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Abstract   In this paper, an efficient method is presented for calculating the buckling load 
and eigen
method, considering the axes of symmetry, the region in which structural system is situated is 

matrix of the entire system is then formed, and using the existing direct symmetry and reverse 
symmetry, the relationships between the entries of the matrix are established. Examples are 
included to illustrate the process of the presented method.

graph 

1. INTRODUCTION

Symmetry has been widely used in science and 
engineering using group theory [1-5]. Many 
eigenvalue problems arise in many scientific and 
engineering problems such as free vibration, and 
forced vibration and stability of structures [6-8]. 
While the basic mathematical ideas are 
independent of the size of matrices, the numerical 
determination of eigenvalues and eigenvectors 
becomes more complicated as the dimensions of 
matrices increase. Special methods are beneficial 
for efficient solution of such problems, especially 
when their corresponding matrices are highly 
sparse. 

Graph theoretical methods are developed for 
decomposing and healing the graph models of 

structures, in order to calculate the eigenvalues of 
matrices and graph matrices with special patterns
[9-11]. In these methods, the eigenvectors 
corresponding to such patterns for the symmetry of 
Form I, Form II and Form III are studied, and the 
applications to vibrating mass-spring systems and 
frame structures are developed in [12] and [13], 
respectively. These forms are also applied to 
calculating the buckling load of symmetric frames 
using linear algebra and canonical forms [14].

Consider a structural system with two 
translational degrees of freedom (DOFs) per node 
which has two axes of symmetry. Suppose each 
DOF is parallel to one of the axes and is 
perpendicular to the other axis. For the following 
three cases, one can find matrices in canonical 
forms, and using the symmetry relationships twice, 
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developed previously [10, 15], one can find 4
submatrices. The union of the eigenvalues for these 
4 submatrices results in the eigenvalues of the 
original matrix. 

As mentioned before, various symmetries have 
been previously developed. In these symmetries
which will be presented in Section 2, a matrix is 
decomposed into two submatrices S and T and the
eigenvalues of these submatrices results in the 
eigenvalues of the main matrix. 

In this paper, the region in which the structural 
system is situated is divided into upper, lower, left 
and right subregions. The stiffness matrix of the 
entire system is formed and then using the existing 
direct and reverse symmetries, relationships 
between the entries of the matrix are established.

2.  SINGLE SYMMETRIES A AND B

As described in [15], symmetry of structural 
systems with each node having two DOFs can be 
studied in two general forms A and B. These forms 
are briefly described in the following subsections.

2.1. Symmetry of Form A (modified Form II 
symmetry)   For trusses with axes of symmetry 
not passing through nodes with active DOFs, we 
have the Form A symmetry, as shown in Fig. 1(a). 
The main reason for not being able to employ the 
previously developed forms of symmetry for 
calculating the buckling and eigenfrequencies load
of truss structures is due to the existence of oblique 
cross members. These members affect the entries 
of the stiffness and geometric stiffness matrices 
and change the sign of some entries. Separation of 
the horizontal and vertical DOFs as shown in Fig. 
1(b) results in stiffness matrices of the symmetric 
trusses for the case where the axis of symmetry 

First, the nodes in the left-hand side (LHS) of the 
symmetry axis are numbered, followed by the 
numbering of the nodes in the right-hand side 
(RHS). Now the horizontal DOFs (along x-axis) 
are first numbered and then the vertical DOFs (in 
y-direction) are numbered for the LHS. A similar 
numbering is then performed for the DOFs of the 
RHS.

Pattern of the weighted block adjacency matrix M 
is as follows:

A C D F
C B F E

M =
D -F A -C
-F E -C B
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Modification of numbering for the DOFs
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Figure 1. Modified numbering of the DOFs (Form 
A)
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Conditions for symmetry:
All the submatrices are symmetric, except F

which is anti-symmetric.

FFDDCCBBAA TTTTT 

Here FF T  corresponding to the effect of the 
horizontal DOFs of the LHS nodes on the vertical 
DOFs of the RHS, and vice versa. 

Performing the row and column permutations,
the matrix M can be transformed into the following 
Schur’s form:



























EBCF

FCDA

EFEBFC

FDFCDA

M

00

00

Thus

 
A + D C - F A - D -C - F

Det M = Det × Det
C + F B - E -C + F B + E

   
      

Therefore, the eigenvalues of M can be obtained 
as:

     TSM  

It should be noted that S and T are both symmetric, 
because F is anti-symmetric and the remaining 
submatrices are symmetric. The above 
relationships provide the basis of the algebraic 
method of this paper for trusses having an odd 
number of bays.

2.2. Symmetry of Form B (modified Form III 
symmetry)   For trusses with axes of symmetry 
passing through nodes with active DOFs, one will
have the Form B symmetry, as shown in Fig. 2. 
First, the nodes in the LHS of the symmetry axis 
are numbered followed by the numbering of the 
nodes in the RHS, and then the central nodes on 
the axis of symmetry are numbered. Now the 
horizontal DOFs (along x-axis) are first numbered 
and then the vertical DOFs (in y-direction) are 
numbered for the LHS. A similar numbering is 
then performed for the DOFs of the RHS. Finally, 
the horizontal DOFs (in x-direction) are numbered 
followed by the vertical DOFs (in y-direction) for 

the central nodes on the axis of symmetry.
Pattern of the matrix M is as follows:

                 

T T T T

T T T T

A C D F G I

C B F E I H

D -F A -C G -I
M =

-F E -C B -I H

G I G -I J L

I H -I H L K

 
 
 
 
 
 
 
 
  

              

T T T T

T T T T

A C G I D F

B B H G F E

D -F G -I A -C

-F E -I H -C B

G I J 0 G -J

J H 0 K -J H

 
 
 
 
 
 
 
 
  

                         

T T T T

T T T T

A C G I D F

C B I H F E

G I J 0 G -I

I H 0 K -I H

D -F G -I A -C

-F E -I H -C B

 
 
 
 
 
 
 
 
  
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Figure 2. A symmetric truss with axis of symmetry 
passing through central nodes
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T T T T

T T

A + D C - F G I D F

C + F B - E I H F E

2G 2I J 0 G -I

0 0 0 K -I H

A + D -F + C G -I A -C

-F - C E - B -I H -C B

 
 
 
 
 
 
 
 
  

Now the following Schur’s form is obtained as

                       

T T T T

T T

A+ D C - F G I D F

C + F B - E I H F E

2G 2I J 0 G -I

0 0 0 K -I H

0 0 0 -2I A - D -C - F

0 0 0 2H -C + F B+ E

 
 
 
 
 
 
 
 
  

Therefore

 

T T T T

Det M =

A + D C - F G A - D -C - F -2I

Det C + F B - E I × -C + F B + E 2H

2G 2I J -I H K

   
   
   
      

            
Thus

     TSM  

Matrix L is always a null matrix due to the 
symmetry. One may move the nodes on the axis of 
symmetry in the y direction, these nodes should 
not move in x direction.

The matrices A, B, C, D, and E are symmetric,
and F is anti-symmetric. These submatrices 
are nn , with n being the number of free nodes in 
each side of the axis of symmetry. I, H, and G are 

mn submatrices, where m is the number of node 
on the axis and L, J, and K are mm submatrices. 
L is replaced by the null matrix 0.

3.  DOUBLE SYMMETRIES

For structural systems with two DOFs per node 

having two axes of symmetry, the following cases 
may arise:

Case 1. The symmetry is of Type A with respect to 
both axes, i.e. there exist no active DOFs on either
of the axes. In this case, it is sufficient to perform 
Type A symmetry and reordering the rows and 
columns of the matrices S and T, again Form A 
symmetries are created, and the operations 
corresponding to this symmetry are performed.

Case 2. The symmetry is of Type A in one 
direction and of Type B in the other direction, i.e. 
there exist active DOFs just in one axis of 
symmetry, e.g. only on horizontal axis. In this case 
first Form A symmetry is performed, and then the 
order of rows and columns S and T are changed to 
create Form A symmetry. Then the operations 
corresponding to Form A symmetry is applied to 
either of the matrices S and T to produce Form B
symmetries.

Case 3. The symmetry is of Type B in both 
directions, i.e. there exist active DOFs on both
axes. In this case, first Form B symmetry is 
performed, and then the order of rows and columns 
at S and T are changed to create a new form of
form B symmetry, which is actually a generalized 
form of form B symmetry. Then the operations 
corresponding to this new form B symmetry is 
applied to either of the matrices S and T. The new 
submatrices will contain the eigenvalues of the 
main matrix.

In this section, three types of symmetry are 
defined. The structural matrices of the considered 
systems are decomposed and transformed into 
three canonical forms. For each case the buckling 
load and eigenfrequencies of a symmetric system 
is obtained as the least of the buckling load and 
eigenfrequencies of the constructed submatrices.

3.1. Case 1 Symmetry   In this case, there exists 
no active DOF on the symmetry axes. The 
symmetry axes subdivide the space in which the 
structure is situated into four subregions. Suppose 
there exists m active DOFs in the direction 1 and n 
active DOFs in direction 2. Now the numbering of 
two typical selected nodes from the upper-left 
subregion, and those of the corresponding 
symmetric nodes in the other 3 subregions are 
shown in Fig. 3.

S T

622 CCC 

511 CCC 

155 RRR 

266 RRR 



IJE Transactions A: Basics Vol. 24, No. 4, November 2011 - 355

     
For this purpose, first all the DOFs in direction 

1 at the upper part of the LHS of the vertical axis 
of symmetry are numbered followed by the DOFs 
at the direction 2 at this part, Fig. 3. Then 
numbering is performed for the corresponding 
DOFs at the lower part of LHS of the vertical axis 
of symmetry, upper part of RHS of the vertical axis 
of symmetry and at last lower part of RHS of the 
vertical axis of symmetry respectively and in a 
similar order to upper part of the LHS of the 
vertical axis of symmetry.

11 12 13 14 15 16 17 18

12 22 23 24 25 26 27 28

13 23 33 34 35 36 37 38

14 24 34 44 45 46 47 48

15 25 35 45 55 56 57 58

16 26 36 46 56 66 67 68

17 27 37 47 57 67 77 78

18 28 38

T

T T

T T T

T T T T

T T T T T

T T T T T T

T T

A A A A A A A A

A A A A A A A A

A A A A A A A A

A A A A A A A A

A A A A A A A A

A A A A A A A A

A A A A A A A A

A A A 48 58 68 78 88

T T T T T
A A A A A

 
 
 
 
 
 
 
 
 
 
 
 
 
 

It should be noted that not all the DOFs of a 
node need to be active, and the following 
relationships are not based on this assumption.

Now using the symmetry one can establish the 
following relationships between each pairs of the 
DOFs in the four subregions:

, , 2 2 , 2 2 3 2 , 3 3i i i m n i m n i m n i m n i m n i m nK K K K                

11 33 55 77A A A A   

, , 2 2 , 2 2 3 3 , 3 3j j j m n j m n j m n j m n i m n i m nK K K K                

22 44 66 88A A A A   

. , 2 2 , 2 2 3 3 , 3 3i j i m n j m n i m n j m n i m n j m nK K K K                  

12 34 56 78A A A A     

, 2 2 , 3 3 13 57i i m n i m n i m nK K A A        

, 2 2 , 3 3 24 68j j m n j m n j m nK K A A        

, 2 2 , 3 3 14 58i j m n i m n j m nK K A A          

, 2 2 , 3 3 23 67j i m n j m n i m nK K A A          

, 2 2 , 3 3 15 37i i m n i m n i m nK K A A        

482633,22, AAKK nmjnmjnmjj  

381633,22, AAKK nmjnminmji  

472533,22, AAKK nminmjnmij  

3517,2233. AAKK nminminmii  

4628,2233, AAKK nmjnmjnmjj  

3618,2233, AAKK nmjnminmji  

4527,2233, AAKK nminmjnmij  

T
inmjnmij AAKK 2516,2222,  

T
inmjnmij AAKK 2718,3333,  

2 2 , 3 3 2 2 , 3 3 58 67

, , 14 23

T
j m n i m n i m n j m n

T
i j m n j i m n

K K A A

K K A A

        

    

    

    

T
nmjjnmjj

T
nmiinmii

T
nmjjnmjj

T
nmiinmii

T
nmjjnmjj

T
nmiinmii

AAKK

AAKK

AAKK

AAKK

AAKK

AAKK

282833,33,

171733,33,

262622,22,

151522,22,

2424,,

1313,,

























The above six relationship show that apart from the 
submatrices on the diagonal, the submatrices D, E, 
G, H, J and K are also symmetric.

Considering the above relationships, the 
pattern of the stiffness matrix of the structure can 
be re-written in the following form:

j

i
j'

i'

j+ 2m+ 2n

i+ 2m+ 2n
j'+ 2m+ 2n
i'+ 2m+ 2n

j'+ m+ n

i'+ m+ n
j+ m+ n
i+ m+ n

j'+ 3m+ 3n

i'+ 3m+ 3n

j+ 3m+ 3n
i+ 3m+ 3n

Figure 3. General form of DOFs in Case 1 symmetry
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22

T T T T

T T T T

T T T T

T T T T

A C D F G I J L

C B F E I H L K

D F A C J L G I

F E C B L K I H
F

G I J L A C D F

I H L K C B F E

J L G I D F A C

L K I H F E C B

 

   

 


   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

The above relationships also hold for other 
parameters such as mass and damping. In other 
words, apart from the stiffness matrix having the 
above form, the mass and damping and geometric 
stiffness matrices have also the same patterns. 
Similar point is also applicable for subsequent 
relationships.

Permuting the rows and columns we have 












































BECFHKIL

EBFCKHLI

CFADILGJ

FCDALIJG

HKILBECF

KHLIEBFC

ILGJCFAD

LIJGFCDA

F

TTTT

TTTT

TTTT

TTTT

22

The above matrix has the Form A symmetry, 
and therefore using the equations of Section (2-1) 
one can decompose it into the submatrices S and T 
as:


























HBKEICLF

KEHBLFIC

ICLFGAJD

LFICJDGA

S

TTTT

TTTT


























HBKEICLF

KEHBLFIC

ICLFGAJD

LFICJDGA

T

TTTT

TTTT

Again, the permutation of rows and columns of the 
above matrix with Form A symmetry leads to the 

following matrices:


























HBICKELF

ICGALFJD

KELFHBIC

LFJDICGA

S

TTTT

TTTT


























HBICKELF

ICGALFJD

KELFHBIC

LFJDICGA

T

TTTT

TTTT

Now utilizing the equations of Section (2-1), the 
submatrices S and T for the above matrices can be 
written as:



























KEHBLFIC

LFICJDGA
TS

KEHBLFIC

LFICJDGA
SS

TTTT

TTT



























KEHBLFIC

LFICJDGA
TT

KEHBLFIC

LFICJDGA
ST

TTTT

TTTT

The union of the above four submatrices forms the 
eigenvalue of the entire matrix as:

         22F SS ST TS TT          

Example: Consider an indeterminate truss as 
shown in Fig. 4. For this 
truss: 27E = 2.07×10 kN / m , 4I = 100cm ,

3r =7800 kg / m and 2A= 10cm . 

The buckling load and frequencies of the truss 
are calculated as follows:

   
   
 

cr cr(SS')

cr(TS') cr(TT')

cr(ST')

185890 480000

185890 246600

1740400

P = kN P = kN

P = kN P = kN

P = kN
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 
   
   

' '

' '

/

SS TS

ST TT

82.8,82.8,182.47,182.47,244.41,244.41,283.5,283.5

82.8,244.4 182.47,182.47

283.52,283.52 82.8,244.4

rad sec

 

 



 

 

3.2. Case 2 symmetry    In this case, there are
active DOFs on one of the symmetry axes (here the 
horizontal axis of symmetry). Similar to the 
previous case, there exists m active DOFs in the 
direction 1 and n active DOFs in direction 2. Also 
in the RHS there exists m DOFs in the horizontal 
direction and n DOFs in the vertical direction. 
Similar situation is present for the LHS. 

Now in addition to the previous case, where we 
had 4 subregions (Fig. 3), two nodes in the LHS of 
the horizontal axis together with the corresponding 
nodes in the RHS of this axis are considered. In 
this case, the numbering of the DOFs is performed 
as shown in Fig. 5.

For this purpose, first all the DOFs in direction 
1 at the upper part of the LHS of the vertical axis 
of symmetry (which there is no active DOF on it) 
are numbered followed by the DOFs at the 
direction 2 at this part, Fig. 5. Then numbering is 
performed for the corresponding DOFs at the 
lower part of LHS of the vertical axis of symmetry, 
upper part of RHS of the vertical axis of symmetry 
and lower part of RHS of the vertical axis of 
symmetry respectively and in a similar order to 
upper part of the LHS of the vertical axis of 
symmetry. Then all the DOFs in direction 1 of 
nodes on left hand part of horizontal axis of 
symmetry are numbered followed by the DOFs in 
direction 2 of these nodes. Then numbering is 
performed for the corresponding DOFs of nodes on 

the right hand part of horizontal axis of symmetry 
in a similar order to DOFs of nodes on the left 
hand part of horizontal axis of symmetry.

Considering the above numbering scheme, the 
F22 matrix will be present in the overall stiffness 
matrix and therefore only the relationships between 
the complementary entries of the stiffness matrix 
should be formed.

















































TTTTTTTTTTT

TTTTTTTTTT

TTTTTTTTT

TTTTT

AAAAAAAAAAATA

AAAAAAAAAAAA

AAAAAAAAAAAA

AAAAAAAAAAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

F

TTT

12,1212,1112,1012,912,812,712,612,512,412,312,212,1

12,1111,1111,1011,911,811,711,611,511,411,311,211,1

12,1011,1010,1010,910,810,710,610,510,410,310,210,1

12,911,910,99,99,89,79,69,59,49,39,29,1

12,811,810,89,8

12,711,710,79,7

12,611,610,69,6

12,511,510,59,5

12,411,410,49,4

12,311,310,39,3

12,211,210,29,2

12,111,110,19,1

23

Now using the symmetry one can establish the 
following relationships between the stiffness of 
each pairs of the DOFs in the four subregions, and 
the left and right part of the horizontal axis of 
symmetry

12,610,2,22,

11,69,2,22,

12,510,1,22,

11,59,1,22,

AAKK

AAKK

AAKK

AAKK

nmjnmjjj

nmjnmjij

nmjnmiji

nminmiii





















9,611,2,22,

10,512,1,22,

10,612,2,22,

9,511,1,22,

AAKK

AAKK

AAKK

AAKK

inminmij

inmjnmji

jnmjnmjj

inminmii

















11,89,4,33,

12,710,3,33,

11,79,3,23,

AAKK

AAKK

AAKK

nminmjinmj

nmjnmijnmi

nminmiinmi













10,812,4,33,

9,811,4,33,

10,712,3,33,

9,711,3,33,

AAKK

AAKK

AAKK

AAKK

jnmjnmjnmj

inmjnminmj

jnminmjnmi

inminminmi

















22F

L

4

1 3
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1
2
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2

5 6

L

P P

P P

  
Figure 4. An indeterminate planar truss with Case 

1 symmetry
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00

00

11,1012,9,,

12,1110,9,,

12,1210,10,,

11,119,9,,

















AAKK

AAKK

AAKK

AAKK

nmijnmji

nmjnmiji

nmjnmjjj

nminmiii

9,49,2,,

10,310,1,,

10,410,2,,

9,39,1,,

AAKK

AAKK

AAKK

AAKK

inmjij

jnmiji

jnmjjj

inmiii

















T
nmiinmii

T
nmjjnmjj

nmjnmjnmjnmj

nminmjnminmj

nmjnminmjnmi

nminminminmi

AAKK

AAKK

AAKK

AAkK

AAKK

AAKK

10,910,9,,

12,912,9,,

12,812,6,33,22

11,811,6,33,22

12,712,5,33,22

11,711,5,33,22

























In this way the following relationships hold:

   10,810,612,412,2

9,89,611,411,2

10,710,512,312,1

9,79,511,311,1

  

  

AAAA

AAAA

AAAA

AAAA









Therefore, in the case of symmetry, the general 
pattern of the overall stiffness matrix can be 
rewritten in the following two forms:
   

23

0 0

0 0

T T T

T T T T

T T T T

T T T T

T T T T T T T T

T T T T T T T T

T T T T T T T

A C D F G I J L M O Q S
TC B F E I H L K P N T R

D F A C J L G I M O Q S

F E C B L K I H P N T R

G I J L A C D F Q S M O

I H L K C B F E T R P N
F J L G I D F A C Q S M O

L K I H F E C B T R P N

M P M P Q T Q T U W

O N O N S R S R V X

Q T Q T M P M



 
     

   
     

   

 

 

 

  0 0

0 0

T

T T T T T T T T

P W U

S R S R O N O N X V 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

By permuting the rows and columns we have 






























































VNNOOXRRSS

NBEPCFRHKTIL

NEBPFCRKHTLI

PPUMMTTWQQ

OCFMADSILQGJ

OFCMDASLIQJG

XRRSSVNNOO

RHKTILNBEPCF

RKHTLINEBPFC

TTWQQPPUMM

SILQGJOCFMAD

SLIQJGOFCMDA

F

TTTTTTTT

TTTT

TTTT

TTTTTTTT

TTTTTTTT

TTTT

TTTT

TTTTTTTT

00

00

00

00

23

The above matrix has the Form A symmetry 
and thus using the relationships established in 
Section 2-1, this matrix can be decomposed into S 
and T as follows:

T T T T T T T T

T T T T

T T T T

T T T T T T T T

A+G D+J M+Q C- I F - L O- S

D+J A+G M+Q -F+L -C+I -O+S

M +Q M +Q U+W P +T -P -T 0
S =

C - I -F +L P+T B- H E- K N - R

F - L -C +I -P-T E- K B- H N - R

O - S -O +S 0 N - R N - R V - X

 
 
 
 
 
 
 
 
 
  

T T T T T T T T

T T T T

T T T T

T T T T T T T T

A-G D- J M -Q -C- I -F -L -O-S

D- J A-G M -Q F+L C+I O+S

M -Q M -Q U -W -P +T P -T 0
T =

-C - I F +L -P+T B+H E+K N+R

-F -L C +I P-T E+K B+H N+R

-O -S O +S 0 N +R N +R V+X

 
 
 
 
 
 
 
 
 
  

Again by permutation of rows and column of 
the above matrices, we obtain matrices with Form 
B symmetry.

T T T T

T T T T

T T T T T T T T

T T T T T T T T

A+G C-I D+J F-L M+Q O-S

C -I B-H -F +L E-K P+T N-R

D+J -F+L A+G -C+I M+Q -O+S
S =

F -L E-K -C +I B-H -P-T N-R

M +Q P +T M +Q -P -T U+W 0

O -S N -R -O +S N -R 0 V - X

 
 
 
 
 
 
 
 
 
  
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T T T T

T T T T

T T T T T T T T

T T T T T T T T

A-G -C-I D- J -F-L M-Q -O-S

-C -I B+H F +L E+K -P+T N+R

D- J F+L A-G C+I M-Q O+S
T =

-F -L E+K C +I B+H P-T N+R

M -Q -P +T M -Q P -T U-W 0

-O -S N +R O +S N +R 0 V+X

 
 
 
 
 
 
 
 
 
  

Now using the relationships of Section 2-2, the 
matrices S and T for the above matrices are 
extracted.

T T T T

T T T T

A+G+ D+ J C - I - F + L M +Q

C - I - F +L B - H - E+ K P+T

2M +2Q 2P +2T U +W

SS =

 
 

  
 
 

T T T T

T T T T

A+G- D- J -C+I - F+L -2O+2S

-C +I - F +L B- H+E- K 2N -2R

-O +S N - R V - X

TS =

 
 

  
 
 

A-G+D- J -C - I +F +L M -Q
T T T T-C - I +F +L B+H - E - K -P+T

T T T T2M - 2Q -2P +2T U -W

ST =

 
   
 
 

A-G- D+J C+I +F+L 2O+2S
T T T TC +I +F +L B+H+E+K 2N+2R

T T T TO +S N +R V+X

TT =

 
   
 
 

The above matrix has the Form B symmetry 
and therefore

         23λ F λ SS λ ST λ TS λ TT     

Example: Consider an indeterminate truss as 
shown in Fig. 6. For this truss we have 

27 kN/mE 102.07  , 4cmI 100 , 
3/ mkg7800 and 2cmA 10 . 

The buckling load and eigenfrequencies of the 
truss is calculated as follows:

cr cr(SS )

   
 

cr(TS ) cr(ST )

cr(TT )

P = 126000 kN P = 511100 kN

P = 172900 kN

 






   
   

58.137,116.36,117.047,186.35,197.23,197.23,218.65,262.18

320.39,323.47,326.19,353.77

320.39,117.047,186.35 326.19,197.23,116.36SS TS

353.77,262.18,197.23 58.137,218.65,323.43ST TT

w=

rad / sec

w = w =

w = w =

 

 

j

i
j'

i'

j+ 2m+ 2n

i+ 2m+ 2n
j'+ 2m+ 2n
i'+ 2m+ 2n

j'+ m+ n

i'+ m+ n
j+ m+ n
i+ m+ n

j'+ 3m+ 3n

i'+ 3m+ 3n

j+ 3m+ 3n
i+ 3m+ 3n

j"

i"

j"' j"'+ m'+ n'

i"' i"'+ m'+ n'

j"+ m'+ n'

i"+ m'+ n'

Figure 5. General form of DOFs in Case 2 symmetry.
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Figure 6. An indeterminate truss with Case 2 symmetry

3.3. Case 3 Symmetry   In this case, there are
nodes with active DOFs on both axes of symmetry. 
Suppose in each 4 subregions we have m active 
DOFs in direction 1 and n active DOFs in the 
direction 2. Also in the RHS of the horizontal axis 
of symmetry, there are m’ DOFs in the horizontal 
direction and n’ DOFs in vertical direction. 
Similarly, in the LHS and in the upper part of the 
vertical axis of symmetry there are m’’ DOFs in    P = 126000 kN P = 407600 kN
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the horizontal direction and n’’ DOFs in the 
vertical direction. Similar situation is present in the 
lower part. Now, apart from the nodes which were
selected in the previous case (Fig. 5), two nodes 
are selected in the upper part of the vertical axis of 
symmetry and the corresponding DOFs in the 
lower part of the axis. Here, the numbering of the 
DOFs of the nodes is performed as shown in Fig. 
5.

For this purpose, first all the DOFs in direction 
1 at the upper part of the LHS of the vertical axis 
of symmetry (where there is no active DOF on it) 
are numbered, followed by the DOFs at the 
direction 2 at this part, Fig. 7. Then numbering is 
performed for the corresponding DOFs at the 
lower part of LHS of the vertical axis of symmetry, 
upper part of RHS of the vertical axis of symmetry 
and lower part of RHS of the vertical axis of 
symmetry, respectively. In a a similar manner the
DOFs of the upper part of the LHS of the vertical 

axis of symmetry are numbered. Then all the DOFs 
in direction 1 of nodes on left hand part of 
horizontal axis of symmetry are numbered,
followed by the DOFs in direction 2 of these 
nodes. Then numbering is carried out for the 
corresponding DOFs of nodes on the right hand 
part of horizontal axis of symmetry in a similar 
order to the DOFs of the nodes on the left hand 
part of horizontal axis of symmetry. Finally, all the 
DOFs in direction 1 of nodes on upper part of 
vertical axis of symmetry are numbered followed 
by the DOFs in direction 2 of these nodes. Then 
numbering is performed for the corresponding 
DOFs of nodes on the lower part of vertical axis of 
symmetry in a similar order to the DOFs of the 
nodes on the upper part of vertical axis of 
symmetry. Considering this numbering, the matrix 
F23 is present as before and it is only necessary to 
obtain the relationships corresponding to the 
complementary part of the stiffness matrix.

1,13 1,14 1,15 1,16

2,13 2,14 2,15 2,16

3,13 3,14 3,15 3,16

4,13 4,14 4,15 4,16

5,13 5,14 5,15 5,16

6,13 6,14 6,15 6,16

7,13 7,14 7,15 7,16

8,13 8,14 8,15 8,16

9,13 9,14 9,15 9,16

10,13 10,14 10,

33

A A A A

A A A A

A A A A

A A A A

A A A A

A A A A

A A A A

A A A A

A A A A

A A A

F 
15 10,16

11,13 11,14 11,15 11,16

12,13 12,14 12,15 12,16

1,13 2,13 3,13 4,13 5,13 6,13 7,13 8,13 9,13 10,13 11,13 12,13 13,13 13,14 13,15 13,16

1,14 2,14 3,14 4,14 5,14 6,14 7,14 8,

A

A A A A

A A A A

T T T T T T T T T T T T
A A A A A A A A A A A A A A A A

T T T T T T T
A A A A A A A A 14 9,14 10,14 11,14 12,14 13,14 14,14 14,15 14,16

1,15 2,15 3,15 4,15 5,15 6,15 7,15 8,15 9,15 10,15 11,15 12,15 13,15 14,15 15,15 15,16

1,16 2,16 3,16 4,16 5,16 6,16 7,16 8

T T T T T T
A A A A A A A A

T T T T T T T T T T T T T T
A A A A A A A A A A A A A A A A

T T T T T T T
A A A A A A A A ,16 9,16 10,16 11,16 12,16 13,16 14,16 15,16 16,16

T T T T T T T T
A A A A A A A A

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Now using the symmetry, one can establish the 
following relationships between the stiffnesses of 
each pair of DOFs in four subregions and the 
complementary relationships between the DOFs 
above and under the horizontal axis of symmetry,
and the upper and lower part of the vertical axis of 
symmetry.

1,1 3 3 ,1 5, ,

, , 1,1 4 3 ,1 6

, , 2 ,1 3 4 ,1 5

, , 4 ,1 62 ,1 4

i k i m n k m n

i l i m n l m n

j k j m n k m n

j l j m n k m n

K K A A

K K A A

K K A A

K K A A

      

      

      

      

 

 

14,614,2,22,

13,613,2,22,

14,514,1,22,

13,513,1,22,

AAKK

AAKK

AAKK

AAKK

lnmjlj

knmjkj

lnmili

knmiki

















16,814,2,33,

15,813,2,33,

16,714,1,33,

15,713,1,33,

AAKK

AAKK

AAKK

AAKK

nmlnmjlj

nmknmjkj

nmlnmili

nmknmiki

















Similarly

23F
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1,15 3,13 1,15 5,15 1,15 7,13

1,16 3,14 1,16 5,16 1,16 7,14

2,15 4,13 2,15 6,15 2,15 8,13

2,16 4,14 2,16 6,16 2,16 8,14

A = A A = A A = A

A = -A A = -A A = A

A = -A A = -A A = A

A = A A = A A = A

  

14,1214,10,,

13,1213,10,,

14,1114,9,,

13,1113,9,,

AAKK

AAKK

AAKK

AAKK

lnmjlj

knmjkj

lnmili

knmiki

















16,1014,10,,

15,1013,10,,

16,914,9,,

15,913,9,,

AAKK

AAKK

AAKK

AAKK

nmljlj

nmkjkj

nmlili

nmkiki

















In a similar way,
  

16,1214,10

15,1213,10

16,1114,9

15,1113,9

AA

AA

AA

AA









  
k.k k+m +n ,k +m +n 13,13 15,15 14,14 16,16

k,l k+m +n ,l +m +n 13,14 15,16

k,l +m +n l,k +m +n 13,16 14,15

T
k,k +m +n k,k+m +n 13,15 13,15

l,l +m+n

K = K A = A , A = A

K =-K =0 A = A =0

K = K =0 A = A =0

K = K = A = A

K =

     

     

     

    

  








T

l ,l+m +n 14,16 14,16K A = A   

Therefore, in the case of having symmetry, the 
general pattern of the overall stiffness matrix can 
be rewritten in the following form:

AA CC EE GG

DD BB HH FF

EE -GG AA -CC

-HH FF -DD BB

AA -CC EE -GG

-DD BB -HH FF

EE GG AA CC

HH FF DD BB

II KK II -KKF =33
LL JJ -LL JJ

II -KK II KK

-LL JJ LL JJ
T T T T T T T T T T T T

AA DD EE -HH AA -DD EE HH II LL II -LL MM 0 OO 0
T T T T T T T T T T T T

CC BB -GG FF -CC BB GG FF KK JJ -KK JJ 0 NN 0 PP
T T T T T T T T T T T T

EE HH AA -DD EE -HH AA DD II -LL II LL OO 0 MM 0
T T T T T T T T T T T T

GG FF -CC BB -GG FF CC BB -KK JJ KK JJ 0 PP 0 NN

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

After permuting of rows and columns, this 
matrix will have the Form B symmetry, and 

therefore the submatrices S and T are constructed 
using the relationships of Section 2-2 as follows:

T T T T T T T T

T T T T

T T T T

T T T T T T T T

T T T T T T

T

A+G D+ J M +Q C - I F - L O - S AA EE

D+ J A+G M +Q -F + L -C + I -O+ S EE AA

M +Q M +Q U +W P +T -P -T 0 II II

C - I -F + L P +T B - H E - K N - R DD HH
S =

F - L -C + I -P -T E - K B - H N - R -HH -DD

O - S -O + S 0 N - R N - R V - X LL -LL

2AA 2EE 2II 2DD -2HH -2LL MM OO

2EE 2 T T T T TAA 2II 2HH -2DD -2LL OO MM

 
 
 
 
 
 
 
 
 
 
 
 
 
 
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Again permuting the rows and columns of the 
above matrices, new canonical forms are 
constructed. These forms are generalized 

symmetric Form B being called “Form C” in here. 
This was not present in the matrices of structural 
systems with one axis of symmetry.

T T T T T T

T T T T

T T T T T T

T T T T

T T T T T T T T

T T

A+G AA C - I D+ J EE F - L M +Q O - S

2AA MM 2DD 2EE OO -2HH 2II 2LL

C - I DD B - H -F + L HH E - K P+T N - R

D+ J EE -F + L A+G AA -C + I M +Q -O+ S

2EE OO 2HH 2AA MM -2DD 2II -2LL

F - L -HH E - K -C + I -DD B - H -P -T N - R

M +Q II P +T M +Q II -P -T U +W 0

O - S LL NT T T T T T- R -O + S -LL N - R 0 V - X

 
 
 
 
 
 
 
 
 
 
 
 
 
 

The above matrix has the Form C symmetry
which is the generalized form of the Form B 
symmetry. Consider a square matrix in the 
following form:

A C E G I K

D B H F L J

E -G A -C I -K

-H F -D B -L J

M O M -O Q 0

P N -P N 0 R

 
 
 
 
 
 
 
 
 

in which A-R are also matrices (submatrices). By
permuting the rows and columns one will have:

        































BDJLFH

CAKIGE

NPRNP

OMQOM

FHJLBD

GEKICA

0

0

               


































BDJLBFHD

CAKIGCEA

NPR

OMQOM

FHJLFBHD

QEKIGCEA

000

022

A+ E C - G I K E G

D+ H B - F L J H F

2M 2O Q 0 M -O

0 0 0 R -P N

0 0 0 -2K A - E -C - G

0 0 0 2J -D+ H B+ F

 
 
 
 
 
 
 
 
 

  




















QOM

LFBHD

IGCEA

SS

22

  



























WUTPIIQM

TPKEHBHHDDLFIC

IIHHDDOOMMEEAA

QMLFICEEAAJDGA

SS

TTTT

TTTT

TTTTT

22222

22222

  























RNP

JFBHD

KGCEA

TS 2

2

T T T T T

T T T T

T T T T

A+G- D- J AA- EE -C+I - F+L -2O+2S

2AA - 2EE MM - OO -2DD +2HH -4LL

TS =

-C +I - F +L -DD+HH B- H+E- K 2N - 2R

-O +S -LL N - R V - X

 
 
 
 
 
  

1 1 5

2 2 6

C = C +C

C = C - C

5 5 1

6 6 1

R = R - R

R = R + R
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T T T T

T T T T T T

T T T T

T T T T T T

T T T T T T T T

T T T

A - G -C - I -2CC D - J -F - L -2GG M - Q -O - S

-C - I B + H 2BB F + L E + K 2FF -P + T N + R

-CC BB NN GG FF PP -KK JJ

D - J F + L 2GG A - G C + I 2CC M - Q O + S

-F - L E + K 2FF C + I B + H 2BB P - T N + R

-GG FF PP CC BB NN KK JJ

M - Q -P + T -2KK M - Q P - T 2KK U - W 0

-O - S N + T T T T TR 2JJ O + S N + R 2JJ 0 V + X

 
 
 
 
 
 
 
 
 
 
 
 
 
 

The above matrix has the Form C symmetry.

A C E G I K

D B H F L J

E -G A -C I -K

-H F -D B -L J

M O M -O Q 0

P N -P N 0 R

 
 
 
 
 
 
 
 
 

Permuting the rows and columns, one obtains:

A C I K E G

D B L J H F

M O Q 0 M -O

P N 0 R -P N

E -G I -K A -C

-H F -L J -D B

 
 
 
 
 
 
 
 
 

                    

A + E C - G I K E Q

D + H B - F L J H F

2M 2O Q 0 M -O

0 0 0 R -P N

A + E C - G I -K A -C

-D - H F - B -L J -D B

 
 
 
 
 
 
 
 
 

                

A+E C-G I K E G

D+H B- F L J H F

2M 2O Q 0 M -O

0 0 0 R -P N

0 0 0 -2K A- E -C-G

0 0 0 2J -D+H B+F

 
 
 
 
 
 
 
 
 

A + E C - G I

ST = D + H B - F L

2M 2O Q

 
 
 
  

T T T T

T T T T T

T T T T

A- G+D- J -C - I +F +L -2CC+2GG M - Q

-C - I +F +L B+H - E - K 2BB- 2FF -P+T

-CC +GG BB - FF NN - PP -KK

2M - 2Q 2P +2T -4KK U -W

ST=

 
 
 
 
 
 
 

A - E -C - G -2K

TT = -D+ H B+ F 2J

-P N R

 
 
 
  

T T T T

T T T T T

T T T T

A-G- D+J C+I +F+L 2CC+2GG 2O+2S

C +I +F +L B+H+E+K 2BB+2FF 2N+2R

CC +GG BB +FF NN+PP 2JJ

O +S N +R 2JJ V +X

TT=

 
 
 
 
 
 
 

The union of the eigenvalues of these four matrices 
results in the eigenvalues of the main stiffness 
matrix.

         22F SS ST TS TT          

1 1 5

2 2 6

C = C + C

C = C - C

5 5 1

6 6 1

R = R - R

R = R + R
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j

i
j'

i'

j+ 2m+ 2n

i+ 2m+ 2n
j'+ 2m+ 2n
i'+ 2m+ 2n

j'+ m+ n

i'+ m+ n
j+ m+ n
i+ m+ n

j'+ 3m+ 3n

i'+ 3m+ 3n

j+ 3m+ 3n
i+ 3m+ 3n

j"

i"

j"' j"'+ m'+ n'

i"' i"'+ m'+ n'

j"+ m'+ n'

i"+ m'+ n'

l'

k'

l

k

l+ m"+ n"

k+ m"+ n"

l'+ m"+ n"

k'+ m"+ n"

Figure 7. General form of DOFs in Case 3 symmetry.

Example: Consider an indeterminate truss as 
shown in Fig. 8. For this truss,

7 22.07× 10 kN / mE = , 4100I = cm , 3
/7800 kg m 

and 210A= cm . 

70
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5 6
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15
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10

11

12
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2P 2P 2P

2P 2P 2P

P P

Figure 8. An indeterminate truss with Case 3 symmetry

The buckling load and eigenfrequencies of the 
truss is calculated as follows:

     
   
58100 81900 76600SS TS ST

75600 58100TT cr

P = kN P = kN P = kN

P = kN P = kN

 
 
 
 

SS

TS

ST

TT

348.62,90.72,218.33,189.60

410.26,362.78,187.29,104.88

315.69,207.86,274.63,260.77

330.99,198.22,39.37,133.56

w =

w =

w =

w =




, ,

SS TS ST TT 348.62,90.72, 218.33,189.60,

410.26, 362.78 187.29,104.88 315.69, 207.86, 274.63

260.77 330.99,198.22,39.37,133.56

         ,

w = w Èw Èw Èw  =

   rad / sec     ,

4.  CONCLUSIONS

Unlike some the previous canonical forms which 
decompose the structural matrices into two 
submatrices, in the present method the matrices are
decomposed into 4 submatrices enabling the 
calculation of eigenvalues by employing 
submatrices of smaller dimensions. Therefore, the 
computational time is also decreased. Naturally, if 
the submatrices have further symmetry, additional 
decomposition of submatrices becomes feasible,
leading to further efficiency of the method. Though 
the examples of this paper are selected from truss 
structures; however, a similar approach can be 
utilized for calculating the buckling load of the 
frame structures. Naturally, the present method can 
also be used in the free vibration analysis of the 
different types of skeletal structures.
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