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Abstract In this paper, an efficient method is presented for calculating the buckling load
and eigenfrequencies of the planar truss structures having double symmetry axes. In this
method, considering the axes of symmetry, the region in which structural system is situated is
divided into four subregions, namely upper, lower, left and right subregions. The stiffness
matrix of the entire system is then formed, and using the existing direct symmetry and reverse
symmetry, the relationships between the entries of the matrix are established. Examples are

included to illustrate the process of the presented method.
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1. INTRODUCTION

Symmetry has been widely used in science and
engineering using group theory [1-5]. Many
eigenvalue problems arise in many scientific and
engineering problems such as free vibration, and
forced vibration and stability of structures [6-8].
While the basic mathematical ideas are
independent of the size of matrices, the numerical
determination of eigenvalues and eigenvectors
becomes more complicated as the dimensions of
matrices increase. Special methods are beneficial
for efficient solution of such problems, especially
when their corresponding matrices are highly
sparse.

Graph theoretical methods are developed for
decomposing and healing the graph models of
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structures, in order to calculate the eigenvalues of
matrices and graph matrices with special patterns
[9-11]. In these methods, the eigenvectors
corresponding to such patterns for the symmetry of
Form I, Form II and Form III are studied, and the
applications to vibrating mass-spring systems and
frame structures are developed in [12] and [13],
respectively. These forms are also applied to
calculating the buckling load of symmetric frames
using linear algebra and canonical forms [14].
Consider a structural system with two
translational degrees of freedom (DOFs) per node
which has two axes of symmetry. Suppose each
DOF is parallel to one of the axes and is
perpendicular to the other axis. For the following
three cases, one can find matrices in canonical
forms, and using the symmetry relationships twice,
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developed previously [10, 15], one can find 4
submatrices. The union of the eigenvalues for these
4 submatrices results in the eigenvalues of the
original matrix.

As mentioned before, various symmetries have
been previously developed. In these symmetries
which will be presented in Section 2, a matrix is
decomposed into two submatrices S and T and the
eigenvalues of these submatrices results in the
eigenvalues of the main matrix.

In this paper, the region in which the structural
system is situated is divided into upper, lower, left
and right subregions. The stiffness matrix of the
entire system is formed and then using the existing
direct and reverse symmetries, relationships
between the entries of the matrix are established.

2. SINGLE SYMMETRIES A AND B

As described in [15], symmetry of structural
systems with each node having two DOFs can be
studied in two general forms A and B. These forms
are briefly described in the following subsections.

2.1. Symmetry of Form A (modified Form I
symmetry) For trusses with axes of symmetry
not passing through nodes with active DOFs, we
have the Form A symmetry, as shown in Fig. 1(a).
The main reason for not being able to employ the
previously developed forms of symmetry for
calculating the buckling and eigenfrequencies load
of truss structures is due to the existence of oblique
cross members. These members affect the entries
of the stiffness and geometric stiffness matrices
and change the sign of some entries. Separation of
the horizontal and vertical DOFs as shown in Fig.
1(b) results in stiffness matrices of the symmetric
trusses for the case where the axis of symmetry
does not pass through the nodes with active DOFs,
as Figure 1.

First, the nodes in the left-hand side (LHS) of the
symmetry axis are numbered, followed by the
numbering of the nodes in the right-hand side
(RHS). Now the horizontal DOFs (along x-axis)
are first numbered and then the vertical DOFs (in
y-direction) are numbered for the LHS. A similar
numbering is then performed for the DOFs of the
RHS.
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Modification of numbering for the DOFs
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Figure 1. Modified numbering of the DOFs (Form
A)

Pattern of the weighted block adjacency matrix M
is as follows:

LHS RHS
H V H v

ACDF}LHSH
C B F E v

D-FA-C} i
-F E -C B|J RIS,
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Conditions for symmetry:
All the submatrices are symmetric, except F'
which is anti-symmetric.

AT=4 B'=B c'=c D'=D FT'=-F

Here F' =—F corresponding to the effect of the
horizontal DOFs of the LHS nodes on the vertical
DOFs of the RHS, and vice versa.

Performing the row and column permutations,
the matrix M can be transformed into the following
Schur’s form:

4D CG-F D F
C+F B-F F E
0 0 A4D-CF
0 0 F-C B+E

Thus
A+D C-F A4-D C-F
Det[M] = Det x Det
C+F B-E -C+F B+E
«— «—>
S T

Therefore, the eigenvalues of M can be obtained
as:

AM)=A(S)UA(T)

It should be noted that S and 7" are both symmetric,
because F' is anti-symmetric and the remaining
submatrices are  symmetric. The  above
relationships provide the basis of the algebraic
method of this paper for trusses having an odd
number of bays.

2.2. Symmetry of Form B (modified Form IlI
symmetry) For trusses with axes of symmetry
passing through nodes with active DOFs, one will
have the Form B symmetry, as shown in Fig. 2.
First, the nodes in the LHS of the symmetry axis
are numbered followed by the numbering of the
nodes in the RHS, and then the central nodes on
the axis of symmetry are numbered. Now the
horizontal DOFs (along x-axis) are first numbered
and then the vertical DOFs (in y-direction) are
numbered for the LHS. A similar numbering is
then performed for the DOFs of the RHS. Finally,
the horizontal DOFs (in x-direction) are numbered
followed by the vertical DOFs (in y-direction) for
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Figure 2. A symmetric truss with axis of symmetry
passing through central nodes

the central nodes on the axis of symmetry.

Pattern of the matrix M is as follows:
[ 4 1D ' G I
'F E ! H
""" - FACGI
M= F Ei -C Bi-1 H
|17 B H g K |

Nodes on the LHS Nodes on the RHS Nodes on the axis

of the axis

1
- :
1
]
B |
"""" r
1
Column D -F
ermutations '
p -F E
------- T
1
GT 1" !
1
_JT HT :

[ 4

C
Exchange of rowd g7 7

_

11 _H
D -F
|-F E
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A+D:1 C-F 1 G I 1D

C+F' B-.E'I H'F E

260 at vy 0 6t a
€1 =C-Cs | | '

T T

o' 0 K -1 H
Cp=C-C6 A------ ERREEEE Fo------ EEEERREE

A+DE —F+CE G -1 EA -C

F-C! E-B'- H '-C B |

Now the following Schur’s form is obtained as

[4+D C-F\ G I D ]
1
C+F B-Ei[ H F E
R: =Rz — R !
S I 1 ) I A T e A
—’ U : ___________________
Rg = Rg + Ry 0 010 K g H
0 0 10 -2 A-D C-F
1
|0 0 "0 2H -C+F B+E|
Therefore
Det[M] =
A+ D C-F G A-D C-F 21

2G 21 J -1 H K
—Fr —>
S T

Thus
M) = i(s)uA(r)

Matrix L is always a null matrix due to the
symmetry. One may move the nodes on the axis of
symmetry in the y direction, these nodes should
not move in x direction.

The matrices 4, B, C, D, and E are symmetric,
and F is anti-symmetric. These submatrices
aren x n, with n being the number of free nodes in
each side of the axis of symmetry. /, H, and G are
n X m submatrices, where m is the number of node
on the axis and L, J, and K are m X m submatrices.
L is replaced by the null matrix 0.

3. DOUBLE SYMMETRIES

For structural systems with two DOFs per node
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having two axes of symmetry, the following cases
may arise:

Case 1. The symmetry is of Type A with respect to
both axes, 1.e. there exist no active DOFs on either
of the axes. In this case, it is sufficient to perform
Type A symmetry and reordering the rows and
columns of the matrices S and T, again Form A
symmetries are created, and the operations
corresponding to this symmetry are performed.

Case 2. The symmetry is of Type A in one
direction and of Type B in the other direction, i.e.
there exist active DOFs just in one axis of
symmetry, e.g. only on horizontal axis. In this case
first Form A symmetry is performed, and then the
order of rows and columns S and T are changed to
create Form A symmetry. Then the operations
corresponding to Form A symmetry is applied to
either of the matrices S and T to produce Form B
symmetries.

Case 3. The symmetry is of Type B in both
directions, i.e. there exist active DOFs on both
axes. In this case, first Form B symmetry is
performed, and then the order of rows and columns
at S and T are changed to create a new form of
form B symmetry, which is actually a generalized
form of form B symmetry. Then the operations
corresponding to this new form B symmetry is
applied to either of the matrices S and T. The new
submatrices will contain the eigenvalues of the
main matrix.

In this section, three types of symmetry are
defined. The structural matrices of the considered
systems are decomposed and transformed into
three canonical forms. For each case the buckling
load and eigenfrequencies of a symmetric system
is obtained as the least of the buckling load and
eigenfrequencies of the constructed submatrices.

3.1. Case 1 Symmetry In this case, there exists
no active DOF on the symmetry axes. The
symmetry axes subdivide the space in which the
structure is situated into four subregions. Suppose
there exists m active DOFs in the direction 1 and n
active DOFs in direction 2. Now the numbering of
two typical selected nodes from the upper-left
subregion, and those of the corresponding
symmetric nodes in the other 3 subregions are
shown in Fig. 3.
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j % jt2m+2n
i it 2m+ 2n
J j+ 2m+ 2n
i' i+2m+ 2n

itmtn j* 3m+ 3n
it m+n
jtmtn j+3m+ 3n
i+mtn i+ 3m+ 3n

it 3m+ 3n
Figure 3. General form of DOFs in Case 1 symmetry

For this purpose, first all the DOFs in direction
1 at the upper part of the LHS of the vertical axis
of symmetry are numbered followed by the DOFs
at the direction 2 at this part, Fig. 3. Then
numbering is performed for the corresponding
DOFs at the lower part of LHS of the vertical axis
of symmetry, upper part of RHS of the vertical axis
of symmetry and at last lower part of RHS of the
vertical axis of symmetry respectively and in a
similar order to upper part of the LHS of the
vertical axis of symmetry.

A11 A'IZ AlS Al4 A'IS Alé A'I7 A18
Ay A, Ay A, Ay A AL Ay
Ay Ay Ay A, A A A Ay

T T

Ai; A2T4 A3T4 A44 A45 A46 A47 A43
AITS AZTS ASTS AZS ASS A56 A57 A58
Ay Ay A Ay A Al Ao A
Ay Ay Ay Ay Ag Ay A A

T T T T T T T

—A18 A28 A38 A48 ASS A68 A78 ASS -

It should be noted that not all the DOFs of a
node need to be active, and the following
relationships are not based on this assumption.
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Now using the symmetry one can establish the
following relationships between each pairs of the
DOFs in the four subregions:

K. =K

) o =K. o =K. o
i,i i+m+n,i +m+n i+2m+2n,i +2m+2n Kz +3m+2n,i +3m+3n

= Ay = Ay = Ass = Ay

JJ _Kj+m+n,j'+m+n

= Ay = Ay = Ags = Agg

- Kj 2m+2n,j 2m+2n Ki +3m+3n,i +3m+3n

Ki.j' :_Ki +m+n,j'+m+n = i+2m+2n,j'+2m+2n :Ki +3m+3n,j'+3m+3n
= Ay =y = Ay = Ay

Kivimen = Kivomaonivamezn = 43 = 45

K iomin = Kjiomion fasmean = Aoy = Agg

K iomin = Kivomion fssmean = A = —Asg
Kj',i+m+n = _Kj'+2m+2n,i+3m+3n = A23 - A67
Ki,i'+2m+2n = Ki+m+n,['+3m+3n = AIS = A37
Kj,j'+2m+2n = Jj+m+n,j'+3m+3n = A26 = A48
Ki,j'+2m+2n = _Ki+m+n‘j'+3m+3n = A16 _A38
Kj‘i'+2m+2n == Jm+n,i'+3m+3n = AZS - _A47
Ki.i'+3m+3n = i+2m+2n,i'+m+n = A17 = A35
Kj,j'+3m+3n = J+2m+2n,j'+m+n = AZS = A46
Ki,j'+3m+3n = _Ki+2m+2n,j'+m+n = AIS = _A36
Kj,i'+3m+3n = j+2m+2n,i'+m+n = A27 = _A45
Kj,i'+2m+2n = _Kj+2m+2n,i' = Alé = _AZTS
Kj,i'+3m+3n = Kj+3m+3n,i' = AIS = A2T7
Kj+zm+2n,i'+3m+3n = _Ki'+2m+2n,j+3m+3n = Ass = _A6T7
Ki,j’+m+n = _Kj’,i+m+n = Al4 = _AZTS

Ki,i'+m+n =By iimen = Al} = AII;

Kj,f'+m+n = j,j+m+n = A24 = AZZ

Kiiiomeon = Kiiomern = A5 = AlTs
Kj,j'+2m+2n = Kj',j+2m+2n = Ay = AzTo
Ki,i'+3m+3n = i'i+3m+3n = Al7 = AII;
Kj,f'+3m+3n = Kj',j+3m+3n = AZS = A27;§

The above six relationship show that apart from the
submatrices on the diagonal, the submatrices D, E,
G, H, J and K are also symmetric.

Considering the above relationships, the
pattern of the stiffness matrix of the structure can
be re-written in the following form:
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4 C' D F , G I 'J L
1 ' |
1 ' |
¢ Bi1-F' E-I' HI'L K
_______ _‘_________J'._________|______.
D -F, 4 -C 1 J L, G -~I
1 ! |
1 ' |
FrFooe'-¢c" B - k'I'" H
F_ = ' ! |
2 T "= (il B iy et
G -1 J L' A -CiD -F
1 1
1 ! |
" om0 k¢ BIF K
1 1
_________________ S
J L1 G 1D Fi4 C
1 ' |
1
L k1" m-F Eac B
1

The above relationships also hold for other
parameters such as mass and damping. In other
words, apart from the stiffness matrix having the
above form, the mass and damping and geometric
stiffness matrices have also the same patterns.
Similar point is also applicable for subsequent
relationships.

Permuting the rows and columns we have

4 D!C F G J'I L]
D _AF ClJ Gi-L -1
c -FFiB E -I" ' 'H K
F'F -C"'E B -I' "' 'K H
B, =|--------- o m - fommmmmo- L
G J '!-1 -L!A4 D'-C -F
J GiL IiD 4 F C
' -'"H K ~C" FF1B E
' -I"'K H -F C"'E B]

The above matrix has the Form A symmetry,
and therefore using the equations of Section (2-1)
one can decompose it into the submatrices S and T
as:

[ 4+G  D+J C-I F-L|
S= D+J A+G  —-F+L -C+I
c-1" -F'+I' B-H E-K
\F'-L' -C"+I" E-K B-H|
[ 4-G D-J —-C-I —F-L]
e D-J A-G F+L C+I
-C-I" FF'+I' B+H E+K
|-F'-L' C'+I' E+K B+H |

Again, the permutation of rows and columns of the
above matrix with Form A symmetry leads to the
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following matrices:

A+G  C-1 D+J F-L
3 c-I" B-H -F' +I' E-K

s
D+J -F+L A+G -C+I
F-I' E-K -C'+I" B-H
A-G -C-1 D-J -F-L
. -C'-I' B+H F'+L E+K

D-J F+L A-G C+I
-F'-I' E+K C+I" B+H

Now utilizing the equations of Section (2-1), the
submatrices S and T for the above matrices can be
written as:

ss*—_ MHG+D+J  C-I-F+L
|C I -F+L B-H-E+K
ST_' A-G+D-J  —C-I+F+L
\-C 1" +F+L BrH-E-K
IS_‘ A+G-D-J  —C+I-F+L
|-C+I"-F'+L B-H+E-K
]T_' A-G-D+J  C+I+F+L
|G+ +F +L B+H+E+K

The union of the above four submatrices forms the
eigenvalue of the entire matrix as:

M Fyp) = A(SS) UA(ST) UA(TS') UA(TT')

Example: Consider an indeterminate truss as
shown in Fig. 4. For this

truss: £=2.07x10" kN / m* » I=100cm* ,
r=7800 kg /m’ and A=10cm’ .
The buckling load and frequencies of the truss
are calculated as follows:
P, =[185890] kN F.,ss) =[450000] kN
P, rs) =[185890) kN R, ) =[246600] kN
P

Cr

(s1) =[1740400] kN
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O=[82.8,82.8,182.47,182.47,244.41,244.41,283.5,283.5| rad | sec
O =[828.2444] @y =[182.47,182.47]

O =[283.52.283.52] @y =[82.8.244.4]

Figure 4. An indeterminate planar truss with Case
1 symmetry

3.2. Case 2 symmetry In this case, there are
active DOFs on one of the symmetry axes (here the
horizontal axis of symmetry). Similar to the
previous case, there exists m active DOFs in the
direction 1 and n active DOFs in direction 2. Also
in the RHS there exists m DOFs in the horizontal
direction and n DOFs in the vertical direction.
Similar situation is present for the LHS.

Now in addition to the previous case, where we
had 4 subregions (Fig. 3), two nodes in the LHS of
the horizontal axis together with the corresponding
nodes in the RHS of this axis are considered. In
this case, the numbering of the DOFs is performed
as shown in Fig. 5.

For this purpose, first all the DOFs in direction
1 at the upper part of the LHS of the vertical axis
of symmetry (which there is no active DOF on it)
are numbered followed by the DOFs at the
direction 2 at this part, Fig. 5. Then numbering is
performed for the corresponding DOFs at the
lower part of LHS of the vertical axis of symmetry,
upper part of RHS of the vertical axis of symmetry
and lower part of RHS of the vertical axis of
symmetry respectively and in a similar order to
upper part of the LHS of the vertical axis of
symmetry. Then all the DOFs in direction 1 of
nodes on left hand part of horizontal axis of
symmetry are numbered followed by the DOFs in
direction 2 of these nodes. Then numbering is
performed for the corresponding DOFs of nodes on
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the right hand part of horizontal axis of symmetry
in a similar order to DOFs of nodes on the left
hand part of horizontal axis of symmetry.

Considering the above numbering scheme, the
F,, matrix will be present in the overall stiffness
matrix and therefore only the relationships between
the complementary entries of the stiffness matrix
should be formed.

"419 ‘4].10 ‘/4].11 ‘41.12

F22 1429 14210 ‘AZII 1%12

1%'9 "45,10 "%,11 "%12

1449 144,10 144,11 14412

"45,9 A5,10 ‘/45,11 ASIZ

F.— Ao Ao An A
3 A79 A7,10 A7,ll ‘4712
__________________________ Ao A An_An

"4.7‘; ‘4§) 1437;) "447,;) "457,‘9 4,‘9 ‘4;,-9 4‘) "4),9 "4),10 "4),1 1 ‘/49,12

1{;0 1{'10 1{‘10 14:,‘10 1457,‘10 14;‘10 1{,‘10 14&7:10 1497,‘10 141010 141011 141012
‘4{;1 "4;11 /g,‘ll Aj,-ll Ag,-ll Aé-ll A;,‘ll "1{11 ‘45,-11 ‘417;)11 ‘41111 ‘/41112
7‘4].71-‘2 ‘4{12 "%Z,-IZ "447,‘12 "%7,‘12 "4‘{‘12 ‘4;,-12 "4{12 14{12 ‘/417(‘)12 ‘417‘112 ‘417-2127

Now using the symmetry one can establish the
following relationships between the stiffness of
each pairs of the DOFs in the four subregions, and
the left and right part of the horizontal axis of
symmetry

I<i,i” = I<i+2m+2n,i"+m'+n’ = A1,9 = A5,11

Ki, Vi _[<i+2m+2n, S = Ao = _A5,12
Kj’i” :_Kj+2m+2n,j"+m'+n' = Az,g :_A6,11
Kj’j” :Kj+2m+2n,j”+m'+n' = A2’10=A6’12
Ki,i"+/n'+n' = Ki+2m+2n,i" = Al,ll = A5,9
Kj,/"+m'+n' = _Kj+2m+2n,j" = A2,12 = AG,lO
Ki,j"+m'+n' = _Kj+2m+2n,i" = A1,12 = _AS,IO
Kj,i"+m'+n' = Ki+2m+2n,i” = A2,11 = _A6,9
Ki+m+n,i" = Ki+3m+2n,i"+m'+n' = A3,9 = A7,11
Ki+m+n,j" = _Ki+3m+3n‘j"+m'+n' = A3‘10 _A7‘12
Kj+m+n,i" = _Kj+3m+3n‘i”+m’+n’ = A4,9 = _Ax,u
Ki+m+n,i”+m’+n' = Ki+3m+3n,i” = A3,11 = A7 9
Ki+m+n,/"+m'+n' = _Ki+3m+3n,j" = A3‘12 = _A7‘10
Kj+m+n,i”+m’+n’ = _Kj+3m+3n,i” = A4,11 - AS 9
Kj+m+n,j”+m’+n’ = Kj+3m+3n,j” = A4,12 - A8,10
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Ki',i” = Ki”+m'+n',i’"+m'+n' = A9,9 = A11,11

Kj",j’" = Kj"+m'+n',j'"+m'+n' = AIO,IO = A12,12

Ki”,j”’ = _Ki”+m'+n',j”+m’+n' =0 = A9,10 = A11,12 =0
Ki",j”+m'+n' Jim e = 0 = A9,12 = A10,11 =0
Kip =Kiimine = Ay =45

Kj,j” = Kj+m+n,j" = A2,10 = A4,10

Ki,j" = TR, = A1,10 = _A3,10

Kj,i" = _Kj+m+n,i" = A2,9 = _A4,9
Ki+2m+2n,i"+m’+n’ = Ki+3m+3n,i’+m’+n’ = AS,II = A7,11
Ki+2m+2n, Sl _Ki+3m+3n, Sl = A5,12 = _A7,12
K JH2ma2n il —k JIETE PRI A6,11 = _A8,11
Kj+2m+2n,j’+m’+n' = Kj+3m+3n,j"+m’+n' = A6,12 = A8,12
K/‘”,j”'+m'+n’ = "+’ = A9,12 = A9]:12

Ki”,i'"+m’+n’ = Ki”’,i”+m’+n’ = A9,10 = A‘)T,IO

In this way the following relationships hold:

Al,ll = A3,11 A5,9 = A7,9
A1,12 = _A3,12 As,lo = _A7,10
A2,ll = _A4,11 A6,9 = _A8,9
Az,lz = A4,12 A6,10 = AS,IO

Therefore, in the case of symmetry, the general
pattern of the overall stiffness matrix can be
rewritten in the following two forms:

1 1 1 1 1
4 CyD F, G I,J LM 0,0 S

AR R VT | i
_____ Zi J.__f‘___E_‘_I___I___{—I_J._L_____Lf)__]_VJ_ZV__IS_
D -F, A -, J -L,G -I M -0,Q -S

1 1 1 1 1
Floerc g’ k1" HI-P NI-T R
G -I''J L' 4 —C'D -F'Q -S'M -0

T 1 T 1 T 1 T 1 1
I gl kv’ B 'F Eir RPN
BT~ """" A e - R R - == —— -
By L' G I'D F'4 C'Q S'M 0

1 1 1 1 1
LK ol HIF ENCI BT RIPN
Mo Plom PNy of T oh TTiu o w0

1 1 1 1 1
o Nt N'UsT RTUvsT RIto vio o x
"""" [ =i = e
o ou” oM™ Praw o u o
|sT RTV—sT RV -0 NTIOT N0 xio0 V|

By permuting the rows and columns we have
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Fy=|-2---4 S

J Gy O LiI S D AIM F C

OO W T TO T M TMT U TR TR
" -y -T H'K R +C" F P Bl E N
TSR T TR HTT R CEFFTCR AT CCES BTN
5" st 0 KUK X +0 O 1o NV N V]

The above matrix has the Form A symmetry
and thus using the relationships established in
Section 2-1, this matrix can be decomposed into S
and T as follows:

[ 4+G  D+J M+Q. C-I F-L O-S]
D+J  A+G M+Q' -F+L -C+I -O+S
Mt +o" MT+o" u+w P+t PTTT 0

S=|--z--5----+--"------ d e = = ]
- - B-H E-K N-R

[ 4-G  D-J M-Q! -C-I -F-L -O-S
D-J A-G M-Q! F+tL C+I O+S

"I F'+i” P+T B+H  E+K N+R
Fofb '+ p-T! E+K  B+H N+R
O-sT o+s" o ‘N+RT N+R' v+x

Again by permutation of rows and column of
the above matrices, we obtain matrices with Form
B symmetry.

[ 4+G  C-It D+J F-L i M+Q O-S]
\o ol Bl ol _E-K.} PT-_N-R
D+J  F+L  A+G  -C+[ | M+Q -0+S
TR K A T BH T PITTNCR
Mg Pt v P uw o
| O -s" N-R Fis N-E 0 V-X |
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4-G  -C-1 1 D-J  F-L | M-Q -O-5]
T BrH |l E+K -PAT_N4R
D-J  FtL ' A-G  CH | M-Q O+S
I N e A P-T N+R

Mo Pt PPt iu-w o
|-OF-sT NT+RT) O +sT NT+RTY 0 v+x

Now using the relationships of Section 2-2, the
matrices S and T for the above matrices are
extracted.

A+G+D+J C-I-F+L M+Q
SS'=\cT-1"-FT+1' B-H-E+K P+T

mT +20" 2P +2r" Uu+w

A+G-D-J  -C+I-F+L -20+2S
18'=|-c"+1"-FT'+I' B-H+E-K 2N-2R
O +s"

N-R' Vx|

A-G+D-J

st=|-cl Tvrl vl Bim-E-K -P+T

omT 200 2Pl orT uew |

A-G-D+J CHI+F+L 20+2§

=+ +Fl +1I B+H+E+K 2N+2R
o +sT MRl pax

C-I+F+L M-Q]

The above matrix has the Form B symmetry
and therefore

M(Fo3)=A(SS") U A(ST"Y U A(TS") U A(TT')

Example: Consider an indeterminate truss as
shown in Fig. 6. For this truss we have

E =2.07x10" kN/m? ,I =100cm* ,
p=7800 kg/m® and A=10cm* .

The buckling load and eigenfrequencies of the
truss is calculated as follows:

B, =[1260001kN  P.g) =[407600] kN

IJE Transactions A: Basics

P

C

P

C

yrsy = [126000)kN P, sy =[511100] kN
oy = [172900] kN
W=|58.137,116.36.117.047,186.35,197.23,197.23,218.65,262.18
320.39,323.47.326.19.353.77 | rad / sec

Weg =[320.39,117.047,186.35] W =[326.19.197.23,116.36

Wepr =[353.77,262.18.197.23) Wy =[58.137,218.65,323.43]

j*+2m+ 2n

it 2m+ 2n

j j'+ 2m+ 2n
i i“++2m+ 2n

j" jm j”'+ m'+ nd j"+ m'+ n'
in m it m'+n'l i m'+n'
j+m+n j*3m+ 3n
i'+ m+n i't 3m+ 3n

IJT m+n j+3m+ 3n
i+ gptn i+ 3m+ 3n

Figure 5. General form of DOFs in Case 2 symmetry.

Figure 6. An indeterminate truss with Case 2 symmetry

3.3. Case 3 Symmetry In this case, there are
nodes with active DOFs on both axes of symmetry.
Suppose in each 4 subregions we have m active
DOFs in direction 1 and n active DOFs in the
direction 2. Also in the RHS of the horizontal axis
of symmetry, there are m’ DOFs in the horizontal
direction and »’° DOFs in vertical direction.
Similarly, in the LHS and in the upper part of the
vertical axis of symmetry there are m’’ DOFs in
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the horizontal direction and n’> DOFs in the
vertical direction. Similar situation is present in the
lower part. Now, apart from the nodes which were
selected in the previous case (Fig. 5), two nodes
are selected in the upper part of the vertical axis of
symmetry and the corresponding DOFs in the
lower part of the axis. Here, the numbering of the
DOFs of the nodes is performed as shown in Fig.
5.

For this purpose, first all the DOFs in direction
1 at the upper part of the LHS of the vertical axis
of symmetry (where there is no active DOF on it)
are numbered, followed by the DOFs at the
direction 2 at this part, Fig. 7. Then numbering is
performed for the corresponding DOFs at the
lower part of LHS of the vertical axis of symmetry,
upper part of RHS of the vertical axis of symmetry
and lower part of RHS of the vertical axis of
symmetry, respectively. In a a similar manner the
DOFs of the upper part of the LHS of the vertical

33 =

Now using the symmetry, one can establish the
following relationships between the stiffnesses of
each pair of DOFs in four subregions and the
complementary relationships between the DOFs
above and under the horizontal axis of symmetry,
and the upper and lower part of the vertical axis of

symmetry.

Kisk = Ki+m+n,k+m"+n” = A1J3=A3,15
Ki,l = _Ki+m+n,l+m”+n” = A1’14:_A3’16
Kj,k = _Kj+m+n,k+m”+n" = A2’13=_A4’15
Kj,l:Kj+m+n,k+m”+n” = A2J4:A4!16
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T T T T

d913 Ao Az Az 4303 Aizia Asas 3.
T T T T

A9 14 4014 A1,14 42,14 43,04 D414 4415 A4

T T T T T T

4915 Aro,15 Aits Aizas A3as Aians Aisas Aise

916 A1o,16 4116 Aizie 4316 Aale Aisie el |

axis of symmetry are numbered. Then all the DOFs
in direction 1 of nodes on left hand part of
horizontal axis of symmetry are numbered,
followed by the DOFs in direction 2 of these
nodes. Then numbering is carried out for the
corresponding DOFs of nodes on the right hand
part of horizontal axis of symmetry in a similar
order to the DOFs of the nodes on the left hand
part of horizontal axis of symmetry. Finally, all the
DOFs in direction 1 of nodes on upper part of
vertical axis of symmetry are numbered followed
by the DOFs in direction 2 of these nodes. Then
numbering is performed for the corresponding
DOFs of nodes on the lower part of vertical axis of
symmetry in a similar order to the DOFs of the
nodes on the upper part of vertical axis of
symmetry. Considering this numbering, the matrix
F23 is present as before and it is only necessary to
obtain the relationships corresponding to the
complementary part of the stiffness matrix.

EA1,13 A4 A5 A6
4213 A21a Aais Ayie
EA3,13 4314 4315 4316
vAg13 Aara Aals Aage
A5z 4514 4515 4516
EA6,13 46,14 4515 g6
td713  A714 A715 4716
4313 Agia A5 A6
1 Ag13 Ao Agns g g
EA10,13 410,14 Ao,15 40,16
s As Ais Ale
12,13 1214 4215 412,16

T T T T T T

K., = Ki+2m+2n,k = A1,13 = A5,13
K[,z = _Ki+2m+2n,l = A1,14 = _A5,14
K ik = _Kj+2m+2n,k = A2,13 = _A6,13
K,,',z = K‘j+2m+2n,l = A2,14 = As,14
Ki,k = Ki+3m+3n,k+m”+n” = A1,13 = A7,15
Ku = Ki+3m+3n,l+m"+n" = A1‘14 = A7,16
Kj,k = Kj+3m+3n,k+m"+n" = A2,13 = AS,IS
Kj,/ = Kj+3m+3n,/+m”+n” = A2,14 = A8,16

Similarly

IJE Transactions A: Basics



Aps =433 Ap s =455 Apps =473
Ap16 =43 14 Ar16 =456 Ap16 = 4714
Ay s =-A413 Ay 15 =455 Ay s =433
Ay 16 =Ay14 Ay 16 = 4516 Ay 16 =Ag 14
Ki",k = Ki"+m'+n',k = A9,13 = A11,13
Ki",l = _Ki"+m'+n',1 = A9,14 = _A11,14
K/'”,k = Jr '’ k = A10,13 = _A12,13
Kj",[ =R men'l = A10,14 = A12,14
Ki",k = B fem 0" = A9,13 = A9,15
Ki",l = _Ki",l+m”+n" = A9,14 = _A9,16
Kj”,k = _Kj”,k+m”+n" = A10,13 = _AIO,IS
Kj”,/ = Kj",l+m"+n" = A10,14 = A10,16
In a similar way,
F33 =
T T T T T T T
A4 DD EE -HH A4 -DD EE
T T T T T T T
cc BB -GG FF -CC BB GG
T T T T T T T
EE" HH AA -DD EE -HH A4
T T T T T T T
GG FF -CC BB -GG FF cc

After permuting of rows
matrix will have the Form

and columns, this
B symmetry, and

A+G D+J M+0

D+J A+G  M+Q

MT+o" MT+of U+w
e N A Y

STV R Tl e
lol-st olxst 0

2447 2EeT 217

| 2EET 244" 20"
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A9,13 = A11,15
A9,14 = A11,16
A10,13 = A12,15
A10,14 = A12,16

Kkk' = Kk+m"+n",k'+m”+n”

KkJ' :'Kk+m”+n”,l’+m”+n” =

Kkl’+m"+n" :I<l,k'+m”+n" =
Kkk'+m"+n" :Kkk+m”+n” =

Kl,l’+m’+n’ = Kl',l+m”+n”

Therefore, in the

= A3i3=45050 Aige=Aisis
0 = A3z1=4515=0

0 = A3zi5=A4145=0
_ T
= Apis=A355

_ T
= Ay6=A416

case of having symmetry, the

general pattern of the overall stiffness matrix can

be rewritten in the fo

1 A4 CC EE GG
' DD BB HH FF
' EE -GG A4 -CC
\ -HH FF -DD BB
\ A4 -CC EE -GG
\ -DD BB -HH FF
E EE GG A4 CC
' HH FF DD BB
' KK 1 -KK
‘LL  JJ  -LL  JJ
VI KK [ KK
voLL JJ LL I
wn’n o 2 MM 0 oo 0
el ok T k™ T 0 NN 0 pp
Y 2wt ot o0 0 omm o
e’ kxk’ T kT T 0 P 0 wN

therefore the submat

llowing form:

rices S and T are constructed

using the relationships of Section 2-2 as follows:

C-1 F-L O-§
-F+L -C+I -0+S§
pl+rt pr.TT ¢
"B-H E-K N-R
E-K B-H N-R
NTRUNTR vox
2pp" 2HHT 2Ll
2HHT  -2pDT oL

\ AA  EE ]

| EE A4
511 1
‘oD HH|
\ -HH -DD
AL L]
' MM 00

' 00 MM |
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Again permuting the rows and columns of the
above matrices, new canonical forms are
constructed. These forms are generalized

A+G A4 C-1 , D+J
244" wmm 2pDT 1 2EET
c"-i" DD B-H Fl+L"
D+J EE -F+L \ A+G

| FT-1" -HH __E-K_-C'+I1" -DD__B-H__

o'-s™ L NT-RT:!.0"+sT

The above matrix has the Form C symmetry
which is the generalized form of the Form B
symmetry. Consider a square matrix in the
following form:

4 C E G I K
D B H F L J
E -G 4 C I K
H F D B L J
M O M -0 Q0 0
P N P N 0

in which A-R are also matrices (submatrices). By
permuting the rows and columns one will have:

c,-c+¢c; [4 C I K E G|
C,=C,-Cg4 D B L J H F
- M 0 Q0 0 M -0
P N O R -P N
E -G I -K 4 -C
-H F -L J -D B
A+E C-G'I K 'E 0]
Rs=Rs-Ri \ poy B-F'L J 'H F
R R R 0 T T T TG
— | !
90 L0 RPN
A+E C-G il -Ki14 -C
-D-H F-Bi\-L J =D B |
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EE
00

symmetric Form B being called “Form C” in here.
This was not present in the matrices of structural
systems with one axis of symmetry.

F-L i M+Q O-5]

2HHT 20T 2Lr”

E-K i+ P+T N-R

-C+1 t M+Q -0O+S

-2pp" v 2n" o 2er’

B-H | -P-T_N-R|
-Prortiu+w 0

NT-RTY 0 v-x |
[4+E C-G I. K E G |
D+H B-F L, J H F
XM 20 Q010 M -0
[0 0" "0V R - P N |

0'-2K A4-E -C-G

L0 0 012 -D+H B+F |

A+E . C-G I
SS=|D+H, B-F L

| .

A+G+D+J AA+EE C-I-F+L E M+Q
244" +2EE"  MM+0O0 2DD" +2HHTE Jig

|C"-I"-F"+I' DD+HH B-H-E+K! P+T

2M" +20" 211 2P +2T" V U+W
A-E -C-G i-2K
TS=|-D+H B+F 12J
"l'ﬁ"'l'"ﬁ"":"é"
A+G-D-J  M-EE  C+I-F+L '-20+25|
T T T T : T
244 - 2FE MM-00 -2DD +2HH ' 4L
T T T T :
-C +I -F +L -DD+HH B-H+E-K ! 2N-2R
Y U  E
0 +5 AL N-R1vex
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A-G
cr gt
-ccT
D-J
_FT _LT
-GGT
mT_oT
of .sT

C-1
B+ H
BBT
F+1L
E+K
FFT
pPryT?
NT+RT

2CC D-J
2BB FT+1T
NN GGT
2GG  A-G
2FF  cT+ 1T
PP cct

2Kk MT-of
2JJ ol +sT

The above matrix has the Form C symmetry.

4 C
D B
E -G
-H F
M 0

| P N

E G I
H F L
4 -Cc I
D B L
M -0 0O
P N 0

Permuting the rows and columns, one obtains:

4 C I K E
D B L J H
M 0 0 0 M
P N 0 R -P
E -G I -K A4
H F L J D
A+E C-G i1
G=C+C \D+H B-F L
C,=C,-GCs __2_]\;[ _____ 2_ (_)"*:_Q“
" o 0 10
1T4+E c6r 1
D-H F-B'-L
[A+E C-G I 'K
Ry=Rs-R, |D+H B-F L 'J
Ri=Rs Rl oM 20 Q10
Do M 20 0 10 .
0 0 0'R
0 0 0%
0 0 02
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K

J

-K

J

0

R_

-

F

-0

N

-C

B_

K E Q]
0 M -0

R P N

K AT
J D B
E G |
H F

MO |
-P N

A-E -C-G
-D+H B+F |

-F-L -2GG M-0Q0 -0-§]
E+K 2FF -P+T N+R

BBT NN  KKT T
pl -7  2kKk U-w 0
NT+RT 20 0 V+X|
A+E C-Gi [
ST=|D+H B-F' L
oM 200 0
[ 4-G+D-J  C-I+F+L -2CC+ZGGE M-Q_
o ' -I"+F +I' B+H-E-K  2BB-2FF | -P+T
" +66" B - w-rp | KK
M -20 o o1t KK U-W
A-E -C-G :i-2K
TT=|-D+H B+F ' 2J
-P l N | R
| A-G-DtJ  CHIFYL  200+2GG 120435 |
1" +F +[ B+H+E+K 2BB+2FF '2N+2R
1T= :
o +66" BB +FF  NN+PP E 2"
o +s' N +R 2w VX

The union of the eigenvalues of these four matrices
results in the eigenvalues of the main stiffness
matrix.

A(F,, )= A(SS")UA(ST")OA(TS"YUA(TT')
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j+2m+ 2n

j K}
i ) 1 it 2m+ 2n
J I_» I 2m+ 2n
Hi k i'+2m+ 2n

"H’l’l’l 'J"+m'+n'

j+ 3m+ 3n

j*+ m+n
i+ m+n m" 3" + 3m+ 3n
jtrm¥*n k+ m"n" j+ 3m+ 3n
it m+n I'+ m"™+ n" i+ 3m+ 3n
k'+m"+n"

Figure 7. General form of DOFs in Case 3 symmetry.

Example: Consider an indeterminate truss as

shown in Fig. 8. For this truss,
E=207x10 kN /m’ 1= 100cm*, p=7800 kg /m’

and 4= 10cm®

Figure 8. An indeterminate truss with Case 3 symmetry

The buckling load and eigenfrequencies of the
truss is calculated as follows:

%5 =[58100] kN~ Prg =[81900) kN Py =[76600] kN
Prp =[75600] kN P, =[58100] kN

Wgs = [348.62,90.72,218.33,189.60]
Wy = [410.26,362.78,187.29,104.85
Wep = [315.69,207.86,274.63,260.77 |

wyp =[330.99,198.22,39.37,133.56 |

364 - Vol. 24, No.4, November 2011

W = W Ewpg Ewgp Ewpp = [348.62,90.72,218.33,189.60,

410.26, 362.78,187.29,104.88,315.69,207.86,274.63,

260.77,330.99,198.22,39.3 7,133456]rad / sec

4. CONCLUSIONS

Unlike some the previous canonical forms which
decompose the structural matrices into two
submatrices, in the present method the matrices are
decomposed into 4 submatrices enabling the
calculation of eigenvalues by employing
submatrices of smaller dimensions. Therefore, the
computational time is also decreased. Naturally, if
the submatrices have further symmetry, additional
decomposition of submatrices becomes feasible,
leading to further efficiency of the method. Though
the examples of this paper are selected from truss
structures; however, a similar approach can be
utilized for calculating the buckling load of the
frame structures. Naturally, the present method can
also be used in the free vibration analysis of the
different types of skeletal structures.
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