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Abstract   In this paper static and dynamic responses of a nano-tweezer composed of two carbon 
nano-tube (CNT) arms are investigated. Taking into account a continuum model and considering the 
electrostatic actuation as well as the presence of the van der Waals forces, the static nonlinear 
equations are solved by a step by step linearization and Galerkin projection method. Simulating the 
closing dynamics of the nano-tweezer, the specified effective diameters of the nanotubes compared to 
existing experimental data. Then by imposing a step DC voltage and taking into account the inertia 
effects, the dynamic responses and pull-in conditions of the nano-tweezer are studied. In the static 
and dynamic analysis, the effects of various parameters such as initial gap, length and diameter of the 
nanotubes on the pull-in conditions are investigated. Also the effect of damping and asymmetric 
stiffness of the arms on the pull-in voltages of the nano-tweezer is reported. Comparison of the results 
with the published experimental data shows that the use of continuum model and employing the 
Galerkin based step by step linearization method (SSLM) could effectively simulate the response of 
nano-tweezers.
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1. INTRODUCTION

Since the discovery of carbon nanotubes [1] they 
have been widely used in many nano 
electromechanical systems (NEMS). Nanotubes 
properties depend on atomic arrangement, their 
diameter and length. They have high aspect ratio, 
flexibility and thermal and chemical stability.
Nanotubes exist as single-walled or multi-walled 
structures, where the multi-walled nanotubes
(MWNT) are composed of multiple concentric 
single-walled carbon nanotubes (SWCN). Because 
of their aforementioned properties they have been 

used in many nanoscale applications. They have 
been utilized as resonators [2], nanorelays [3,4], 
and electrostatic switches [5, 6]. Moreover the 
nanotubes have been used as rotational elements in 
nano rotational motors [7], and in a special type of 
random access memory they used as suspended 
elements which operates as switches [8]. The 
SWCN in the form of fixed-fixed and fixed-free is 
also used as mass sensor [9]. Moreover they were 
used in atomic force microscopy to measure the 
force between solid surfaces, where in some cases 
it could be interacts with the surrounding liquid,
where in addition to intermolecular forces, the 

انبرکها  میباشد.      
داده است که استفاده از روش خطی سازی گام به گام به همراه روش گلرکين روشی موثر جهت تحليل نانو 
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و با نتايج آزمايشگاهی مورد مقايسه قرار گرفته است.  در ادامه با اعمال ولتاژ تحريک به فرم پله و لحاظ کردن 
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osmotic forces should also be considered [10].     
Nano-tweezers are also nanotube-based devices 
composed of two cantilever carbon nanotube arms.
They are used for manipulation of nanostructures 
and two-tip scanning-tunneling microscope (STM)
or atomic force microscope (AFM) [11, 12].
Electrostatic actuation is commonly used to actuate
nano-tweezers, where in the gaps smaller than 30
nm the van der Waals forces become detrimental.
Based on this type of actuation some experiments 
have been done on the nanotube-based devices. In 
an experiment S. Akita et al. developed a nano-
tweezer consisting of carbon nanotube arms and 
operated it in an AFM [12]. By imposing various 
DC voltages between the arms they derived the 
deflections of the arms as function of the applied 
voltage and verified their results employing a 
continuum model and extracted an effective 
diameter for arms. Lee and Kim proposed a new 
type of nano-tweezer [13], where each arm had a 
separated substrate.  Based on a continuum model
and ignoring the dynamic terms, they compared the 
simulation and experimental load deflection 
curves. In another experiment H. D. Espinosa et al.
employed energy method for predictions of pull-in 
voltage in a nanotube-based nanoswitch. 
Considering small and finite deflection models 
they have shown the effectiveness of the energy 
method in predictions of structural behavior and 
pull-in voltages of nanosystems [14, 15]. Due to 
complexity of experiment on NEMS structure,
many simulations have been done in the 
predictions of the structural behavior of the NEMS 
devices. In a static analysis and taking into account 
the van der Waals force, Wang et al. have studied 
the stability of a nanotube-based nano-tweezer
[16]. Using continuum model and employing the 
Galerkin method, they have studied the pull-in 
conditions and the detachment length of the arms.
In an extensive study Dequesnes and coworkers
investigated nanotube-based switches using 
molecular dynamics (MD) and continuum model 
[17]. By numerical simulations based on domain 
discretization, they have shown that the results of a 
linear continuum model closely match the 
experimental data reported for nano-tweezers.
Taking into account the dynamic effects and 
considering the MD model near the clamped 
supports and continuum model far from the 
supports, they extracted the load deflection curves 

[18]. They have concluded that the combined 
MD/nonlinear continuum approach is adequate for 
double clamped nanotubes and the linear 
continuum model is acceptable for cantilever 
types. Taking into account dispersion forces, 
Ramezani [19] investigated the pull-in instability 
of the nano-tweezers using distributed and lumped 
parameter models. By analogy to nano-switches, 
they proposed a closed-form solution and 
determined the detachment length and minimum 
initial gap of the nano-tweezers. 
In this paper a nano-tweezer with two SWCN arms 
is considered. The proposed model takes into 
account the nonlinear electrostatic and van der 
Waals forces. The nonlinear governing equations 
are extracted and linearized using SSLM method.
In each step of linearization the Galerkin based 
reduced-order method is used for solving the 
equations. Then taking into account the 
acceleration terms and employing the proposed 
numerical method (Galerkin based SSLM method)
the dynamic analysis is performed and by 
imposing various step DC voltages the dynamic 
closing of the nano-tweezer arms are simulated. 
Simulations are carried out for various arms
parameters in symmetric and asymmetric cases.

2. MATHEMATICAL MODELING

Figure 1 depicts the schematic view of a SWCN
nano-tweezer. The cantilever arms are approached
each other when a voltage difference V is applied 
between them. 

          Figure 1. Schematic view of the nano-tweezer.
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In small gaps (g), less than 30 nanometers, besides 
the electrostatic force the van der Waals force
could have considerable effects on the deflections 
of the arms, where in large gapes the effects of this 
force can be neglected [17]. In the present model 
R1 and R3 are internal radii and R2 and R4 are the 
external radii of the SWCN's. Due to uncertainty in 
real applications the arms of nano-tweezers could 
have different specification such as bending 
rigidity, diameter, clamped conditions, etc. [12]. 
So in the numerical simulations different 
specifications are assumed for each arm and 
subscripts a and b are used to denote each one.
Based on continuum model the governing 
equations of the arms can be written as;
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where ( )iEI are the bending rigidity and iw are the 
lateral deflections of the arms. Also i and iA are 
the mass density and cross sections of the arms. In 
real applications the system could be subject to a 
damping, where it is approximated by an 
equivalent damping coefficient ic per unit length.

The forcing terms eF and VF are the electrostatic 
and van der Waals forces and have the following 
form [16, 17]:
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where T is the thickness of the nanotubes. In the 
electrostatic force eF the radius R could be 
replaced by the external radiuses of the arms 2R

or 4R . In which 0 and HA are the domain 
permittivity and Hamaker constants respectively 
and S is the distance between the nanotubes,

a bS g w w   . Now by introducing the following 
nondimensional parameters;
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the governing equations could be written as:
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where 1 2,  and the transformed forcing terms are
defined as:
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where 1 a bS w w  
   . The nonlinear governing 

equations (4) could be solved with and without 
dynamic terms.

2.1. Static Analysis   Ignoring the acceleration and 
damping terms in equations (4) the static
governing equations are:

 
4

1 24
, ( ) ( ) 0as

as e Va a a
d

V
d

w
w F F

x
    


 



 
4

1 24
, ( ) ( ) 0bs

bs e Va b b
d

V
d

w
w F F

x
    


 


(6)

where subscript ' s ' is an indication of the static 
deflections of the nanotubes and 'i s are 
differential operators. Because of the nonlinearity 
of these equations, the solutions could be 
complicated and time consuming [16]. Therefore 
in order to solve them, it is tried to linearize them. 
Due to considerable value of w

 with respect to 
initial gap, especially for high applied voltages,
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linearizing the equations about undeflected straight 
positions may cause considerable errors. 
Therefore, to minimize the value of these errors, 
the method of step by step increasing the applied 

voltage is proposed [6]. It is assumed that kw
 is the 

deflections of the microbeam due to the applied 

voltages kV . So, by increasing the applied voltages 
to a new value

1k kV V V   (7)

The resultant deflections could be written as:
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Substituting Equation (8) into Equation (6) gives 
the governing equations in step (k+1)th
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Now by considering a small value of V , it is 
expected that ( )x  would be small enough, hence 
using of Calculus of Variation theory and Taylor’s 

series expansion about kw
 , and applying the 

truncation to first order of it for suitable value of
V , it is possible to obtain desired accuracy. So 

the linearized equations to calculate ( )x  can be 
expressed as:
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In order to solve equation (10), the Galerkin based 
reduced order model is used where a and b are 
expressed as:
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where j is the jth free vibration mode shape of a 

cantilever nanobeam. Substituting Equation (11)
into Equation (10) and multiplying both sides 
by i , they could be written as:
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Taking into account the orthogonality of the mode 
shapes, the nanotubes equations take a set of 
algebraic equations with unknown jm and jn 's. 

Solving these equations will take a and b in each 
step k. Then, by substitution of the results into 
Equation (8), asw

 and bsw
 are obtained for the 

applied voltage V.

2.2. Dynamic Analysis   When the exciting 
voltage is imposed suddenly (as a step DC voltage) 
the inertia effects of the nanotubes comes into view 
and they are deflected beyond their static 
equilibrium positions. Thus, the dynamic pull-in 
voltage is smaller than the static pull-in value as 
the nanotubes reach the critical pull-in gap sooner 
than in the static analysis. Taking into account the 
dynamic and damping terms, the equations of the 
nanotubes could have the following forms:

 

4 2

4 2

1 2( ) ( ) , , ,

ad ad ad
a

a a d be V a a d

c
w w w

tt

F V

x

F F w w g 

  
  

 
 






 



 



 

4 2

4 2

1 2( ) ( ) , , ,

bd bd bd
b

b b d be V b a d

c
w w w

tt

F V

x

F F w w g 

  
  

 
 






 



 


(13)

where aF and bF are the nonlinear electrostatic 
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and van der Waals forces acting on the arms, and 
subscript d indicates the dynamic deflections. In 
order to solve the dynamic equations the Galerkin 
reduced order method is employed. Considering 
finite number ' N ' of modes, the approximate 
dynamic deflections can be written as: 
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where  jq t

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are the generalized 

coordinates of the nanotube arms which have to be 
determined. Substituting Equation (14) into
Equation (13) and multiplying both sides 
by ( )i x  as weight functions and integrating from 

0x  to1, the following nonlinear ordinary 
differential equations are extracted:
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where M , K , and c are the mass, stiffness and 
damping matrices respectively, and aF
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Due to the complexity of the self excited nonlinear 
Equations (15), they are solved step by step in time 
domain. In other words at each step of discrete 
time the nonlinear forcing vectors are calculated 
based on the results of previous step. In the 
analysis, if the time steps are chosen small enough 
acceptable results could be obtained. 

3. NUMERICAL RESULTS

In this section some static and dynamic simulations 
are performed for various dimensions and 
specifications of the nanotubes in symmetric and 
asymmetric conditions.  At first, to validate the 
proposed method some experimental data from 
previous papers are presented and compared. In an 
experiment where the arms length were 2.5 µm and 
the initial gap between them was 780 nm and 
Young's modulus has been taken 1 TPa, Akita et al
[12] plotted the load tip deflections curve of the 
arms. Due to practical limitations in measuring the 
diameter of the arms, they estimated it numerically 
as 13.3 nm. Based on energy method and using the 
same specifications Ke et. al. [14] found an 
effective diameter of 11.6 nm. Dequesnes et. al
[17] employed the same data and using a lumped 
model, found the effective diameter to be 10.9 nm .
To show the effectiveness of the proposed method,
the same dimensions and specifications are used 
where the Galerkin-based SSLM method is 
employed to extract the results. The simulations 
results with the experimental data of reference [12] 
are plotted in Figure 2, where the effective 
diameter of the arms is found to be 11.82nm.The 
static simulation result shows that the diameter 
identified by the proposed method is close to the 
extracted diameters and is consistent with possible 
metrology errors. The results of different methods 
are summarized in Table 1.
Also, in Reference [17], the result of a lumped 
model with the simulation results based on MD 
model has been compared.

Figure 2. Tip deflection as a function of applied voltage 
based on experimental data (symbols) from [12] and 
present method.
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TABLE 1. Comparison of different methods in 
perdition of the nanotube effective diameter.  

Different 
methods

Akita-
[12]

Deguesnes-
[17]

C.-H. Ke-
[14]

Proposed 
method

Effective 

diameter

13.3Nm 10.9Nm 11.6Nm 11.82Nm

In order to show the effectiveness of the present 
method, the MD model result is compared with the 
result of our numerical simulation method based on 
continuum model. The comparison for a nano-
tweezer of radius 0.68 nm and length 20.7 nm with 
initial gap 3 nm is shown in Figure 3.

Figure 3. Tip deflection as a function of applied 
voltage based on MD model (symbols) [17] and 
present method.

After showing the effectiveness of the proposed 
method in solving the governing continuum model,
some numerical simulations are presented to
investigate the static and dynamic responses of 
nano-tweezers with and without symmetric nano-
arms. In each case, the effects of some parameters 
of the CNT arms on the pull-in voltage are studied.

3.1. Symmetric Arms   In the symmetric case 
where the CNT's of a nano-tweezer have the same 
geometry and specifications, the effects of their 
lengths, initial gap and diameters on the static and 
dynamic pull-in voltages are investigated. Figure 4
shows the effect of CNT length on the load tip 
deflection curves and related pull-in voltages. The 
other specifications of the CNT's are 
"gap(g)=780nm, R1=R3=2nm, R2=R4=6nm and 
E1=E2=1TPa". It can be seen that by increasing the 
effective length of the arms the pull-in voltages 
decreases drastically. In dynamic case where the 

exciting voltage is imposed suddenly as a step DC 
voltage, the pull-in conditions differ from the static 
case. The results of dynamic simulations for three 
different lengths with lower and higher than their 
pull-in voltages are shown in Figure 5. The results 
show that the instability voltage is lowered 
considerably with increasing the CNT length in 
both static and dynamic cases. This dependency is 
shown in Figure 6.

Figure 4. Effect of CNT length on the static load 
deflection curve and pull-in voltage

Figure 5. Effect of CNT length on the Dynamic 
response and dynamic pull-in voltage.

Figure 6. Effects of the CNT length on the static and 
dynamic pull-in voltages.
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   When the CNT's lengths are fixed as 2.5μm and 
their initial gap is varied, the static load tip 
deflection curves are shown in Figure 7. The 
results show that the initial gap also affects the 
instability conditions considerably. In this case the 
diameters and Young's modulus are the same as 
the previous case. Taking into account the
acceleration terms and imposing step DC voltages,
the time history of the arm tip deflections are 
shown in Figure 8. It can be seen for a DC voltage 
lower than the pull-in one the initial gap changes 
the response amplitudes and frequencies 
considerably. The variations of the pull-in voltage 
for three different gaps are also shown in the 
figure. The critical conditions of the Figures 7 and 
8 are summarized and plotted in Figure 9, where 
the dependencies of the static and dynamic pull-in 
voltages to the arms initial gaps are shown. 

Figure 7. Effect of initial gap between the arms on the 
static load deflection curve and pull-in voltage.

Figure 8. Effect of initial gap between the arms on the 
dynamic response and dynamic pull-in voltage.

Figure 9. Effects of the initial gaps on the static and 
dynamic pull-in voltages.

Diameter of the nanotubes is the other important 
parameter which changes the instability conditions. 
Figure 10 shows the variations of the static and 
dynamic pull-in voltages as function of the outer 
nanotube diameters R0. In this figure, the length of 
the tubes is 2.5 µm and their initial gap is 780 nm. 
As the diameter increases, the pull-in voltage also 
increases in the static and dynamic cases. 

Figure 10. Effects of the nanotube radius on the static 
and dynamic pull-in voltages.

In the above simulations, due to large gaps (order 
of hundred nanometers), van der Waals forces do 
not play a significant role and the electrostatic 
force eF


is dominated. However, if the initial gap 

is of the order of nanometers, the van der Waals 
forces could have considerable effects. By 
imposing a potential difference of 1 volt between 
the arms, variations of the ratio of force VF


to the 
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total force V eF F
 

as function of the initial gap 'g' 

is plotted in Figure 11. It is inferred that the VF


can 
be ignored in many applications, where the gaps 
are greater than 30 nm [13]. 

Figure 11. Contributions of the van der Waals force as 
function of initial gap

In the present simulations the damping effects 
which can become into view due to structural, 
thermal or squeeze effects is ignored. However, in 
real applications it may plays an important role in 
the stability and dynamic responses of a nano-
tweezer. Figure 12 shows the effects of the 
damping near the pull-in conditions, where the 
imposed voltage is 4.01volts. It is seen that besides 
the stability conditions, it can affect the pull-in 
time significantly.

Figure 12. Effects of the damping on the dynamic 
response.

3.2. Asymmetric Arms   In practical cases, the 
local weakness of the mechanical strength at the 
base of the arms of a nano-tweezer may be 

different from each other. In addition, when the 
multiwalled carbon nanotubes are used as tweezing 
elements, the arms may have different layers and 
consequently different material properties. In these 
cases the two arms of a nano-tweezer could have 
different shapes at the closing stage [12].  In the 
following the effects of different radii and modulus 
of elastisity, iE ,of the arms on the static and 
dynamic responses are studied. Figure 13 shows 
the static tip deflection curves of the arms with 
same outer radius of 6 nm and different inner radii 
of 1 and 4 nm. In the simulation, the arms length is 
2.5 µm and initial gap is 780 nm. The dynamic 
response of the arms with imposing various level 
of applied voltages are shown in Figure 14. It can 
be seen that the asymmetry in closing of the arms 
can change the instability conditions, and 
consequently the manupulating process of the 
nano-tweezer significantly. 

Figure 13. Asymmetric static tip load deflection curves 
of the arms due to different inner radii.

Figure 14. Asymmetric dynamic tip load deflection 
curves of the arms due to different inner radii.
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As well, in attaching the arms to their supports or 
constructing the arms, their bending rigidities, iE , 
may be varied. So, in applying voltage difference 
between the arms they could have different 
responses in static and dynamic conditions. For 
illustration, the results of simulations with different
bending rigidities of the arms are shown in static 
and dynamics conditions in Figures 15 and 16
respectively.  The different dynamic responses and 
different pull-in voltages are shown these figures.

Figure 15. Asymmetric static tip load deflection curves 
of the arms due to different rigidities.

Figure 16. Asymmetric dynamic tip load deflection 
curves of the arms due to different rigidities.

4. CONCLUSION

Using a continuum model and imposing 
electrostatic actuation, static and dynamic 
responses of nano-tweezers were studied. The 
nonlinear governing equations were solved 
employing SSLM and Galerkin projection 

methods. Comparing the results of the static 
analysis with the existing experimental data shows
the effectiveness of the proposed method. The 
effects of some parameters such as the length and 
diameters of the arms and the initial gap on the 
statics and dynamics of closing response were also 
studied. The effects of the damping ratio on the 
pull-in voltages and pull-in times of the nano-
tweezer are reported. Finally, the effects of 
differences in the arms, mechanical strength at 
their bases or differences in the bending rigidities 
were simulated. The results showed that in addition 
to the instability, the manipulation process can be 
affected by asymmetric arms. The results could be 
useful for accurate design of nano-tweezers.    
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