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Abstract  In the present paper, we have studied MHD free convective two dimensional unsteady 
viscous incompressible flows through a porous effect bounded by an infinite vertical porous plate 
with constant suction. The permeability of the porous medium fluctuates in time about a constant 
mean, and the viscosity of fluid is assumed to vary as a linear function of temperature. The flow is 
permitted under the influence of a uniform transverse magnetic field, whereas the induced magnetic 
field has little effect on the flow and can be neglected. The governing equations are solved by 
perturbation technique based on computer extended series solution. 
 
Keywords Free convection, Mathematical model, Permeability parameter, Hartmann number, 
Magneto- hydrodynamics, Porous medium. 
 

ان ياز م MHDآزاد  ييجابجا يکنواخت دوبعديريسکوز غير ويتراکم ناپذ يان هايدر مقاله حاضر، جر  دهيچک
فرض . ت با مکش ثابت مورد مطالعه قرار گرفته استينها يب يشده با صفحه منفذدار عمود يک منفذ مرزبندي

ال به يته سيسکوزيوسط و وط متخلخل در زمان در حدود ثابت متيمح ينوسان ها يريشده است که نفوذپذ
کنواخت مجاز است، يمتقاطع  يسيدان مغناطيک مير يان تحت تاثيجر. کند ير ميياز دما تغ يصورت تابع

معادلات حاکم . شود يتواند چشم پوش يان دارد و ميجر يرو يالقاء شده اثر کمتر يسيدان مغناطيکه مييجا
  . حل شده است يوتريامپافته کيبسط  يسر يه حل هايتوسط روش اختلال بر پا

  
 

1. INTRODUCTION 
 
The study of MHD free convective flow through a 
porous medium has become a principal interest in 
recent years because of its numerous scientific and 
engineering applications, viz in the fields of 
agricultural engineering, biomedical engineering, 
reservoir engineering to study the underground 
water resources; petroleum technology, geophysics 
to study the movements of natural gas, oil and 
water reservoirs, in chemical engineering for 
filtration and purification process. In recent years, 
the problems of MHD free convection flow 
through a porous medium have attracted the 
attention of researchers working on several 
geophysical problems. The study of magneto-

hydrodynamics plays an important role in the 
engineering industries. It has resulted in an 
unabated exploration of new ideas and avenues in 
harnessing various convectional energy sources 
like tidal weir wind power and geothermal energy. 
Many researchers have worked on MHD 
convective fluctuating flows. Heuer et al. [1] 
studied the influence of production rate, 
permeability variation and wall spacing on solution 
gas drive performance. Beavers et al. [2] 
investigated boundary conditions at the naturally 
permeable wall. They suggested a boundary 

condition of the form 1
1 2

uku u
nα

∂
− =

∂
  where u1 

is the fluid velocity at the interface, u2 is the Darcy 
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velocity inside the porous medium in the stream-

wise direction, ( 1u
n

∂
∂

) is the velocity gradient of 

the stream-wise component along the normal to the 
surface drawn into the fluid, k is the permeability 
of the porous medium and α the dimensionless 
constant known as slip parameter believed 
depending upon the nature of the porous material. 
Only, Raptis et al. [3] studied the steady free 
convection flow through a porous medium 
bounded by an infinite porous plate subject to a 
constant suction and variable temperature. Singh et 
al. [4] investigated a free convection along a 
vertical wall in a porous medium with periodic 
permeability variation. They obtained analytical 
expressions for the velocity and temperature using 
the perturbation technique and showed that the 
results would be useful in the design of steam 
displacement process in oil recovery and different 
geothermal systems. Moreau [5] discussed 
magneto hydrodynamics for various flow.  
Shokouhmand and Sayehvand [6] investigated 
viscous incompressible flow and heat transfer in a 
square driven cavity was examined using the 
SIMPLER algorithm. It is shown that flow in the 
cavity at low Reynolds numbers follows a 
symmetric pattern while at higher Reynolds 
numbers, a thin boundary layer formed on the 
walls and an inviscid core region develops. Kim 
[7] has considered the case of a semi-infinite 
moving porous plate in a porous medium in the 
presence of pressure gradient and constant velocity 
in the flow direction when the magnetic field is 
imposed transverse to the plate. 
Kumar et al. [8] investigated the unsteady two 
dimensional laminar flow of a viscous 
incompressible electrically conducting fluid past a 
semi-infinite vertical porous moving plate with 
periodic suction in the presence of transverse 
magnetic field. They are solutions of governing 
equations obtained by Perturbation Technique.    
Kumar et al. [9] studied the flow between annular 
spaces surrounded by rotating coaxial cylinder 
with coaxial cylindrical porous medium. Singh and 
Sharma [10] investigated the effect of periodic 
permeability on the free convective flow of viscous 
conducting fluid through highly porous medium. 
Mehmet et al. [11] studied a free convection flow 
about a cone under mixed thermal boundary 

conditions and a magnetic field. Emad et al. [12] 
investigated a viscous dissipation and Joule heating 
effects on MHD free convection from a vertical 
plate with power-law variation in surface 
temperature in the presence of Hall and ion-slip 
currents. Smolentsev and Abdou [13] studied an 
open-surface MHD flow over a curved wall in the 
3-D thin-shear-layer approximation. 
Mukhopadhyay et al. [14] investigated study of 
MHD boundary layer flow over a heated stretching 
sheet with variable viscosity. Pantokratoras [15] 
discussed the effect of viscous dissipation in 
natural convection along a heated vertical plate. It 
is also found that the interaction between the 
viscous heating and buoyancy force has a strong 
influence on the results. Khan et al. [16] founded 
an exact solution for MHD flow of a generalized 
oldroyd-B fluid with modified Darcy’s law. It is 
also discussed that, MHD flow of generalised 
oldroyd-B fluid in a circular pipe. The flow is 
induced because of an oscillating pressure 
gradient. Xia et al. [17] investigated two 
descriptions mapped infinite element have 
generated and combined with conventional finite 
elements and one direction infinite element to 
simulate poroelasticity. Myers et al. [18] revealed 
the flow of a variable viscosity fluid between 
parallel plates with shear heating. It is also 
described a model for the flow of a fluid through 
channel with parallel plate. Makinde and Osalusi 
[19] founded the combined effect of magnetic field 
and permeable wall slip velocity on the steady flow 
of an electrically conducting fluid in a channel of 
uniform width. Kumar et al. [20] investigated 
performance modelling of porous medium flow 
and their applications. Kumar et al. [21] 
investigated viscous flow through co-axial cylinder 
in the presence of magnetic field. It is also use for 
solving governing equation by finite difference 
method. Sekhar et al. [24] discussed the flow of a 
conducting fluid past a circular cylinder for a range 
of Reynolds number from 100 to 500 and for the 
intermediate value of Hartmann number (M) using 
the finite difference method. Andersson and Dahi 
[22] investigated the gravity driven flow of a 
visco-elastic liquid film along a vertical wall. The 
resulting analytical expression for the film 
thickness reveals that the visco-elastic films grows 
up faster towards the down stream asymptotic state 
than that of the Newtonian liquid. Sadeghy et al. 
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[23] investigated magneto hydrodynamic (MHD) 
flow of viscoelastic fluids in converging/diverging 
channels. Zanchini [28] investigated a mixed 
convection with variable viscosity in a vertical 
annulus with uniform wall temperatures. 
Avedissian et al. [25] investigated free convective 
heat transfer in an enclosure with an internal 
louvered blind. It is also study the effects of 
Rayleigh number, enclosure aspect ratio and blind 
geometry on the convective heat transfer. 
Pantokratoras [27] investigated a study of MHD 
boundary layer flow over a heated stretching sheet 
with viscosity. The results of this work are 
obtained with direct numerical solution of the 
boundary layer equations taking a count both 
viscosity and Prandtl number variation across the 
boundary layer. Mishra et al. [26] investigated a 
flow and heat transfer of an MHD viscous–elastic 
fluid in a channel with stretching walls. 
Padmavathi and Amaranath [29] have considered 
the problem of general non axi-symmetric Stokes 
flow past a porous sphere in a viscous 
incompressible fluid. They have also considered 
the flow inside the sphere governed by Brinkman’s 
equation. Kumar and Pant [30] investigated the 
behaviour of steady flow of visco-elastic liquid 
between two porous coaxial circular cylinders, 
where both the cylinders are rotating with different 
uniform angular velocities about the common axis. 
Qin, et al [35] have considered a thermal instability 
problem in a rotating micro polar fluid. It is found 
that, the rotation has a stabilizing effect depending 
upon the values of various micro polar parameters 
and low values of Taylor number.  
Rahimi and Jalili [31] considered a transient free 
convection flow around a sphere with variable 
surface temperature and embedded in a porous 
medium. Rena and Rana [32] profounded a 
theoretical study of the thermal instability of thin 
layer electrically conducting micro-polar rotating 
fluid, heated from below in the presence of 
uniform magnetic field in the porous medium. 
Mansour et al. [35] investigated  analytical studies 
on MHD flow of a micro polar fluid due to heat 
and mass transfer through a porous medium 
bounded by an infinite vertical porous plate in the 
presence of a transverse magnetic field in slip-flow 
regime. Kumar et al. [33] investigated the 
combined wall slip and MHD steady flow of 
conducting viscous incompressible fluid through a 

channel with permeable boundaries. It is disclose 
that the fluid velocity is reduced by magnetic field 
and wall slip. Kumar et al. [34] studied a total 
dispersion tensor in two dimensional packed beds 
consisting of randomly placed parallel cylinders 
for porosities between 38% to 90% Pecklet 
numbers up to 100 and Reynolds numbers up to 20 
based on the cylindrical diameter. Mahdy [42] 
investigated the magneto-hydrodynamic (MHD) 
free convection flow of a non-Newtonian power-
law fluid over a vertical wavy surface with a 
uniform free-stream of constant velocity and 
temperature. Asadi et al. [37] developed rising of a 
single bubble in a quiescent liquid which under 
microgravity condition was simulated. They 
related to unsteady incompressible full Navier-
Stokes equations which were solved using a 
conventional finite difference method with a 
structured staggered grid. Kumar et al. [38] studied 
the distribution of transverse velocity which was 
not symmetrical and for non- Newtonian fluid, 
large recirculation occured at upper disc in 
comparison with the recirculation at lower disc on 
increasing value of Reynolds number.  Makinde et 
al. [39] developed a steady, axi-symmetric, 
magneto hydrodynamic (MHD) flow of a viscous, 
Newtonian, incompressible, electrically-
conducting fluid through an isotropic, homogenous 
porous medium located in the annular zone 
between two concentric rotating cylinders in the 
presence of a radial magnetic field. Khedr et 
al.[40] considered a steady, laminar, MHD flow of 
a micro polar fluid past a stretched semi-infinite, 
vertical and permeable surface in the presence of 
temperature dependent heat generation or 
absorption, magnetic field and thermal radiation 
effects. Kumar et al. [41] studied a MHD three 
dimensional free convective flow of viscous 
incompressible fluid through a porous medium. 
They are solutions of governing equations obtained 
by Finite difference technique.    
The main objective of the present paper is to 
investigate the effect of permeability variation on 
MHD free convective fluctuating flow through a 
porous effect bounded by vertical porous plate of 
infinite length with constant suction. The solutions 
of governing equations were obtained by 
perturbation technique based on extended series 
solution. 
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2. MATHEMATICAL MODEL AND 
ANALYSIS:  

 
In the present investigation, we are considering the 
flow of viscous incompressible fluid in the 
magnetic effects through a porous medium 
bounded by an infinite vertical plate with constant 
suction. The plate is taken in the upward direction 
along the x*-axis and y*-axis which is taken 
normal to the plate. The induced magnetic field is 
neglected. The effects of magnetic field is to 
control the fluid flow. All the fluid properties are 
assumed constant expect the influences of the 
density variation with temperature which are 
considered only in the body forces terms.  
Let the permeability of the porous medium 
fluctuate under the law: 
 

( ) ( )∗∗

+= ∗∗∗ tieKtK ωε10 ,  (1) 
 
where, **,,*

0 tK ω and ε  are the mean 
permeability of the medium, frequency of 
fluctuation, time and very small constant quantity, 
respectively. 
The flow through a porous medium in the magnetic 
effects is governed by the following equations: 
 

0
*
*

=
∂
∂
y
v ,                  (2) 
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+ =

∂ ∂ ∂
,    (4) 

 
where u* and v* be the velocity components in 
the direction of x* and y* axes , 

, , , , ,g kµ
β ν µ ρ

ρ
=  and PC  are acceleration due 

to gravity, coefficient of volume expansion, 
kinematic viscosity, viscosity, thermal 
conductivity, density and specific heat of the fluid 

at constant pressure, respectively. In order to 
complete the formulation of the problem the 
boundary conditions were specified as:  
 







==→

==∗=∗

∞

∗

**,0*;0*

*,0;0

TTuy
TTuy ω    (5) 

 
where, *

ωT  and *
∞T  are the temperature of the plate 

and the temperature of the fluid, respectively far 
away from the plate at constant pressure in the free 
stream.  
Now, integrating equation (2), we get 
 

vv −=* ,                  (6) 
 
where, v is a positive constant and negative sign 
represents that the suction is towards the plate. 
The following dimensionless variables are 
introduced as: 
 

2

**

2 * *

* *, ,
4

*4 *, ,

y v t vy t

T Tuu
v v T Tω

υ υ
ω υ

ω θ ∞

∞

= =

−
= = =

−

. 

 
Using these non-dimensional variables, the 
equations (3) and (4) becomes: 
 

2

2
0

1
4

(1 )i t

u u
t y

u uG M u
y K e ωθ

ε

∂ ∂
− =

∂ ∂

∂
+ − −

∂ +

, (7) 

 

  2
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yPyt r ∂
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∂
∂
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∂
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where, 2

** )(
v

TTgG ∞−
= ωυβ

 , Grashoff number 

k
CP P

r
µ

= ,   Prandtl number 

2

2
0

*
0

0 υ
vKK = , Permeability parameter  
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and 2
0

2
0

v
B

M
υσ

= , Hartmann number. 

The reduced boundary conditions are as follows: 
 

0,0;0
1,0;0

==→
===

θ
θ

uy
uy

   (9) 

 
In order to solve equations (7) and (8), we assume 
velocity and temperature as: 
 

........)()(),( 10 ++= yueyutyu tiωε , (10) 
                                   

........)()(),( 10 ++= yeyty ti θεθθ ω , (11) 
 
Substituting all these values of the equations (10) 
and (11) into equations (7) and (8) and equating 
harmonic and non-harmonic terms, we get 
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where, the primes represent differentiation with 
respect to y. 
The corresponding boundary conditions are 
reduced as: 
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Solving equations (12) to (15) by using boundary 
conditions (16), we get 
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Thus, equations (10) and (11) become: 
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The velocity profiles can be written in terms of 
fluctuating parts as: 
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where, ir iMMyu +=)(1 . 
 
The fluctuating parts are given by 
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Thus, the expression for the transient velocity 

for,
2
π

ω =t , is given by 

 
 iMyuyu εωπ −= )()2,( 0 ,     (24) 
The expression for skin friction at the plate in 
terms of phase and amplitude is given 
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3. RESULTS AND DISCUSSIONS: 
 
To discuss the physical importance of the problems 
like velocity profiles and skin friction coefficient, 
various values of parameter were chosen. The 

effects of various parameters on fluctuating parts 
Mr and Mi of velocity profiles are shown in Tables 
1 and 2 and also depicted in Figures 1 and 2, 
respectively. Table 1 and Figure 1 clearly show 
that by increasing Hartmann number M and 
frequency ω, the fluctuating part Mr decreases. 
Also, the flow decelerates with an increase in 
Hartmann number and the frequency whereas, an 
increase in permeability parameter K0 and Prandtl 
number Pr, enhance the fluctuating part which 
clearly interpret that they help to accelerate the 
flow. On the other hand, the fluctuating part Mi 
increases with an increase in Hartmann number M 
, permeability parameter K0 and Prandtl number 
Pr. The obtained results also depict that an increase 
in ω with the condition of (y<1.5) cause an 
increase in Mi, but; an increase in ω with the 
condition of (y>1.5) decrease Mi.  
Similarly, Tables 3 and 4 and Figures 3 and 4 show 
the variations of skin friction amplitude (|N|) and 
phase ( αtan ) with the variations of Hartmann 
number (M), Permeability parameter (K0), Prandtl 
number (Pr) and frequency (ω). From Table 3 and 
Figure 3, it is evident that |N| decreases when M, 
K0 and Pr increase, whereas Table 4 and Figure 4 
show that αtan  diminishes when K0, Pr and ω 
increase. Also, an increase in Hartmann number 
results to an increase in the skin friction phase. The 
professional form the chemical industry may be 
interested to evaluate this limit of K, M and Gr for 
the fluid. They are using these values dependent on 
characteristics of the fluid. It is hope that present 
work will be helpful for understanding more 
complex problems involving the various physical 
effects which is investigated in the present 
problems.  
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Figure 1. Fluctuating part Mr of velocity profiles at 
G=5 and ε = 0.2 
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Figure 2. Fluctuating part (Mi) of velocity profiles at 
G=5 and ε = 0.2 
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Figure 3. The amplitude of the skin friction at G=5 and 
ε = 0.2 
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Figure 4. The phase of the skin friction at G=5 and ε = 
0.2 

 
 

 
 
 
 

4. CONCLUSION 
 

The results in the present analysis demonstrate the 
theoretical evidence to support the field and 
laboratory observations showing an increase in 
permeability with magnetic effects of results in 
velocity profiles and skin friction. Tables and 
figures show the effects of permeability, Hartmann 
number and Prandtl number on the velocity and the 
skin friction, amplitude and phase. With regard to 
the applications of this analysis, they are to a steam 
injection process for enhancing oil recovery or to a 
geothermal process, chemical process. In the near 
future, we would be glad to compare these 
theoretical results with those obtained by any one 
in the same field.  
 
NOMENCLATURE: 

0K  :     Permeability parameter 
Pr   :    Prandtl number 
G    :     Grashoff number 
M   :      Hartmann number 
T     :      Temperature 

PC :      Specific heat of the fluid  
u    :     Velocity component along x-axis 
v    :     Velocity component along y-axis 
θ   :     Dimensionless temperature ratio 
κ   :     Thermal conductivity  
μ   :     Dynamic viscosity 
ν   :     Kinematic viscosity 
β   :     Coefficient of volume  expansion  
ρ   :     Density of the fluid 
Tw :     Temperature of the plate  
T∞  :     Temperature of the fluid 
τ   :      Skin Friction 
ω  :       Frequency 
ε   : Mixed thermal boundary condition parameter. 

 
 
 
 



 
320- IJE Transactions A: Basics                                                                Vol. 23, Nos. 3 & 4, November 2010 

 
Table 1. Fluctuating part (Mr) of the velocity profile for different parameters 

 

 M K0   Pr ω 
Fluctuating part of velocity (Mr) 

y=0 y=0.5 y=1.0 y=1.5 y=2.0 y=2.5 y=3.0 

A 1 1 0.71 5 0 0.2419 0.2640 0.2220 0.1700 0.1248 0.0897 

B 1 1 0.71 10 0 0.1666 0.1719 0.1388 0.1033 0.0745 0.0529 

C 1 2 0.71 5 0 0.1651 0.1828 0.1533 0.1200 0.0886 0.0639 

D 2 1 0.71 5 0 0.1437 0.1526 0.1257 0.0949 0.0690 0.0493 

E 1 1 1.00 5 0 0.1945 0.1939 0.1472 0.1008 0.0657 0.0416 

 
 
 
 

Table 2. Fluctuating part (Mi) of the velocity profile for different parameters 
 
 M K0 Pr ω Fluctuating part of velocity (Mi) 

y=0 y=0.5 y=1.0 y=1.5 y=2.0 y=2.5 y=3.0 

A 1 1 0.71 5 0 -0.1774 -0.1802 -0.1431 -0.1051 -0.0749 -0.0527 

B 1 1 0.71 10 0 -0.1522 -0.1714 -0.1450 -0.1114 -0.0819 -0.0589 

C 1 2 0.71 5 0 -0.1255 -0.1375 -0.1160 -0.0891 -0.0655 -0.0471 

D 2 1 0.71 5 0 -0.1118 -0.0973 -0.0682 -0.0457 -0.0306 -0.0207 

E 1 1 1.00 5 0 -0.1660 -0.1549 -0.1112 -0.0727 -0.0456 -0.0281 

 
 
 

Table 3. Amplitude (|N|) of skin friction for different parameters 
 

 M K0 Pr Amplitude (|N|) of skin friction 

ω=4 ω=8 ω=12 ω=16 ω=20 ω=24 ω=28 

A 1 1 0.71 1.2094 0.9873 0.7921 0.6472 0.5418 0.4636 0.4040 

B 1 2 0.71 0.8271 0.6252 0.4779 0.3800 0.3131 0.2653 0.2298 

C 2 1 0.71 0.7404 0.6594 0.5689 0.4883 0.4222 0.3692 0.3265 

D 1 1 1.00 1.1208 0.8904 0.7016 0.5675 0.4722 0.4026 0.3500 
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Table 4. Phase ( αtan ) of skin friction for different parameters 
 

 M K0 Pr Phase ( αtan ) of skin friction 

ω=4 ω=8 ω=12 ω=16 Ω=20 ω=24 ω=28 
A 1 1 0.71 -0.3831 -0.7333 -1.0405 -1.3095 -1.5477 -1.7616 -1.9563 

B 1 2 0.71 -0.4892 -0.9156 -1.2755 -1.5779 -1.8831 -2.0792 -2.2929 

C 2 1 0.71 -0.2668 -0.5214 -0.7571 -0.9725 -1.1692 -1.3494 -1.5156 

D 1 1 1.00 -0.4155 -0.7828 -1.0918 -1.3529 -1.5778 -1.7756 -1.9528 
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