent 
equilibrium criterion, the stability equations are 
obtained. Unlike the CPT which leads to the single 
stability equation [37], the FSDT results the three 
highly coupled stability equations which have been 
solved analytically in this paper. By definition of 
two new analytic functions the three coupled 
equations are reduced to two decoupled equations 
in term of transverse displacement and a new 
function called boundary layer function. By 
considering a functionally graded rectangular plate 
with two opposite simply supported edges and 
employing the Levy-type solution, the buckling 
equation is reduced to an ordinary differential 
equation with variable coefficients. This equation 
is exactly solved by the power series solution 
method of Frobenius. Imposing different boundary 
conditions along two other opposite edges of the 
FG plate, the critical buckling loads are obtained. 
Convergence study is first performed to evaluate 
the sufficiency of the proposed method for 
analyzing functionally graded plates under linear 
in-plane loading resting on elastic foundation with 
different boundary conditions. Then, the accuracy 
of the present results is verified through 
comparisons with the existing data reported in the 
literature. Moreover, the effects of plate 
parameters, power law index of FGM, foundation 
stiffness coefficients and loading factor together 
with various combinations of boundary conditions 
on the critical buckling load of 

32

detail.

2. PHYSICAL NEUTRAL SURFACE 

FGMs are a special kind of composites in which 
their material properties vary smoothly and 
continuously due to gradually varying the volume 
fraction of the constituent materials along certain 
dimension (usually in the thickness direction). In 
this study, the FG plate is made from a mixture of 
ceramic and metal and the properties are assumed 
to vary through the thickness of the plate. Due to 
asymmetry of material properties of FG plates with 

FG rectangular plate are discussed in 

are coupled. Some researchers [32- 36] have shown 

Al / Al O
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respect to middle plane, the stretching and bending 
equations are coupled. But, if the origin of the 
coordinate system is suitably selected in the 
thickness direction of the FG plate so as to be the 
neutral surface, the properties of the FG plate 
being symmetric with respect to it. To specify the 
position of neutral surface of FG plates, two 
different planes are considered for the 
measurement of z , namely, msz and nsz measured 
from the middle surface and the neutral surface of 
the plate, respectively, as depicted in Figure 1. 

Figure 1. The positions of middle surface and neutral 
surface for FG plates

The volume-fraction of ceramic )( cV can be 
expressed based on msz and nsz coordinates as 
[38]
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where h is the plate thickness and p denotes the 
power law index of FG plate )0( p and the 

parameter C is the distance of neutral surface 
from the middle surface.
     Since it is assumed that the FG plate is made 
from a mixture of ceramic and metal, the effective 
Young’s modulus )(E based on the Voigt model 
[39] can be written as:

)()()( zVEzVEzE ccmm  (2)

in which the subscripts m and c represent the 
metallic and ceramic constituents, respectively. 
Also the volume fractions of metal and ceramic are 
related as follows [38]:

1)()(  zVzV cm (3)

From Equations (2) and (3), the effective Young’s 
modulus of FG plate can be rewritten as:

)()()( zVEEEzE cmcm  (4)

The position of the neutral surface of the FG plate 
is determined to satisfy the first moment with 
respect to Young’s modulus being zero as follows 
[34]:
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obtained as:
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From Equation (6), it can be seen that the 
parameter C is zero for homogeneous isotropic 
plates, as expected.

3.  GOVERNING EQUATIONS

A moderately thick FG rectangular plate with the 
length a , width b and uniform thickness h , 
resting on two-parameter elastic foundation is 
considered as depicted in Figure 2.

FG rectangular plate resting on elastic foundation, 
SFSC plate under linearly varying in-plane loading

Figure 2. a) Configuration and coordinate system of a 
b) A 
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The origin of the Cartesian coordinate system is 
taken at the neutral surface of the FG plate. The 
FG plate having two opposite edges simply 
supported is subjected to linearly distributed in-
plane loading at these two edges, while the 
remaining edges 
combinations of clamped, free or simply supported 
boundary conditions.
    On the basis of the first-order shear deformation 
plate theory and physical neutral surface concept, 
the displacement components are assumed to be
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where ),,( wvu are the displacements of neutral 

surface of FG plate along the ),,( nszyx coordinate 

directions, respectively, and x and y denote the 

rotation functions. Substituting Equations (7) into 
von-Karman nonlinear strain-displacement 
relations [40], kinematic relations are obtained as:
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where a comma denotes partial differentiation with 
respect to the corresponding coordinate.
     The linear constitutive relations for the plate in 
the plane stress state are given by [41]:
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The parameter )( is the Poisson’s ratio and since 
its variation through the thickness is relatively 
small, it is assumed to be constant [28-34].
     According to the principle of minimum total 
potential energy [42], the equilibrium equations of 
the FG plate resting on two-parameter elastic 
foundation can be obtained as:
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where 2 is two-dimensional Laplace operator, 
and wK and sK are the transverse and shear 
stiffness coefficients of the elastic foundation, 
respectively. Also ),,(,, xyyyxxiMN ii  are the 
resultant forces and moments, respectively, and 

),(, yxiQi  are the transverse shear forces which 
are all defined by the following expressions:
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2K is the shear correction factor 
which is assumed to be 5/6. By substituting 
Equation (8) into Equation (10) and the subsequent 

(y  0, b) may have any 

In Equation (13), 

results into Equation (13), the stress resultants can 
be expressed in terms of displacements as follows:
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 A ,  D and  C
are extensional, bending and transverse shear 
stiffness matrices, respectively. It may be noted 
that there is no extension-bending coupling matrix 
and stretching-bending coupling in the constitutive 
equations using the physical neutral surface 
concept.
     To obtain the stability equations of the FG 
plate, the adjacent equilibrium criterion is 
employed [40]. Assume that the equilibrium state 
of a plate under in-plane loads is defined in terms 
of the displacement components 0000 ,,, xwvu  and 

0
y . Consider an infinitesimally small increment 

from the stable configuration whose displacement 
components differ by 1111 ,,, xwvu  and 1

y with 

respect to the equilibrium position. Thus, the total 
displacements of a neighboring configuration of 
the stable state can be written as follows:
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Substituting the relations (16) in Equations (14) 
yields:
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where the terms with superscripts 0 are 
corresponding to the equilibrium state and the 
terms with superscripts 1 are linear parts of the 
stress resultants increments corresponding to the 
neighboring state. By substituting Equations (16) 

resulting equation with superscript 0 satisfy the 
equilibrium condition and therefore omitted from 
the equations. Also, the nonlinear terms with 
superscript 1 are neglected because they are small 

compared to the linear terms [37]. The remaining 
terms form the stability equation of FG plate as:
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where the parameters ),,(,0 xyyyxxiNi  denote 
the force resultants in the pre-buckling state.
By substituting the kinematic and constitutive 

governing stability equations are obtained as
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These equations are three coupled partial 
differential equations in terms of rotation functions 
and transverse displacement. They may be solved 
by introducing the following auxiliary functions:
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Using above analytical functions and also by 
considering relations 331112 2 DDD  and 

2211

are reduced to the following simpler form:
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11,233,111  yyxy wCDD  (21b)
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C
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yyyyxyxyxxxx
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



                (22)

In Equation  (15), the matrices 

and (17) into Equation (12), the terms in the 

C  C , the governing stability Equation (19) 

relations into the stability Equation (18), the 

)M  M Q  0                                                            (18

From Equation  (21c), the function  can  be

written in terms of 
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By differentiation of Equations (21a) and (21b) 
with respect to x and y , respectively, and adding 
the results, the following equation can be obtained:

0)( 12
1111

2
11  wCD                              (23)

Substituting Equation (22) into Equation (23), 
yields:
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, , ,

11
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11 , ,

0 1 1 2 1
,

( 2

) (

) 0

xx xx xy xy yy yy w

s xx xx xy xy

yy yy w s

D
N w N w N w K w

C

K w D w N w N w

N w K w K w


   

     

    

   (24)

Similarly, subtraction of the differentiation of 
Equation (21a) with respect to y and Equation
(21b) with respect to x , it is concluded that:

02112
2

33   CD                                           (25)

Therefore, three coupled governing stability 

the edge-zone (or boundary layer) equation of the 
plate, and the function 2 is referred to the 
boundary layer function.
Furthermore, by using Equations (21a), (21b) and 
(22), the rotation functions 1

x and 1
y can be 

expressed in terms of 1w 2

 

1 2 2 1 2 1
11 11 11 11 11

0 1 0 1 0 1
, , , , 33 11 2,

1 2
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4. STABILITY ANALYSIS

4.1. Mechanical Loading    As shown in Figure 2, 
the FG plate subjected to linearly varying in-plane 
loading acting on two opposite edges simply 
supported in y direction is considered. 
The pre-buckling forces can be obtained using the 
equilibrium conditions as:

0,))/(1( 00
0

0  xyyyxx NNbyNN             (27)

where 0N and  are the intensity of the 
compressive force per unit length and a loading 
factor, respectively. By changing the factor  , 
various particular cases for linear in-plane loading 
may be obtained. For instance, if  is set to zero, 
the uniformly distributed compressive load is 
obtained. By taking various values of  in the 
range 20  , an eccentric bending is obtained, 
which is a combination of pure bending and 
uniform compression. Examples of these cases are 
depicted in Figure 3. 

Figure 3. Examples of in-plane loading 
)1(0  NN xx along the edge 0x

It may be noted that the case of 0 or 2
are not considered because such cases are identical 
with the cases of 20  as far as the edge
conditions are the same.

By substituting the pre-buckling forces given in 

0)))/(1(

()))/(1(

(

1
,0

1211
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11
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
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swxx
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wKwKwbyN

wKwK
C

D
wD



           (28)

Introducing the dimensionless coordinates 
ax / by /

can be rewritten in the dimensionless form as:

Equations (21) are converted into two independent 
Equations (24) and (25). Equation (25) is known as 

Equation (27) into the stability Equation (24), the 

and , the buckling Equation (28) 

buckling equation is obtained as follows:

and as follows:
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where bak / is the aspect ratio of the plate. 

Also, 1
* ,,ˆ,ˆ DNKK sw and ŵ are the dimensionless 
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                                (30)

equations of the rotation functions (26) in 
dimensionless form can rewritten as follows:

0/ˆˆˆ
32,2

2
,2  Dk                                     (31a)
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where the dimensionless parameters 2̂ , 3D and 
are defined as 2a , 2

11333 / aCDD  and ah /
respectively. It should be noted that rotation 
functions have dimensionless form.

4.2. Solution Methodology     For a rectangular 
plate with simply supported edges at 0 and 1, 
the Levy-type solution procedure may be used to 

(31a). The transverse displacement and boundary 
layer function can be assumed to be:

)sin()(),(ˆ
1

 mTw
m
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                            (32)
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
1

2 )cos()(),(ˆ
m

m m                         (33)

where m denotes the number of half-waves in the 
 direction. It is seen that Equations (32) and (33) 
exactly satisfy the simply supported boundary 
conditions at 0 and 1 . Substituting the 
proposed series solution (32) into Equation (29) 
yields the following ordinary differential equation 
as:
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where )4(
mT , )2(

mT and )1(
mT are the fourth, second and 

first derivatives of mT with respect to  , 

respectively. Also, the parameters )5..1( iLi are 
defined as follows:
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Equation (34) is an ordinary differential equation 
with variable coefficients. To solve this equation 
the power series solution method of Frobenius [43] 
is used. To this end, the function )(mT is written 
as:







0

,)(
n

n
nmm CT                                               (36)

where nmC , ’s are arbitrary constant coefficients. 

Substitution of Equation (36) into Equation (34) 
yields:
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parameters which are given as follows:

Furthermore, the boundary layer Equation (25) and 

solve the decoupled governing Equations (29) and 
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Shifting indices, Equation (37) becomes:
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After collecting the coefficients of similar powers 
of  in Equation (38), one obtains from 0 :
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and the coefficient of ,...)3,2,1( nn gives:
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Relations (39) and (40) are the recurrence formulas 
for nmC , when 4n . Thus, 2,1,0, ,, mmm CCC and 

3,mC are arbitrary constant coefficients and the 

other coefficients nmC , for 4n are expressed in 

terms of them. To solve Equation (31a), 
substituting the proposed series solution (33) into 
Equation (31a) yields an ordinary differential 
equation, which its general solution is given by:

)cosh()sinh()( 1,2,    mmm CC          (41)

where

)/(1)/( 2
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2 kDkm                               (42)

The boundary conditions at other two edges of the 
FG plate )1,0(  which may have any 
combinations of clamped, free or simply supported 
boundary conditions are obtained from the 
principle of minimum total potential energy in 
dimensionless form as:
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4.3. Critical Buckling Load Parameter    By 
applying different boundary conditions at two 
edges of the rectangular plate in  direction 
( 0 and 1 ) a set of homogenous algebraic 
equations is obtained in terms of the unknown 
constant parameters 

,,,,,, 3,2,1,0,1,2, mmmmmm CCCCCC  and the 

buckling load parameter *N for each longitudinal 
half-wave number )(m . For a nontrivial solution, 
the determinant of the sixth order coefficient 
matrix must be set to zero which results in the 
characteristic equation. Solving this equation, the 
buckling load parameters of the FG plate are 
calculated. The lowest value among all these *N ’s 
for each m is known as the critical buckling load 
parameter )( *

crN and the corresponding m

indicates the number of half-waves in the x
direction of critical buckling mode shape.

5. RESULTS AND DISSCUSION

In order to obtain the numerical results, an 
2 3

Aluminum m

c is considered. The Poisson’s ratio 
of the plate is assumed to be constant through the 
thickness and equal to 0.3.

summation of an infinite series and the accuracy of 
the results depends on the number of terms which 
are considered in the power series solution. Based 
on the degree of accuracy requirement in 
numerical calculations, the upper limit of the 
summation is truncated at a finite number )(N . In 
order to check the convergence rate of the power 

buckling load parameter of a FG plate resting on 
elastic foundation with all nine possible 

series solution of Equation (36), the critical 

solution for the function stated in Equation (36) is
5.1. Examination of Convergence         The Exact

(E  380GPa)

(E  70GPa) and Alumina 
Al/Al O functionally graded plate composed of 
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combinations of boundary conditions has been 
listed in Table 1. It is seen that for all of boundary 
conditions more than 24 terms is required to 
achieve the critical buckling load parameter 
accurately to six significant digits. Furthermore, it 
can be seen that increasing the edge constraints 
and also the number of half-waves in the buckling 
mode shape, more terms of the power series must 
be taken to represent the buckling behavior of plate 
properly for six digits convergence. The bold 
numbers in the table are those beyond which the 
sixth digit does not change as N increases. As 
more terms are considered, the critical buckling 
load parameters converge to their exact values.
     The numerical results from the power series 
method which will be presented in the next 
sections are obtained by taking sufficient terms 

)(N to converge to the number of digits shown in 

the tables.

5.2. Comparison Studies      To validate the 
present formulation and procedure, the present 
results are compared with those available in the 
literature for thin and moderately thick isotropic 
plates subjected to linear in-plane loading [14, 20] 
and also for moderately thick FG plates under 
uniform load [31]. In Table 2, the critical buckling 
moments obtained from present solution have been 
compared with those reported by Kang and Leissa 
[14] based on the classical plate theory. The 
homogonous isotropic thin plate )001.0,0(  p
is under pure in-plane bending and the critical 
buckling moment )6/( 2** kNM crcr  defined by 
Kang and Leissa [14] has been presented. As this 
table shows, there is an excellent agreement 
between these results. 

TABLE 1. Convergence test of the critical buckling load parameter )( *
crN for the FG plate under linear in-plane 

loading )5.0(  resting on two-parameter elastic foundation )1.0,1,5,10ˆ,50ˆ(  kpKK sw
Boundary conditions

Na

)2( m

SCSC

)2( m

SCSS

)2( m

CSSS

)1( m

SSSS

)1( m

FSCS

)1( m

SSSF

)1( m

CSFS

)1( m

SSFS

)1( m

FSFS

16 5.84342 4.83581 2.13431 0.80119 3.96002 0.69900 8.50141 2.56955 1.49012

18 9.73108 8.94081 6.33176 2.09124 9.57822 2.04997 9.98014 10.8740 9.89880

20 33.8179 9.45890 7.89910 7.17480 20.5893 8.73811 18.3589 30.3992 20.7149

22 83.7911 30.6894 25.6709 60.5797 50.0981 30.7116 29.78 35.9036 31.3256

24 94.8569 73.7891 83.2844 80.0112 54.5049 48.4992 38.3715 35.9038 31.3260

26 99.9047 86.2300 92.7001 82.8100 54.5160 48.4996 38.3716 35.9038 31.3260

28 101.176 93.6621 92.6282 82.8109 54.5170 48.4996 38.3716 35.9038 31.3260

30 101.408 96.1020 92.6301 82.8204 54.5171 48.4996 38.3716 35.9038 31.3260

32 101.443 96.6462 92.6401 82.8204 54.5171 48.4996 38.3716 35.9038 31.3260

34 101.447 96.6996 92.6411 82.8204 54.5171 48.4996 38.3716 35.9038 31.3260

36 101.448b 96.6996 92.6411 82.8204 54.5171 48.4996 38.3716 35.9038 31.3260

38 101.448 96.6996 92.6411 82.8204 54.5171 48.4996 38.3716 35.9038 31.3260

40 101.448 96.6996 92.6411 82.8204 54.5171 48.4996 38.3716 35.9038 31.3260
                 aN =Total number of terms used in the power series solution.
                 bThe critical buckling load parameters in bold indicate the best convergent values in each column with the least N.

TABLE 2. Comparison of the critical buckling moments of the isotropic rectangular plates under pure in-plane bending 
for 3.2k

Power series 

method

Boundary conditions

SCSC SCSS SCSF SSSC SSSS SSSF SFSC SFSS SFSF

Ref. [14] 65.12(5) 65.12(5) 65.11(5) 40.06(4) 39.83(3) 39.75(1) 3.925(1) 1.994(1) 1.610(1)

Present 65.121(5) 65.120(5) 65.112(5) 40.063 (4) 39.832(3) 39.746(1) 3.9254(1) 1.9941(1) 1.6101(1)

The superscript numbers within the parenthesis indicate number of half-waves in the x direction of critical buckling mode shape.
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Another comparative study for evaluation of 
critical buckling loads between the presented 
solution and analytical solution developed by 
Mohammadi et al. [31] based on the FSDT, is 
performed in Table 3 for moderately thick FG 
plate without elastic foundation and subjected to 
uniform in-plane loading. From the results 
presented in Table 3, it is observed that results 
have a good agreement. 

Furthermore, in Table 4, an interesting comparison 
study of the present exact power series solution 
with the extended Kantorovich method (EKM) 
published by Shanmugam and Wang [20] is shown 
for buckling analysis of moderately thick isotropic 
plate subjected to linearly distributed in-plane 
loading ( 2,1 ). This table indicates that our 
presented results are accurate. Finally, three 
comparative studies show that the results obtained 
from the proposed method agree well with existing 
analytical results in the literature which validate 
the reliability and accuracy of the present 
analytical approach.

5.3. Parametric Investigations     In this section, 
to examine the effects of different parameters of 
plate and elastic foundation on the critical buckling 
load parameter a FG plate with all nine possible 
combinations of boundary conditions, the 
comprehensive results are tabulated in Tables 5
through 9.
    In Table 5, the influence of aspect ratio on the 
critical buckling load parameters )( *

crN of a FG 
plate under linearly distributed in-plane loading 
resting on elastic foundation is investigated. It is 
observed that the critical buckling load increases 
by increasing the aspect ratio. This observation 
indicates that between two plates having identical 
length a , thickness h and boundary conditions, 
the one which has smaller width b buckles at 
greater in-plane loading. Also, the number of half-
waves in the critical buckling mode shape )(m , 
except for SFSF plates, increases with increasing 
the plate aspect ratio. Furthermore, the critical 
buckling load parameter of SFSF plate increases 
very slowly when the aspect ratio increases.
    To examine the influence of foundation stiffness 
coefficients on the critical buckling load 
parameter, the values *

crN listed in Table 6 for the 
FG plate under linearly distributed in-plane 

loading resting on elastic foundation with various 
values of foundation stiffness coefficients; 

)10,10,0ˆ,10,10,10,0ˆ( 232  sw KK . As it can be 
seen, with increase of the foundation stiffness 
coefficients, critical buckling load parameter 
increases. Also, the results show that the shear 

stiffness coefficient )ˆ( sK has more effect on 
increasing the critical buckling load parameter than 

the transverse stiffness coefficient )ˆ( wK . Table 7
shows the buckling behavior of the FG plate 
subjected to various linear in-plane loads. It can be 
seen that the critical buckling load parameter of the 
FG plate under linearly varying in-plane loading 
increases as the loading factor )( increases for 
all boundary conditions. Also, it is seen that the 
critical buckling load parameters of FG plate with 

2 (pure in-plane bending) and clamped 
boundary condition at the edge 0 are almost 
identical for various boundary conditions at the 
other edge. This event can be partially described as 
the compressive loading in one half of the plate 

)2/10(  destabilizes the FG plate while the 
tensile loading in the other half )12/1( 
stabilizes it, with both effects virtually negating 
each other if the compression edge is clamped. 
When the boundary condition in edge 0 is 
simply supported, small differences can be 
observed between their critical buckling load 
parameters. For the remaining three cases, the 
results show that the critical buckling load of 
SFSC plate is greater than those of SFSS and 
SFSF plates while the critical buckling loads of 
these two plates are close to each other.
     To gain a clear understanding of the buckling 
behavior of FG plates subjected to pure in-plane 
bending, the critical buckling mode shapes of the 
buckled plates related to the last row Table 7 are 
illustrated in Figures 4-6. From these figures, the 
results similar to those for critical buckling load 
parameters of FG plates with the same boundary 
condition in edge 0 examined above can be 
attained for the corresponding buckling mode 
shapes. Table 8 illustrates the influence of the 
thickness-side ratio on the critical buckling load 
parameters. It can be observed that, as the 
thickness-side ratio  increases from 0.05 to 0.2, 
the critical buckling load parameter decreases. 
Such behavior is due to the effect of the transverse 
shear deformation in the FG plates.
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TABLE 3. Comparison study of the critical buckling load )( *
crN for a FG plate under uniform in-plane loading )0( 

versus the aspect ratio, thickness-side ratio and some power law indices
Boundary conditions

p  k SCSC SCSS SSSS SCSF SSSF SFSF

1

0.1

0.5
Ref. [31] 18.174525(1) 16.334756(1) 14.982947(1) 10.687864(1) 10.450346(1) 9.360683(1)

Present study 18.1745254(1) 16.3347562(1) 14.9829468(1) 10.6878642(1) 10.4503465(1) 9.3606832(1)

1
Ref. [31] 64.819473(2) 52.341359(1) 37.713203(1) 15.494974(1) 13.322055(1) 9.146917(1)

Present study 64.8194728(2) 52.3413590(1) 37.7132026(1) 15.4949739(1) 13.3220554(1) 9.1469175 (1)

0.2

0.5
Ref. [31] 16.204868(1) 14.850333(1) 13.805765(1) 9.915186(1) 9.728321(1) 8.750235(1)

Present study 16.2048682(1) 14.8503335(1) 13.8057653(1) 9.9151861(1) 9.7283215(1) 8.7502355(1)

1
Ref. [31] 46.134692(2) 42.929636(1) 33.252680(1) 13.905245(1) 12.251502(1) 8.548311(1)

Present study 46.1346916 (2) 42.9296360(1) 33.2526797(1) 13.9052453(1) 12.2515016(1) 8.54834110(1)

2

0.1

0.5
Ref. [31] 18.172610(1) 16.333362(1) 14.981870(1) 10.687136(1) 10.449673(1) 9.360119(1)

Present study 18.1726101(1) 16.3333621(1) 14.9818697(1) 10.6871362(1) 10.4496731(1) 9.3601190(1)

1
Ref. [31] 64.796315(2) 52.331428(1) 37.708938(1) 15.493342(1) 13.321007(1) 9.146357(1)

Present study 64.7963151(2) 52.3314284(1) 37.7089377(1) 15.4933425(1) 13.3210071(1) 9.1463570(1)

0.2

0.5
Ref. [31] 16.199079(1) 14.845829(1) 13.802108(1) 9.912818(1) 9.726090(1) 8.748334(1)

Present study 16.990787(1) 14.8458288(1) 13.8021080(1) 9.9128177(1) 9.7260898(1) 8.7483337(1)

1
Ref. [31] 46.091205(2) 42.904167(1) 33.239421(1) 13.900689(1) 12.248297(1) 8.546461(1)

Present study 46.092052(2) 42.9041673(1) 33.2394207(1) 13.9006890(1) 12.2482972(1) 8.5464612(1)

The superscript numbers within the parenthesis indicate number of half-waves in the x direction of critical buckling mode shape.

TABLE 4. Comparison of the critical buckling load parameters )/( 2* crN for an isotropic rectangular plate under two 

case of in-plane loading versus thickness-side ratio )1( k
Boundary 

conditions
Thickness-side ratio )(

 Method 0.01 0.05 0.1 0.15 0.2

SCSC

1
EKM [20] 14.6798(2) 13.9548(2) 12.1526(2) 10.0708(2) 8.1695(2)

Power series 14.67981(2) 13.95485(2) 12.15264(2) 10.07076(2) 8.16952(2)

2
EKM [20] 39.5131(2) 36.2903(2) 29.1478(3) 20.8065(3) 14.1835(4)

Power series 39.51308(2) 36.29028(2) 29.14777(3) 20.80652(3) 14.18352(4)

SSSS

1
EKM [20] 7.8076(1) 7.7045(1) 7.3991(1) 6.9402(1) 6.3852(1)

Power series 7.80760(1) 7.70452(1) 7.39913(1) 6.94023(1) 6.38520(1)

2
EKM [20] 25.4793(2) 24.3571(2) 21.4086(2) 17.8109(2) 14.4145(2)

Power series 25.47933(2) 24.35709(2) 21.40858(2) 17.81087(2) 14.41453(2)

SFSF

1
EKM [20] 1.6394(1) 1.6208(1) 1.5791(1) 1.5201(1) 1.4477(1)

Power series 1.63944(1) 1.62081(1) 1.57907(1) 1.52006(1) 1.44774(1)

2
EKM [20] 2.5990(1) 2.5509(1) 2.4606(1) 2.3437(1) 2.2086(1)

Power series 2.59904(1) 2.55091(1) 2.46056(1) 2.34366(1) 2.20856(1)

The superscript numbers within the parenthesis indicate number of half-waves in the x direction of critical buckling mode shape.
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TABLE 5. The critical buckling load parameter )( *
crN for a FG plate subjected to linearly varying in-plane loading 

)5.0(  versus aspect ratio )1.0,1,10ˆ,10ˆ(  pKK sw

Boundary 

conditions

Aspect ratio )(k

0.5 0.75 1 1.5 2 2.5 3 3.5 4

SCSC 42.3345(1) 71.7162(1) 102.7856(2) 180.6462(3) 253.4071(3) 323.9195(4) 386.1915(5) 438.5575(6) 481.5189(7)

SCSS 40.5790(1) 62.5507(1) 97.5648(2) 157.4859(2) 232.4162(3) 306.5035(4) 372.2600(5) 427.5665(6) 472.8451(7)

SSSC 38.7217(1) 58.9585(1) 93.2960(2) 149.4060(2) 223.0771(3) 296.9714(4) 363.2950(5) 419.5265(6) 465.8450(7)

SSSS 37.4873(1) 52.8294(1) 77.9607(1) 132.3264(2) 203.1645(2) 270.9240(3) 341.1030(4) 404.0789(5) 457.1058(6)

SCSF 34.5019(1) 40.3791(1) 48.3260(1) 74.8770(1) 112.1929(2) 139.5282(2) 176.6506(2) 223.2620(3) 256.9603(3)

SSSF 33.4223(1) 37.4545(1) 42.3924(1) 56.0324(1) 74.8880(1) 98.8737(1) 127.8430(1) 150.8473(2) 174.0650(2)

CSFS 25.5523(1) 28.8277(1) 33.9671(1) 51.6480(1) 78.1938(2) 96.5891(2) 121.8398(2) 155.3187(2) 179.4091(3)

SFSS 25.4215(1) 27.9432(1) 31.3596(1) 41.0113(1) 54.4449(1) 71.5703(1) 92.2746(1) 109.0040(2) 125.5919(2)

SFSF 25.0375(1) 25.9154(1) 26.2940(1) 26.5001(1) 26.5123(1) 26.6709(1) 26.7791(1) 26.8126(1) 26.9209(1)

The superscript numbers within the parenthesis indicate number of half-waves in the x direction of critical buckling mode shape.

TABLE 6. The critical buckling load parameter )( *
crN of a FG plate under linearly varying in-plane loading )1( 

with different foundation stiffness coefficients )1.0,5.0,2(  kp
Boundary conditions

)ˆ,ˆ( sw KK SCSC SCSS SSSC SSSS SCSF SSSF SFSC SFSS SFSF

(0,0) 34.6057(1) 33.2153(1) 28.6522(1) 27.7958(1) 31.1923(1) 26.7246(1) 13.5030(1) 13.4018(1) 13.3488(1)

(0,10) 58.0782(1) 57.0457(1) 50.5137(1) 49.8652(1) 55.7391(1) 49.0025(1) 27.4521(1) 27.4035(1) 27.2747(1)

(0,102) 234.3193(2) 234.2898(2) 226.2815(2) 226.2797(2) 234.3382(2) 226.2770(2) 151.3134(1) 151.2586(1) 150.9459(1)

(10,0) 36.4445(1) 35.1548(1) 30.3477(1) 29.5547(1) 33.4734(1) 28.6607(1) 14.7239(1) 14.6931(1) 13.7893(1)

(10,10) 59.8546(1) 58.8257(1) 52.1721(1) 51.5586(1) 57.4192(1) 50.7874(1) 28.6825(1) 28.6337(1) 28.6156(1)

(10,102) 234.6862(2) 234.6657(2) 226.6284(2) 226.6266(2) 234.7733(2) 226.6240(2) 152.5549(1) 152.5133(1) 152.4563(1)

(102,0) 52.7147(1) 51.8906(1) 45.2669(1) 44.8601(1) 51.4142(1) 44.6775(1) 25.7136(1) 25.7473(1) 25.7118(1)

(102,10) 75.6958(1) 75.0840(1) 66.8602(1) 66.4857(1) 74.6704(1) 66.1994(1) 39.7455(1) 39.7195(1) 39.5897(1)

(102,102) 237.8939(2) 237.8907(2) 229.7474(2) 229.7458(2) 237.9165(2) 229.7434(2) 163.6643(1) 163.6318(1) 163.5931(1)

(103,0) 107.4560(2) 107.4374(2) 101.4387(2) 101.4378(2) 107.4209(2) 101.4375(2) 72.1988(2) 72.2002(2) 72.2237(2)

(103,10) 123.8482(2) 123.6805(2) 117.3961(2) 117.3953(2) 123.8268(2) 117.3950(2) 84.6247(2) 84.6242(2) 84.6242(2)

(103,102) 269.7107(2) 269.7011(2) 260.6861(2) 260.6854(2) 269.6803(2) 260.6846(2) 194.9369(2) 194.9369(2) 194.9369(2)

The superscript numbers within the parenthesis indicate number of half-waves in the x direction of critical buckling mode shape.
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TABLE 7. Effect of loading factor on critical buckling load parameter )( *
crN for a FG plate subjected to uniformly and 

linearly distributed in-plane compressive loading )1.0,5.1,5.0,0ˆ,100ˆ(  kpKK sw

loading 

factors

Boundary conditions

SCSC SCSS SSSC SSSS SCSF SFSC SSSF SFSS SFSF

0 121.1445(2) 100.8810(2) 100.8810(2) 85.8430(2) 36.3951(1) 36.3951(1) 28.1686(1) 28.1686(1) 19.224(1)

5.0 160.8305(2) 137.6310(2) 130.3370(2) 113.8509(2) 59.9910(1) 40.6281(1) 44.7237(1) 32.2241(1) 24.9585(1)

1 229.9634(3) 209.7952(2) 180.2759(2) 164.1895(2) 159.6855(1) 45.8369(1) 101.3876(1) 37.4356(1) 32.9467(1)

5.1 342.0180(3) 340.6393(3) 271.7698(2) 261.5581(2) 340.2203(3) 52.3357(1) 258.4898(2) 44.2398(1) 42.3120(1)

2 479.7145(4) 479.7095(4) 405.9504(3) 405.8373(3) 479.7045(4) 60.5449(1) 405.7710(3) 53.2037(1) 52.6261(1)

The superscript numbers within the parenthesis indicate number of half-waves in the x direction of critical buckling mode shape.

TABLE 8. The critical buckling load parameter )( *
crN for a FG plate subjected to linearly varying in-plane loading 

)5.1(  versus thickness-side ratio )75.0,3,10ˆ,100ˆ(  kpKK sw

)(
Boundary conditions

SCSC SCSS SCSF SSSC SSSS SSSF SFSC SFSS SFSF

0.05 179.8404(2) 179.79021(2) 179.3265(2) 149.9898(2) 149.7905(2) 149.7367(2) 50.6290(1) 50.2124(1) 50.1723(1)

0.1 160.1752(2) 160.1316(2) 160.1248(2) 138.4178(2) 138.3878(2) 138.3827(2) 50.0345(1) 49.8511(1) 49.8117(1)

0.15 137.8269(2) 137.8008(2) 137.7940(2) 123.4697(2) 123.4501(2) 123.4448(2) 49.2442(1) 49.0834(1) 49.0433(1)

0.2 117.0808(2) 117.0651(2) 117.0603(2) 108.1495(2) 108.1374(2) 108.1327(2) 48.2926(1) 48.1556(1) 48.1153(1)

The superscript numbers within the parenthesis indicate number of half-waves in the x direction of critical buckling mode shape.

TABLE 9. The critical buckling load parameter )/( 11
2

0
*

CDaNN  for a FG plate under pure in-plane bending )2( 

versus various power law indices )1.0,1,10ˆ,10ˆ(  kKK sw

Boundary 

conditions

Power law index

0 0.5 1 2 5 10 100

SCSC 310.9380(3) 208.7411(3) 163.0953(3) 126.8068(3) 101.4103(3) 88.7699(3) 62.7729(3)

SCSS 310.9377(3) 208.7409(3) 163.0951(3) 126.8066(3) 101.4100(3) 88.7696(3) 62.7728(3)

SCSF 310.9371(3) 208.7405(3) 163.0948(3) 126.8064(3) 101.4098(3) 88.7695(3) 62.7727(3)

SSSC 247.7828(2) 163.2372(2) 126.4293(2) 98.4943(2) 81.1775(2) 72.5548(2) 50.6296(2)

SSSS 247.7453(2) 163.2130(2) 126.4108(2) 98.4798(2) 81.1651(2) 72.54352) 50.6218(2)

SSSF 247.7201(2) 163.1961(2) 126.3975(2) 98.4695(2) 81.1569(2) 72.5363(2) 50.6167(2)

SFSC 51.6420(1) 33.5672(1) 25.8417(1) 20.1592(1) 16.9745(1) 15.4126(1) 10.6465(1)

SFSS 50.5186(1) 32.8293(1) 25.2709(1) 19.7144(1) 16.6064(1) 15.0822(1) 10.4166(1)

SFSF 50.2949(1) 32.6853(1) 25.1606(1) 19.6282(1) 16.5327(1) 15.0146(1) 10.3702(1)

The superscript numbers within the parenthesis indicate number of half-waves in the x direction of critical buckling mode shape.
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)4(7145.479*
crNSCSC, )4(7095.479, *

crNSCSS )4(7045.479, *
crNSCSF

Figure 4. The critical buckling mode shapes of the FG plates pure in-plane bending and clamped boundary condition at the 
edge 0

)3(9504.405, *
crNSSSC )3(8373.405, *

crNSSSS )3(7710.405*
crNSSSF

Figure 5. The critical buckling mode shapes of the FG plates pure in-plane bending and simply supported boundary 
condition at the edge 0
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     To investigate the effect of power law index on 
the critical buckling load parameter, the values of 

cDaN 11
2

0 / ( cD11 denotes the parameter 11D of FG 
plate when power law index is equal to zero) are 
presented in Table 9. It is observed that with the 
increase of power law index the critical buckling 
load parameter decreases. This is due to the fact 
that increasing the power law index increases the 
volume fraction of metal.
     Finally, in order to gain a better understanding 
of the location of the neutral surface, the variation 
of dimensionless parameter hC / is illustrated in 
Figure 7 versus the power law index. It can be 
found that the dimensionless parameter hC /
increases with increasing p and reaches maximum 

value of 0.15795 for 3.3p , then the curve drops 
down and approaches zero asymptotically. Also, it 
can be seen that when the power law index 
becomes zero (pure ceramic plate) or infinity (pure 
metallic plate); the neutral surface coincides on the 
middle surface, as expected.

p

C
/h

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Figure 7. Variation of the neutral surface position 
versus power law index

)1(5449.60, *
crNSFSC )1(2037.53, *

crNSFSS )1(6261.52, *
crNSFSF

Figure 6. The critical buckling mode shapes of the FG plates pure in-plane bending and free boundary condition at the 
edge 0
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6. CONCLUSION

In the present study, buckling behavior of 
functionally graded rectangular plates subjected to 
linearly varying in-plane loading acting on two 
opposite simply supported edges has been 
investigated on the basis of the first-order shear 
deformation plate theory. By using the principle of 
minimum total potential energy, the equilibrium 
equations of the FG plate resting on two-parameter 
elastic foundation have been derived. Introducing 
two auxiliary functions and carrying out some 
algebraic manipulations, the coupled stability 
partial differential equations have been decoupled. 
Then, considering Levy-type solution procedure, 
the buckling equation has been reduced to an 
ordinary differential equation with variable 
coefficients and solved using power series method 
of Frobenius. After appropriate convergence study, 
to ensure the accuracy of the derived formulations, 
the results obtained by the present solution have 
been compared with those reported in the 
literature. A good correlation has been observed 
between the present results and the available data 
in literature. Several parametric studies have been 
performed to show the effects of aspect ratio, 
foundation stiffness coefficients, plate thickness, 
in-plane loading condition and also power law 
index on the critical buckling load parameter of 
functionally graded rectangular plate with different 
boundary conditions. Finally, some general 
conclusions can be drawn as follows:
1) Good correlation can be seen between the 
buckling results of present power series solution 
and existing results from other analytical solutions.
2) By increasing the edge constraints and also the 
number of half-waves in the buckling mode shape, 
more terms of the power series solution are needed 
to represent the buckling behavior of FG plate 
properly.
3) The critical buckling load increases by 
increasing the aspect ratio. However, it decreases 
when the thickness-side ratio increases.
4) By increasing the power law index, the critical 
buckling load parameters normalized by cD11 , 
decreases.

5) The shear stiffness coefficient )ˆ( sK exerts a 
greater influence on the critical buckling load 
parameter compared to the normal stiffness 

coefficient )ˆ( wK .

6) The critical buckling load parameter of the FG 
plate under linearly varying in-plane loading 
increases as the loading factor )( increases for 
all boundary conditions.
7) The critical buckling load parameters for the 
case of FG plate under pure in-plane bending 

)2(  are almost identical when the compression 
side of the FG plate is clamped.
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