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Abstract  This paper deals with finite capacity single server queuing system with vacations. 
Vacation starts at rate if the system is empty. Also, the server takes another vacation if upon his 
arrival to the system, finds the system empty. Customers arrive in the system in Poisson fashion at 

rate
0

 during vacation, faster rate
f

 during active service and slower rate 0
s

  during the 

breakdown. Customers are served exponentially with the rate  . Server breakdowns at rate b and it is 
immediately repaired exponentially with the rate r . We derive the explicit formulas for queue length 
distribution, average queue length, average number of customers in the system and average waiting 
time for a customer in queue, and in the system. Numerical illustrations have been cited to show that 
the proposed model is practically sound.

Keywords  Multiple–vacation, Server breakdowns, Repair, Generating functions, Average queue 
length.

1. INTRODUCTION

Several researchers [1- 4] studied the queuing
systems with server vacations and obtained various
measures of performance. Takagi [5] studied 
M/G/1/N queue with server vacations and 
exhaustive service and obtained the distributions of 
the unfinished work, the virtual waiting time and 
the real waiting time, etc. Wang [6] proposed an 
N- policy M/M/1 queueing system with server 
breakdowns and obtained analytic closed-form 
solutions. Takine and Sengupta [7] obtained the 
queue-length distribution and waiting time 
distribution of a single-server queue under the 
provision of service interruptions. Boxma et al. [8] 
studied the length of a vacation and steady-state 

workload distribution, both for single and multiple 
vacations. Ke [9] proposed M/G/1 queuing system 
with server vacations, startup and breakdowns and 
obtained the system total expected cost function 
per unit time under optimal control mechanism. 
Zhang   et al. [10] analyzed of an M/M/1/N queue 
with balking, reneging and server vacations and 
derived the matrix form solution of the steady-state 
probabilities and formulated a cost model to 
determine the optimal service rate. Wang et al.
[11] made a comparative analysis between the 
exact results and the maximum entropy results, 
also illustrated through the maximum entropy 
results that the maximum entropy principle 
approach is accurate enough for practical purposes.  
Jain and Agrawal [12] studied the Mx/M/1
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queueing system with multiple types of server 
breakdown under N-policy and provided the 
numerical results to demonstrate the effects of 
various parameters on the system performance 
characteristics. Ke and Wang [13] analyzed the
operating characteristics for the heterogeneous 
batch arrival queue with startup and breakdown 
and performed a sensitivity analysis among the 
optimal value of N, specific values of system 
parameters, and the cost elements of Mx/M/1
queue. Srivastava and Jain [14] analyzed an 
optimal N-policy model for single Markovian 
queue with breakdown repair and state dependent 
arrival rate and obtained steady state for various 
operational characteristic and optimal value of N 
under a linear cost structure.  Hur and Paik [15] 
analyzed the effect of different arrival rates on the 

N- policy of M/G/1 with server setup and derived 
the distribution function of the steady state queue 
length, waiting time using Laplace Stieltjes 
transform. Ke and Pearn [16] studied the 
management policy of M/M/1 queueing service 
system with heterogeneous arrivals under the N 
policy, in which the server is characterized by 
breakdowns and vacations and derived the 
distribution of the system size and mean queue 
length. Gray et al. [17, 18] studied the vacation 
queueing model with service breakdown under the 
assumption of different arrival rates and obtained 
formulas for queue length distribution and the 
mean queue length for M/M/1.
The queuing system with vacations and server 
breakdowns in infinite capacity system can be 
found in several research papers but from the 
practical view point this   system may not always 
be the case .In many real life situations the finite 
capacity system plays the vital role such as in 
customized manufacturing systems, maintenance 
activities, and telecommunication network centers 
where the multi-task employees are to be 
deployed. In this paper we investigate finite 
capacity queueing system with multiple vacations 
and server breakdowns. The server completely 
stops serving customers during a vacation and start 
serving whenever number of customers N (≥1) in 
the system. Once service starts, there can be an 
interruption due to server breakdown, and it is sent 
to repair facility. As soon as the repair process 
completes, the server starts to serve the same 
interrupted customer.

2. MATHEMATICAL MODEL AND 
ANALYSIS

 (0, )i is the state in which there are i customers 
in the queue and the server is on vacation, 
0 i N  . Its probability is ( , )p 0 i .

 (1, )i is the state in which there are i customers 

in the system during active service, 1 i N  . 
Its probability is ( , )p 1 i .

 (2, )i is the state in which there are i customers 

in the system during repair process, 1 i N  . 
Its probability is (2, )p i .

The generating function for the queue length 
distribution is 

0( ) ( ) ( ) ( )f sF z F z F z F z                                  (1)

where the partial generating functions are:

,
N N N

i i i
0 f s

i=0 i=1 i=1

F (z)= p(0,i)z ,   F (z)= p(1,i)z    F (z)= p(2,i)z  

The balance equations for the queue length 
distribution are:

0λ p(0,0)= μp(1,1)                                                (2)                                                           

0 0(λ + υ)p(0,i)= λ p(0,i - 1)            1 i N             (3)                                                          

0υp(0,N)= λ p(0,N -1)                                             (4)                                                                           

f(λ + μ+b)p(1,1)= υp(0,1)+ μp(1,2)+ rp(2,1)                
(5)

f f(λ + μ +b)p(1,i)= λ p(1,i - 1)

+υp(0,i)+ μp(1,i+1)+ rp(2,i)
,        2 i N         (6)

f(μ+b)p(1,N)= λ p(1,N - 1)+υp(0,N)+ rp(2,N)          (7)

s(λ +r)p(2,1)= bp(1,1)                                           (8)

s s(λ + r)p(2,i)= bp(1,i)+ λ p(2,i - 1),     2 i < N         (9)                                                                                                                  

srp(2,N)= bp(1,N)+ λ p(2,N -1)                            (10)

Equation (2) gives

0λ
p(1,1)= p(0,0).

μ
                                             (11)                                                      

From Equation (4), we have:
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0λ
p(0,N)= p(0,N -1)

υ
                                          (12) 

Substituting (11) into (8), we obtain:  

0

s s

bλb
p(2,1)= p(1,1)= p(0,0)

λ + r μ(λ + r)
                     (13)                                                

From Equation (3), we get:

i
0p(0,i)= ρ p(0,0) ,           1≤iN                           (14)                                                                                                   

where 0
0

0

λ
ρ =

λ +υ

From Equations (12) and (14), we get:

N
i

0
i=0

F (z) = p(0,i)z =
N

N -1 N0 0
0

0

1 - (ρ z) λ
+ ρ z p(0,0)

1 - (ρ z) υ

 
 
 

       (15)                             

Multiplying Equation (6) by iz and summing for 
2,3, , 1i N     

 

f f f

N
N -1 N0 0
0 0

0

2
s

μ
μ+b - - λ (z -1) F (z)= (λ + μ+b)p(1,1)z

z

1-(ρ z) λ
+υ + ρ z -1- ρ z p(0,0)

1-(ρ z) υ

μ
- p(1,1)z+ p(1,2)z +rF (z)- rp(2,1)z.

z

 
 
 

 
 
 

               (16)

Now, we find ( )sF z in terms of ( )fF z , then using 

Equation (16), we find ( )fF z . Multiply Equation 

(9) by iz and sum for 2,3, , 1i N 

   

s f
s s

b
F (z)= F (z)

(λ +r - zλ )
                                        (17)                                             

Substituting the (17) into (16), we get

      

 

N
0

f f
s s 0

N -1 N 20
0 0

1-(ρ z)(z -1)Q(z)
F (z)= (λ + μ+b)p(1,1)z +υ +

z(λ +r - λ z) 1-(ρ z)

λ μ
ρ z -1- ρ z p(0,0)- p(1,1)z+ p(1,2)z - rp(2,1)z

υ z









(18)                                         

where

2
f s f s f s s sQ(z)= λ λ z -(λ λ + λ r +bλ + μλ )z+ μ(r + λ )           (19)                              

In order for the queue length distribution to exist, 
the R.H.S. of Equation (18) must vanish when z=1. 
Since p(1,1) and p(2,1) are given, now we find 

μp(1,2)

f
s

N
N -10 0
0 0

0

rb
μp(1,2)= λ +b - p(1,1)

λ + r

1- ρ λ
+ ρ -1- ρ p(0,0)

1- ρ υ


 
 
 

 
  

 

                        (20)                         

Substituting (20) into (18)

f
s s

(z - 1)Q(z)
F (z)= μ(z - 1)p(1,1)

z(λ + r - λ z)
N+1 N 2 N N 2
0 0 0

0 0

N -1 N
0 0

ρ (z - z ) - ρ (z - z)+ ρ (z -1) - (z - 1)
+υ

(1- ρ )(1- ρ z)

p(0,0)+ λ ρ (z - z)p(0,0)+υ(z - 1)p(0,0)

 
 
 

       

(21)

or,

f 0
s s

Q(z)
F (z)= (λ +υ)zp(0,0)+υ

(λ + r - λ z)
N+1 N+1 2 N 2
0 0 0 0 0

0 0

ρ Φ(z) - ρ z - ρ Φ(z)+ ρ z + ρ z - z
p(0,0)      

(1- ρ )(1- ρ z)

 
 
        

(22)   

N -1
0 0+λ ρ  Φ(z) p(0,0)                                       

where

1 2( ) ...N Nz z z z                                           (23)  
                                                     

 N 2 Ns s 0

0 0

0

f

(λ + r - λ z)λ
(1 - ρ )z - (z - 1) z + ρ Φ(z) p(0,0)

Q(z)(1 - ρ z)
F (z)=   

(24)

For s >0, discriminant  of the quadratic 

expression (19) satisfies

2 2 2 2 2 2 2 2 2
s s f s f f s

2 2 2 2
f s f s s f s f s

Δ λ b + λ μ + λ λ + λ r - 2λ λ μ -

2λ λ μr + 2λ λ r = λ b + (λ λ + λ r - λ μ ) > 0

≥

So, the equation ( ) 0Q z  has two distinct real 
roots Z1 and Z2.
In order for the steady-state queue length 
distribution to exist, both roots of the equation 

( ) 0Q z  must be greater than 1. Since in ( )Q z , the 
coefficient of z2 is positive, the two roots of 

( ) 0Q z  will be greater than 1 if (1) 0Q  and

(1) 0Q  . Since (1) s fQ r b r     , we assume that:

s fμr > λ b + λ r   
or       fs

λλ b
+ < 1

μr μ
                  (25)                                                 

The above equation implies that f  , so if (25) 

holds, then 

      
s f s fQ (1)= λ (λ - μ) - λ b - λ r < 0
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Thus, if we assume that (25) holds, then the roots 
Z1 and Z2 of ( ) 0Q z  will be greater than 1.
From (23), we have for z=1

Φ(1)= N -1                                                 (26)

and

N(N +1)
Φ (1)= -1

2
                                                (27)  

                                                               
Substituting Equations (15), (17) and (24) into (1), 
we get :

 

N N N
0 0

0
0 0

N 2
0

s s 0 N
0

0

1-(ρ z) ρ z
+ Q(z)(1- ρ z)+

1- (ρ z) 1- ρ
F(z)=

Q(z)

(1- ρ )z
(λ + r - zλ +b)λ

-(z - 1) z + ρ Φ(z)
p(0,0)

(1- ρ z)

 
 
 

 
 
  

         (28)                                                      

From (28) and the normalizing condition (1) 1F  , 
we obtain:

s f 0

N
s f 0 0

(μr - λ b - λ r)(1- ρ )
p(0,0)=

μr - λ b - λ r +(b+r)λ (1- ρ )
                     (29)                                                 

Now, assuming 0s  and substituting =1/Z1

and =1/Z2, Equation (29) becomes:

s 0
N

s f 0 0

μ(r + λ )(1- α)(1- β)(1- ρ )
p(0,0)=

μr - λ b - λ r +(b+ r)λ (1- ρ )
                      (30)

Using this in Equation (28), we obtain:

0

0

(1- α)(1- β)(1- ρ )
F(z)= R(z)

(1- αz)(1- βz)(1- ρ z)
                          (31)                                         

where

 

N N N
0 0

0
0 0

s f

N 2
0

s s 0 N
0

N
0 0

1- (ρ z) ρ z
+ Q(z)(1- ρ z)

1-(ρ z) 1- ρ
R(z)=

μr - λ b - λ r +(b+ r)

(1- ρ )z
+(λ + r - zλ +b)λ

-(z -1) z+ ρ Φ(z)

λ (1- ρ )

 
 
 

 
 
  

                   (32)                        

This reduces to R (1) = 1.
In the case when there is no customer admitted in
the queue during a repair process, 0.s  Then,

Equation (19) takes the form:

fQ(z)= μr(1- ρ z)   
where   f

f

λ
ρ = < 1

μ
                  (33)                     

Substituting it into Equation (28), we get:

 

0 0
0

0 0

2
0

0

0

0

1 ( )
(1 )(1 )

1 ( ) 1
( )

(1 )

(1 )
( )

( 1) ( )
(0,0)

(1 )

N N N

f

f

N

N

z z
r z z

z
F z

r z

z
b r

z z z
p

z

    
 

 








 
     



 
   

     


           (34)

Then:

f 0

N
f 0 0

μr(1- ρ )(1- ρ )
p(0,0)=

μr(1- ρ )+ λ (r+b)(1- ρ )
                       (35)                                                      

and 

f 0

f 0

(1- ρ )(1- ρ )
F(z)= R(z)

(1- ρ z)(1- ρ z)
                                   (36)                                                                         

where

 

N N N
0 0

f 0
0 0

s f

N 2
0

0 N
0

N
0 0

1- (ρ z) ρ z
+ μr(1- ρ z)(1- ρ z)+

1-(ρ z) 1- ρ
R(z)=

μr - λ b - λ r +(b+r)

(1- ρ )z
(b+r)λ

-(z - 1) z+ ρ Φ(z)
.

λ (1- ρ )

 
 
 

 
 
  

        (37)        

Equations (31) and (36) are the queue length 
distribution for 0s and 0s  respectively.

If 0s  Expression (25) becomes the necessary 

and sufficient condition for the queue length 
distribution to exist; it gives the utilization factor 
for M/M/1 queue which is independent from 
breakdown and repair rates.
For 0s , the mean queue length Lq can be 

obtained by computing (1)F  from (31) and (32)

                     
                                

 

    
  

s f0
q

0 s f 0

N+1
N 0

0 s 0 f s f
0

N
0

λ λ - μ - b +ρα β
L = + + +

1- α 1- β 1- ρ μr - λ b - λ r + λ

ρ
λ b+ r - λ 1- ρ - λ r - μr - λ b - λ r

1- ρ
  

b+ r 1- ρ

 
 
 

    (38)      
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The average number of customer in the 
system sL can also be obtained as:

f0 s
s q

λλ λ
L = L + + +

μ μ μ
                                     (39a)

Average waiting times per customer in the queue 
and the system are: 

0

q q q
q

f s

L L L
W

  
                                                (39b)

Respectively, and

s s
1

W = L +
μ

                                 (39c)

For 0s  , the mean queue length is determined 

from (36) and (37) as:     
                   

    
    

N+1
0

0 f f
f 0 0

q N
f 0 f 0 0

ρ
λ b+r - μrρ - μr 1- ρ

ρ ρ 1- ρ
L = + +

1- ρ 1- ρ μr 1- ρ + λ b+ r 1- ρ
(40)

And the average number of customers in the 
system sL is:





 f

qs LL  0                                 (41a)

Average waiting times in the queue and  in the 
system are: 

0

q q
q

f

L L
W

 
                                                    (41b)

Respectively, and


1

 ss LW                                              (41c)

  
3. Special cases   
If N  , that is when the system capacity is 
infinite, then our result coincide with the result 
obtained by Gray et al. [17]. The mean queue 
length given by (38) and (40) reduces to the 
following forms:

Case1: When 0s , 

   
 

s f 0 s f0

0 s f 0

λ λ - μ - b + λ b+r - λ - λ rρα β
L = + + +

1- α 1- β 1- ρ μr - λ b - λ r + λ b+ r

Case 2: When 0s  ,

 
   

00

0 0

λ b+r - μrρρρ
L = + +

1- ρ 1- ρ μr 1- ρ + λ b+r

4. NUMERICAL RESULTS AND 
INTERPRETATIONS

In this section, we provide the numerical results for 
various performance indices using Equations (38) 
and (40). For the computation purpose, we fix 

For 0s 

TABLE 1. N=25, 0 =1, s=1, =1, r=3, b=2

7   7.5   8  

f qL qL qL

2 1.5000 1.4439 1.3988

3 1.7667 1.6509 1.5641

4 2.3452 2.0588 1.8667

5 4.0833 3.0693 2.5238

6 19.1667 7.2667 4.5000

TABLE 1. N=25, 0 =1, f =2, s=1, =1, r=3

1b  1.5b  2b 

 qL qL qL

3 4.1667 5.8333 9.1667

4 2.1333 2.4444 2.8333

5 1.6667 1.8167 1.9881

6 1.4667 1.5619 1.6667

7 1.3571 1.4259 1.5000

TABLE 3. N=25, 0 =1, f =2, s=1, =1, b=2

3r  3.5r  4r 
 qL qL qL

3 9.1667 6.8810 5.7500
4 2.8333 2.5810 2.4167
5 1.9881 1.8761 1.8000
6 1.6667 1.5976 1.5500
7 1.5000 1.4508 1.4167
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Different system parameters are as follows:
        
Figure 1 displays the correlation between mean 
queue length (

qL ) and fast arrival rate ( f ) by 

varying the service rates. We also observe that the 
mean queue length (

qL ) increases with the fast 

arrival rate (
f ) whereas it decreases by increasing 

the service rates ( ). Figure 2 exhibits the mean 

queue length (
qL ) by varying service rate ( ) and 

breakdown rate (b). It is seen that qL   decreases 

with the increase of service rate ( ), and qL

increases with breakdown rate (b). Figure 3

demonstrates the mean queue length (
qL ) 

decreases with the increase of service rate ( ) and 

repair rate (r). When  0s

For 0s 

TABLE 4. N=25, 0 =1, =1, r=3, b=2

7  7.5  8 

f qL qL qL

2 1.3500 1.3171 1.2899
3 1.5147 1.4505 1.4000
4 1.8333 1.6912 1.5882
5 2.5909 2.2000 1.9524
6 5.37500 3.6316 2.8182

TABLE 5. N=25, 0 =1, f =2, =1, r=3

1b  1.5b  2b 
 qL qL qL

3 2.7143 2.8000 2.8750
4 1.8000 1.8571 1.9091
5 1.5128 1.5556 1.5952
6 1.3750 1.4091 1.4412
7 1.2947 1.3231 1.3500

TABLE 6. N=25, 0 =1, f =2, =1, b=2

3r  3.5r  4r 
 qL qL qL

3 2.8750 2.8333 2.8000

4 1.9091 1.8800 1.8571

5 1.5952 1.5729 1.5556

6 1.4412 1.4231 1.4091

7 1.3500 1.3348 1.3231

Figure 1.  Fast arrival rate vs. average queue length

Figure 2. Service rate vs. average queue length

Figure 3. Service rate vs. average queue length



IJE Transactions A: Basics Vol. 24, No. 4, November 2011 - 393

Figures 4, 5, 6 give the comparison of mean queue 
length (

qL ) when no arrival during breakdown (i.e. 

0s  ) with Figures 1, 2, 3 the mean queue length 

(
qL ) when there may be arrivals during breakdown 

(i.e. s >0). This comparison shows that mean 
queue length (

qL ) in latter figures increases or 

decreases gradually than in former cases. When  
0s  ,

5. DISCUSSION

By using partial generating function method we 
have obtained various performance measures for a 
single server, finite capacity queueing system with 
the provision of vacations and server breakdowns. 
The imposition of various arrival rates to the 
system may have the applicability in the real life 
queueing system in which arrival rates can be 
varied so as to reduce sufficient queue length. 
Proposed model may have potential application in 
the telecommunication system, computer 
communication systems, machining system, etc.
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