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Abstract   Increasing of net energy storage (Q net) and discharge time of phase change material (t 
PCM) simultaneously, are important purpose in the design of solar systems. In the present paper, multi-
objective (MO) based on hybrid of Particle Swarm Optimization (PSO) and multiple crossover and 
mutation operator is used for Pareto based optimization of solar systems. The conflicting objectives are 
Q net and t PCM and design variables are some geometrical parameters of solar system. The Pareto 
results of MO hybrid of PSO and multiple crossover and mutation operator methods are compared with 
that of multi-objective genetic algorithms (NSGA II). It is shown that some interesting and important 
relationships as useful optimal design principles involved in the performance of solar systems can be 
discovered. 

Keywords   Particle Swarm Optimization, Multi-Objective Optimization, Multiple Crossover and 
Mutation Operator, Solar System, PCM.

1. INTRODUCTION

Using thermal storage systems to gain hot water is 
becoming very popular as a result of limited fossil 
fuel sources and the requirement of protecting 
environment related to not polluting characteristics 
of this kind of energy. Many studies have been 

done to calculate transferred heat within Phase 
Change Material (PCM) and net heat gain by 
means of whole system. Stritih [1] embarked on an 
experimental study and achieved temperature 
distribution along the PCM. Canbazoglu et al. [2]
developed an experimentally investigation for 
calculating the midpoint tank temperature with 
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خورشيدي مي باشند. نتايج پارتوي بهينه سازي چند گانه ترکيبي از بهينه سازي دسته ذرات، تقاطع چندگانه و 
تعارض گرماي خالص و زمان دشارژ پي سي ام بوده و متغير هاي طراحي شامل پارامتر هاي جغرافيايي سيستم 
تقاطع چندگانه و عملگر جهشي براي بهينه سازي سيستم خورشيدي پارتويي استفاده شده است. اجزادي داراي 
سيستم هاي خورشيدي مي باشند.در اين مقاله بهينه سازي چند منظوره بر اساس بهينه سازي دسته ذرات و 
چكيده   افزايش ميزان ذخيزه انرژي و زمان دشارژ مواد پي سي ام به طور همزمان از اهداف مهم در طراحي 
 



368 - Vol. 24, No. 3, December 2011 IJE Transactions B: Applications

sodium thiosulfate pentahydrate PCM. Aghbalou et 
al. [3] dealt with the exergetic optimization of a 
solar thermal energy system which consisted of a 
solar collector and a rectangular water storage tank 
that contains a PCM distributed in an assembly of 
slabs. Mettawee and Assassa [4] used paraffin wax 
as PCM in an experimental study to investigate the 
performance of a compact PCM solar collector 
based on latent heat storage. Koca et al. [5]
developed an experimental system with analysis of 

energy and exergy for a latent heat storage system 
with PCM. Varol et al. [6] made a series of 
predictions by using three different soft computing 
techniques to introduce an efficient method for 
calculating useful energy.  

Optimization in engineering design has always 
been of great importance and interest particularly 
in solving complex real-world design problems. 
Basically, the optimization process is defined as to 
find a set of values for a vector of design variables 

Nomenclature
Qnet Net energy stored
t Discharge time
PCM Phase Change Material
PSO Particle Swarm Optimization
MO Multi Objective
NSGA II Non Dominated Sorting Genetic Algorithms
FR Correction factor
Ut Total heat transfer coefficient
hf Heat transfer coefficient

wQ Total stored heat

 Latitude
Qs Sensible heat
QL Latent heat

cA Collector area, 
2m

pC Specific heat, kgKJ /

nC Cash flow, $

D Diameter, m

F  Collector efficiency factor

RF Collector heat removal factor

H Instantaneous solar radiation, 2/ mW

bH Beam component of solar energy incident on the plane of measurement, 2/ mW

dH Diffuse component of solar energy incident on the plane of measurement, 2/ mW

h Convection heat transfer coefficient, KmW 2/

SLh Specific melting latent heat of PCM during the phase change, kgKkj /

Q Energy, kJ
R Ratio of total radiation on tilted surface to that on plane of measurement 

bR Ratio of beam radiation on tilted surface to that on plane of measurement

r Internal rate of return (IRR)
S Absorbed solar energy per unit area 2/ mW
s Slope of plane from horizontal 
T Temperature, K

1T The difference between the maximum temperature of hot water in the heat storage tank and the 
melting temperature of PCM, K

2T The difference between the temperature of hot water taken from the heat storage tank and the 
melting temperature of PCM, K

U Total heat transfer coefficient, KmW 2/
W Pipe distance in the collector, m
w Clock angle
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so that it leads to an optimum value of an objective 
or cost function. There are many calculus-based 
methods including gradient approaches to single 
objective optimization and are well documented in 
Arora [7] and Rao [8]. However, some basic 
difficulties in the gradient methods, such as their 
strong dependence on the initial guess, cause them 
to find local optima rather than global ones. 
Consequently, some other heuristic optimization 
methods like Particle Swarm Optimization (PSO) 
have been used extensively during the last decade. 
PSO, first introduced by Kennedy and Eberhart 
[9], is one of the modern heuristic algorithms. It 
was developed through simulation of a simplified 
social system, and has been found to be robust in 
solving continuous nonlinear optimization 
problems [9, 10]. The PSO technique can generate 
a high-quality solution within short calculation 
time and stable convergence characteristic than 
other stochastic methods [11, 12].  In the present 
paper we deal with a multi-objective optimization 
problem. In these problems, there are several 
objective or cost functions (a vector of objectives) 
to be optimized (minimized or maximized) 
simultaneously. These objectives often conflict 
with each other so that improving one of them will 
deteriorate another. Therefore, there is no single 
optimal solution as the best with respect to all the 
objective functions. Instead, there is a set of 
optimal solutions, known as Pareto optimal 
solutions or Pareto front [13- 16] for multi-
objective optimization problems. The concept of 
Pareto front or set of optimal solutions in the space 
of objective functions in multi-objective 
optimization problems (MOPs) stands for a set of 
solutions that are non-dominated to each other but 
are superior to the rest of solutions in the search 
space. This means that it is not possible to find a 
single solution to be superior to all other solutions 
with respect to all objectives so that changing the 
vector of design variables in such a Pareto front 
consisting of these non-dominated solutions could 
not lead to the improvement of all objectives 
simultaneously. Consequently, such a change will 
lead to deteriorating of at least one objective. Thus, 
each solution of the Pareto set includes at least one 
objective inferior to that of another solution in that 
Pareto set, although both are superior to others in 
the rest of search space.

In this paper, multi-objective PSO method is 

used for Pareto approach optimization of solar 
systems. The conflicting objective functions are 
net energy stored (Q net) and discharge time of 
PCM (t PCM) and design variables are some 
geometrical parameters of solar system. It is shown 
that some interesting and important relationships as 
useful optimal design principles involved in the 
performance of solar network can be discovered. 
Such important optimal principles would not have 
been obtained without the use of Pareto 
optimization approach.

2.  MATHEMATICAL MODELING OF 
SOLAR SYSTEM

The schematic of thermal storage unit under 
analysis is shown in Figure (1). It consists of a flat 
plate solar collector, a storage water tank with 
disodium hydrogen phosphate-dodecahydrate as 
the PCM content tank inside, a pipeline and several 
valves. Water temperature rises due to flowing 
through the collector when Sun is shining. Then, it 
goes into the water tank including the PCM tank. 
Heat energy transfers from warm water to the solid 
PCM, which its melting point is 29 centigrade 
degrees, and changes its phase into liquid. After 
that, water is ready to use. When the Sun descends, 
network water comes to the storage tank from 
bypass pipeline and receives thermal energy stored 
in fluid PCM during the day. In this process, water 
temperature increases while the PCM phase is 
changing. After that, water goes to pipeline to be 
consumed.

Figure 1. Solar system set up

Energy analysis was carried out to evaluate the 
amount of heat energy stored by solar collector 
with the PCM. For a solar collector shown 



370 - Vol. 24, No. 3, December 2011 IJE Transactions B: Applications

schematically in Figure (1), the useful energy that 
increases water temperature during the flowing 
inside the collector before the water and PCM tank 
is represented in Equation (1);

 )( aiRcu TTUSFAQ                                (1)

where RF can be calculated using Equation (2);
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Collector efficiency factor, 'F could be achieved 
from Equation (3)
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Total heat transfer coefficient is calculated from 
the expression as below
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Net thermal energy gained with the absorber of 
collector may be obtained by multiplying 
instantaneous solar radiation by heat gain 
coefficient and effective absorptivity of solar 
collector which is shown in Equation (5) as below;
        

)(HRS                                                       (5)   
                                                
Effective absorptivity of solar collector can be 
defined with Equation (6)
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Heat transfer resistance, R which is ratio of total 
radiation on tilted surface to that on plant of 
measurement can be calculated as bellow [17]
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bR is the ratio of beam radiation on tilted surface 

to that on plant of measurement may be obtained 
by Equation (8)




sinsincoscoscos

sin)sin(coscos)cos(





w

sws
Rb

   
(8)

When water flows into the storage tank, we 
should apply energy balance equations including 
both PCM and water. Sensible and latent heat are 
represented in Equations (9) and (10)

 TcmQ wpwS ,

)( 2,1, TcTcm sPCMpLPCMpPCM                      (9)

SLPCML hmQ                                                  (10)

The total heat for the storage tank may be obtained 
by summation of sensible and latent heat as shown 
in Equation (11)  

LSPCM QQQ                                           (11)

where PCMQ is the total energy stored in the PCM. 

After this, the discharge time of PCM which is the 
period that hot water is available after sunset can 
be calculated

W
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In Equation (12) wQ is the total heat stored per 

unit time in the conventional storage tank. And 
finally, 

PCMinoutwpwnet QTTCmQ  )(,               (13)

It is obvious that in a solar system the net energy 
stored (Q net) and discharge time of PCM (t PCM) 
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should be maximized. Design variables in present 
study are: inner diameter of pipes (D), area of 
collectors (AC), water mass flow rate , latitude 

(φ) and the mass of PCM (M PCM). The range of 
variations of design variables are shown in table 
(1) moreover the constants in the mathematical 
modeling are shown in table (2).

TABLE 1: Design variables and their range of 
variations

TABLE 2. The constants used in mathematical 
modeling of solar system

3. PARTICLE SWARM OPTIMIZATION 
HYBRID WITH MULTIPLE CROSSOVER 

AND MUTATION OPERATOR

In this section, a novel PSO is proposed which is 
improved by utilizing multiple crossover and 
mutation operator to update the particle positions. 
In the follow, basic concepts of PSO, multiple 
crossover and mutation operator are introduced and 
in the next section, hybrid of these operators is 
described.

3.1. Basic Concept of Particle Swarm 
Optimization  James Kennedy and Russell C. 
Eberhart [9] originally proposed the PSO algorithm 
for optimization. PSO is a population-based search 
algorithm based on the simulation of the social 
behavior of birds within a flock. Although 
originally adopted for balancing weights in neural 

networks [18], PSO soon became a very popular 
global optimizer, mainly in problems in which the 
decision variables are real numbers ([18], [19]).

In PSO, particles are “flown” through hyper-
dimensional search space. Changes to the position 
of the particles within the search space are based 
on the social-psychological tendency of individuals 
to emulate the success of other individuals. The 
position of each particle is changed according to its 
own experience and that of its neighbors. Let 

)(txi



denote the position of particle pi, at time step 

t. The position of pi is then changed by adding a 

velocity )(tvi



to the current position, i.e.:

)1()()1( 


tvtxtx iii                                (14)                                                               

The velocity vector reflects the socially exchanged 
information and, in general, is defined in the 
following way:

))(()()1( txxCrtvWtv ibestglobalii
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       (15)

where ]1,0[r  is random value, C is the social 
learning factor and represents the attraction that a 
particle has toward the success of its neighbors, W
is the inertia weight which is employed to control 
the impact of the previous history of velocities on 

the current velocity of a given particle. bestglobalx


is the position of the best particle of the entire 
swarm.

3.2. Basic Concept of Multiple Crossover and 
Mutation Operator

3.2.1. Multiple Crossovers Unlike the traditional 
crossover by using only two chromosomes, a novel 
crossover formula that contains three parent 
chromosomes is proposed in this study. We assume 

that chromosome )(txi



selected from the 

population randomly. Also, let ]1,0[ be a 

random number. If Crossover  , then the 

following multiple-crossover is performed to 
generate new chromosome

))()()(2()()( 21 txtxtxtxtx iiiii











  (16)

Design Variable From To
D (m) 0.008 0.02
AC (m

2) 0. 25 1

m (kg/s) 0.0015 0.005
φ (deg) 10 45
M PCM  (kg) 5 20

Parameter Value
Melting point of PCM (C) 35
Melting latent heat of PCM (kJ/kg) 278.84
Density of PCM (kg/m3) 1522
Ambient temperature (C) 25
Inlet water temperature (C) 15
Specific heat  of solid (kJ/kg k) 1.55
Specific heat  of Liquid (kJ/kg k) 2.51
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where ]1,0[ is a random value. If 
Crossover  ,

no crossover operation is performed.

3.2.2. Mutation Operator The mutation operator 
provides a possible mutation on some chosen 

chromosome )(txi



. Also, let ]1,0[ be a random 

number. If Mutationp , then the following 

mutation operator is performed to generate new 
chromosome

 


)()( txtx ii                                        (17)

                                                                                                              
where ]1,0[ is a random value and  is a 

positive constant. If Mutationp
no mutation operation is performed.

3.3. Hybrid of PSO and Multiple Crossover and 
Mutation Operator  The flow chart of the Hybrid 
of PSO and multiple crossover and mutation 
operator is shown in Figure (2).

Figure 2. The flow chart of the hybrid of PSO and 
multiple crossover and mutation operator

3.4. Hybrid of PSO and Multiple Crossover and 
Mutation Operator for Multi Objective 
Problems  Optimization problems that have more 
than one objective function are rather common in 
every field or area of knowledge. In such 

problems, the objectives to be optimized are 
normally in conflict with respect to each other, 
which means that there is no single solution for 
these problems. Instead, we aim to find good 
"trade-off" solutions that represent the best 
possible compromises among the objectives. PSO 
is a heuristic search technique [9] that simulates 
the movements of a flock of birds which aim to 
find food. The relative simplicity of PSO and the 
fact that is a population-based technique have 
made it a natural candidate to be extended for 
multi objective optimization. Moore and Chapman
[20] proposed the first extension of the PSO 
strategy for solving multi objective problems in an 
unpublished manuscript in 1999. After this early 
attempt, a great interest to extend PSO arose 
among researchers, but interestingly, the next 
proposal was not published until 2002. 
Nevertheless, there are currently different 
proposals of multi objective PSOs reported in the 
specialized literature.
We are interested in solving problems of the type:

Minimize )](),...,(),([:)( 21



 xfxfxfxf k     (18)

Subject to:

mixgi ,...,2,10)( 


                                (19)                                                                                                           

pixhi ,...,2,10)( 


                                (20)                                                            

where T
nxxxx ],...,,[ 21



is the vector of decision 

variables, kiRRf n
i ,...,1,:  are the 

objective functions and 

pjmiRRhg n
ji ,...,1,,...,1,:,  are the 

constraint functions of the problem. To describe 
the concept of optimality in which we are 
interested, we will introduce next a few definitions.

3.4.1. Dominance Given two vectors kRyx 
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

 yx if ii yx
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3.4.2. Non-Dominance We say that a vector of 

decision variables nRx 


 is non-dominated
with respect to  , if there does not exist 

another 


x such that )()(


 xfxf  .

3.4.3. Pareto-optimal We say that a vector of 

decision variables nRFx 

 (F is the feasible 

region) is Pareto-optimal if it is non-dominated 
with respect to F.

3.4.4. Pareto Optimal Set The Pareto Optimal Set 
p is defined by: 

}|{ optimalparetoisxFxp 




3.4.5. Pareto Front The Pareto Front pF is 

defined by: }|)({ 


  pxRxfpF k

We thus wish to determine the Pareto optimal set 
from the set F of all the decision variable vectors 
that satisfy Equations (19) and (20). Note however 
that in practice, not all the Pareto optimal set is 
normally desirable (e.g., it may not be desirable to 
have different solutions that map to the same 
values in objective function space) or achievable. 
In order to apply the PSO strategy for solving 
multi objective optimization problems, it is 
obvious that the original scheme has to be 
modified. The solution set of a problem with 
multiple objectives does not consist of a single 
solution (as in global optimization). Instead, in 
multi objective optimization, we aim to find a set 
of different solutions (the so-called Pareto optimal 
set). 

When solving single-objective optimization 

problems, bestglobalx


is used as a leader to update 
particles position. However, in the case of multi 
objective optimization problems, each particle 
might have a set of different leaders from which 
just one can be selected in order to update its 
position. Such set of leaders is usually stored in a 
different place from the swarm, that we will call 
"external archive": This is a repository in which 
the non-dominated solutions found so far are 
stored. However, if all of non-dominate solutions 

are retained in the archive then the size of the 
archive increases very quickly. This is an 
important issue because the archive has to update 
at each generation. Thus, this update may become 
very expensive, computationally speaking, if the 
size of the archive grows too much. Therefore, 
archive tends to be bounded, which makes 
necessary the use of an additional criterion to 
decide which non-dominated solutions to retain.

In this paper, it is adopted ε-elimination 
technique to prune the archive. In this approach the 
entire particles in the archive have a radius of 
neighborhood equal to ε and if a particle has the 
distance less than ε to another particle will be 
eliminated in the objective function space. Here, 
the following equation is used to determined ε:

(21)

where t is time step and is a positive constant. 
The contents of the external archive are also 
reported as the final output of the algorithm. 

In this paper, the leader selection technique is 
based on density measures. For this propose, a 
neighborhood radius for each particle in archive is 
defined. Then, number of neighborhoods of these 
particles is calculated in the objective function 
space. Particles whose fewer number of 
neighborhood are preferred as leader.

4. MULTI-OBJECTIVE OPTIMIZATION 
OF SOLAR SYSTEM USING PSO HYBRID 

WITH MULTIPLE CROSSOVER AND 
MUTATION OPERATOR

In order to investigate the optimal performance of 
the solar thermal energy storage in different 
conditions, PSO method is now employed in a 
multi-objective optimization procedure. Two 
conflicting objectives in this study are the net 
energy (Q net) and discharge time of PCM (t PCM ) 
that are to be simultaneously optimized with 
respect to the design variables D, AC , m , φ and M 
PCM .
The parameters of PSO are cited in Table (3). 
Furthermore, over iteration, the inertia weight W is 
linearly decreased with W1=0.9 and W2=0.4 and C 

t
 max imum generation

 
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is linearly increased with C2i=0.5 and C2i=2.5. The 

term )(tvi is limited to the range ],[ aveave vv  , 

which
2

minmax xx
vave


 . While the velocity 

violates this range, it will be multiplied by a 
random number between [0,1]. To provide the 
similar conditions, the constant values of the 
archive pruning are set as 0.01 for both of 
algorithms 01.0 and 01.0min  ancedo .

TABLE 3. Multi-objective optimization algorithms are 
used in the comparison and their parameter 
configurations

Figure 3 depicts the obtained non-dominated 
optimum design points as a Pareto front of those 
two objective functions. There are four optimum 
design points, namely, A, B, C and D whose 
corresponding designs variables and objective 
functions is shown in Table (4). These points 
clearly demonstrate tradeoffs in objective functions 
Q net and t PCM from which an appropriate design 
can be compromisingly chosen. It is clear from 
figure 3 that all the optimum design points in the 
Pareto front are non-dominated and could be 
chosen by a designer as optimum solar system. 
Evidently, choosing a better value for any 
objective function in the Pareto front would cause 
a worse value for another objective. The 
corresponding decision variables of the Pareto 
front shown in figure 3 are the best possible design 
points so that if any other set of decision variables 

is chosen, the corresponding values of the pair of 
objectives will locate a point inferior to this Pareto 
front. Such inferior area in the space of the two 
objectives is in fact bottom/ left side of Figure 3. 
In Figure 3, the design points A and D stand for the 
best Q net and the best t PCM   respectively.
Moreover, the design point, B exhibit important 
optimal design concepts. In fact, optimum design 
point B obtained in this paper exhibits a decrease 
in Q net (about 4.2%) in comparison with that of 
point A, whilst its t PCM  improves about 22.4%  in 
comparison with that of point A.

Figure 3. Multi-objective Pareto result for solar system

It is now desired to find a trade-off optimum 
design points compromising both objective 
functions. This can be achieved by the method 
employed in this paper, namely, the mapping 
method. In this method, the values of objective 
functions of all non-dominated points are mapped 
into interval 0 and 1.Using the sum of these values 
for each non-dominated point, the trade-off point 
simply is one having the minimum sum of those 
values. Consequently, optimum design point C is 
the trade-off points which have been obtained from 
the mapping method.

Algorithm
Population

size

Pruning

of archive

Crossover 

probability

Mutation 

probability

Proposed 

MOPSO
256 01.0 0.4 0.1

NSGAII 256 8.0 0.8 0.1

TABLE 4: The values of objective functions and their associated design variables of the optimum points

Point
Design Variables Objective Functions

D (m) AC (m
2) m (kg/s) φ (deg) M PCM (kg) t PCM (hour) Q net (kj)

A 0.008 0.668 0.0034 29.54 5.000 4.251 1150.908

B 0.008 0.668 0.0034 29.54 10.587 7.513 1120.162

C 0.008 0.668 0.0022 29.54 13.371 11.231 800.912

D 0.008 0.668 0.0015 29.54 13.371 18.207 550.001
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The Pareto front obtained from the propose 
method (Figure 3) has been superimposed with the 
Pareto front of multi-objective genetic algorithms 
[21] in Figure 4. It can be clearly seen from this 
figure that the propose Pareto front achieves better 
objective functions than NSGA II for present case 
study, which demonstrate the effectiveness of this 
paper in obtaining the Pareto front.  

Figure 4. Overlay graph of the obtained Pareto front of 
MOPSO and NSGA II methods

There are some interesting design facts which 
can be used in the design of such solar systems. 
Figure 5 demonstrates the optimal behaviors of t 
PCM with respect to mass flow rate between points 
B and D.

Figure 5. Optimal variations of discharge time with 
respect to mass flow rate

Figure 6 represents the optimal relationship of 
net energy and mass flow rate in the form of 

mQnet  (23) 

These useful relationships that are indefeasible 
between the optimum design variables of a solar 
system cannot be discovered without the use of 
multi-objective Pareto optimization process 
presented in this paper. 

Figure 6. Optimal variations of net energy storage with 
respect to mass flow rate

5. CONCLUSION

Multi-objective Pareto based on optimization of 
solar system has been successfully investigated 
using PSO method. Current Pareto optimal 
solutions display tradeoff information between 
maximization of net energy stored and discharge 
time of PCM. Such tradeoff information is very 
helpful to a higher-level decision-maker in 
selecting a design with other considerations. The 
Pareto front of MO hybrid of PSO, multiple
crossover and mutation operator and NSGA II 
methods have been compared and showed that the 
MOPSO method achieves better objective 
functions than NSGA II for present case study.
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