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Abstract   Effect of time dependent normal transpiration )(0 τU on the problem of unsteady viscous 
flow and heat transfer in the vicinity of an axisymmetric stagnation point of an infinite circular cylinder 
moving simultaneously with time-depended angular and axial velocities and with time-dependent wall 
temperature or wall heat flux are investigated. The impinging free stream is steady with a strain rate . A 
reduction of Navier-Stokes equations and energy equation is obtained by use of appropriate 
transformations. The general semi-similar solutions are obtained when angular and axial velocities of the 
cylinder and also its wall temperature or its wall heat flux vary as certain functions of time. The cylinder 
may perform different types of motions. It may move or rotate with constant speed, with exponentially 
increasing/decreasing axial/angular velocity, with harmonically varying axial/angular speed, or with 
accelerating/decelerating oscillatory axial/angular speed. The cylinder surface temperature or its surface 
heat flux may have the same type of behavior as the cylinder motion. Semi-similar solutions of the 
unsteady Navier-Stokes and energy equations are obtained numerically using a finite-difference scheme. 
All the solutions above are presented for different Reynolds numbers ( υ2/Re 2ak= ) and different 
functions of dimensionless transpiration rate,

 
)/()()( 0 akUS ττ = , where  is cylinder radius and  is 

kinematic viscosity of the fluid. Shear stresses corresponding to all the cases increase with the increase of 
Reynolds number and decrease with the increase of suction rate. The maximum value of shear stress 
increases with increase of oscillation frequency and amplitude. An interesting result is obtained in which 
a cylinder moving with certain angular/axial velocity function and at particular values of Reynolds 
number is azimuthally/axially stress-free. Heat transfer rate increases with the increase of the rate of 
suction, Reynolds number, and Prandtl number. Interesting means of heating and cooling processes of 
cylinder surface are obtained using different rate of transpiration. 

   
Keywords   Stagnation-point Flow, Time-dependent Axial/Angular Velocity, Time Dependent Heat 
Transfer, Time Dependent Transpiration, Semi-similar Solution, Finite Difference Method. 

 

ک نقطه يه يدارو انتقال حرارت در ناحيان لزج نا پايتابع زمان در مساله جر ياثر مکش و دمش عمود   دهيچك
چرخش با سرعت  يزمان دارا طور همه که ب يرويل با سطح مقطع دايلندر طويک سي يسکون متقارن بر رو

واره يد يا شار حرارتيوار و يحرارت دز درجه يباشد و ن يتابع زمان م ين سرعت محوريتابع زمان و همچن يا هيزاو
ن يک چني.  باشد يم ينيدار و با قدرت معيال برخورد کننده پايس. رديگ يقرار م يباشد مورد بررس یاز زمان م يتابع
ره کاربرد يق سوخت و غي، در تزرييع غذايدر صنا ياسپر يها ستميبا مکش و دمش تابع زمان در س يزم هايمکان

و  يحرکت محور: باشند  يل ميتواند باشد که شامل موارد ذ يم يحرکات مختلف يلندر دارايس نيا. فراوان دارند
، حرکت يو دوران يبه صورت محور يا کاهشي يشيافزا ييبا سرعت ثابت، حرکت با سرعت تابع نما يدوران
ا يلندر و ين سيا درجه حرارت سطح. يا کاهشيو  يشيافزا يا حرکت نوسانير، و يک متغيهارمون يو دوران يمحور

معادلات  يمه تشابهين يها حل. با سرعت آن باشد يکسانيتواند به صورت توابع  يلندر مين سيسطح ا يشار حرارت
. شوند يتفاضل محدود به دست آورده م يها و با استفاده از روش يبه صورت عدد ياستوکس و انرژ- هيدار ناويناپا

 يبرش يها تنش. شوند ياز نرخ مکش و دمش ارائه م ينولدز و توابع متفاوتياز عدد ر ير مختلفيمقاد يج براين نتايا
نرخ انتقال . ابندي يش نرخ مکش و دمش کاهش ميش و با افزاينولدز افزايش عدد ريمرتبط با همه موارد با افزا

 . ابدي يش مينولدز، و عدد پرانتل افزايش نرخ مکش و دمش، عدد ريز با افزايحرارت ن
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1. INTRODUCTION 
 
The task of finding exact solution for Navier-
Stokes equations is the difficult one due to 
nonlinearity of these equations. Hiemenz [1] has 
obtained exact solution of the Navier-Stokes 
equations governing the two-dimensional 
stagnation-point flow on a flat plate. The 
analogous axisymmetric stagnation-point flow was 
investigated by Homan [2]. Result of the problem 
of stagnation-point flow against the flat plate for 
axisymmetric cases were presented by Howarth [3] 
and Davey [4]. Wang [5] was first to find exact 
solution for the problem of axisymmetric 
stagnation flow on an infinite stationary circular 
cylinder. Gorla [6-10], in a series of papers, 
studied the steady and unsteady flows and heat 
transfer over a circular cylinder on the vicinity of 
the stagnation-point for the cases of constant axial 
movement, and then special case of axial harmonic 
motion of a nonrotating cylinder. This special case 
is only for small and high values of the frequency 
parameter using perturbation techniques. Cunning, 
Davis and Weidman [11] have considered the 
stagnation flow problem on a rotating circular 
cylinder with constant angular velocity, including 
the effects of suction and blowing with constant 
rate. Takhar, Chamkha and Nath [12], have also 
investigated the unsteady viscous flow in the 
vicinity of an axisymmetric stagnation point of an 
infinite circular cylinder when both the cylinder 
and the free-stream velocities vary as the same 
function of time. Their self-similar solution is only 
for the case when both the cylinder and the free-
stream velocities vary inversely as a linear function 
of time and by taking an average value for the 
Reynolds number. The study considered by Rahimi 
[13] presents a systematic solution of Gorla’s 
results for high Prandtl number fluids using an 
inner-outer expansion of fluid properties. Recently, 
Saleh and Rahimi [14-19] have investigated the 
unsteady viscous flow and heat transfer in the 
vicinity of an axisymmetric stagnation point of an 
infinite rotating and moving circular cylinder with 
time-dependent angular and axial velocity and 
time-dependent wall temperature or wall heat flux 
with uniform normal transpiration. The effect of 
time-dependent normal transpiration, the cylinder 
movement /rotation with time-dependent axial 
/angular velocity and time-dependent heat transfer, 

which are of interest in certain manufacturing 
processes, have not yet been considered. In the 
present analyses, the unsteady viscous flow and 
heat transfer in the vicinity of axisymmetric 
stagnation point of an infinite circular cylinder 
with time-dependent axial movement /rotation with 
time-dependent transpiration considered, though 
the reduction of Navier-Stokes equations and 
energy equation is obtained for the most general 
case of time-dependent transpiration rate. Our 
motivation is to generalize the problem of 
stagnation-point flow and heat transfer of a fluid 
on a moving /rotating cylinder. An exact solution 
of Navier-Stokes equation and energy equation is 
obtained. The general semi-similar solution is 
obtained when the axial /angular velocity of the 
cylinder and its surface temperature or heat flux 
vary in a prescribed manner. The cylinder may 
perform different types of motion / rotation. It may 
move with constant speed, with exponentially 
increasing- decreasing axial/angular velocity, with 
harmonically varying axial/angular speed, or with 
accelerating-decelerating oscillatory axial/angular 
speed. The cylinder surface temperature or its 
surface heat flux may have the same behavior as 
the cylinder motion. Sample distribution of shear 
stresses and temperature fields at Reynolds number 
ranging from 0.1 to 100 are presented for different 
forms of cylinder movement and different values 
of Prandtl and selected values of uniform suction 
and blowing rates. Particular cases of these results 
compared with existing results of Wang [5] and 
Gorla [6, 7, 9, 10 ], Cunning, Davis and Weidman 
[11], correspondingly. For completeness semi-
similar solution of Navier-Stokes equations and 
energy equation are obtained and results for 
various examples of cylinder motion are presented 
for different values of flow parameters. 
 
 
 

2. PROBLEM FORMULATION 
 
Flow is considered in cylindrical coordinates 

),,( zr ϕ  with corresponding velocity 
components ),,( wvu , see Fig.1. We consider the 
laminar unsteady incompressible flow and heat 
transfer of a viscous fluid of a neighborhood of an 
axisymmetric stagnation point of an infinite 
circular cylinder when move axially or rotate with 
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a velocity variation with respect to time. An 
external axisymmetric radial stagnation flow of 
strain rate k  impinges on the cylinder of radius a  
centered at 0=r . Time-dependent normal 
transpiration )(0 τU  at the cylinder surface may 

occur, where 0)(0 >τU  correspond to suction 
into the cylinder, though the formulation of the 
problem is for the more general case of time-
dependent transpiration rate. The unsteady Navier-
Stokes and energy equations in cylindrical polar 
coordinates governing the axisymmetric flow and 
heat transfer are given [5-10]: 
 

 
 
Figure 1. Schematic diagram of an axially moving and 
rotating cylinder under radial stagnation flow in the 
fixed cylindrical coordinate system ),,( zr ϕ  
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Where p , ρ ,υ  and α  are the fluid pressure, 
density kinematic viscosity, thermal diffusivity the 
boundary condition for velocity fields are: 
 

)(),(),(: 0 tVwtavtUuar ==−== ω   (6) 
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in which, (6) are no-slip conditions on the cylinder 
wall. Relation (7) shows that the viscous flow 
solution approaches, in a manner analogous to the 
Hiemenz flow, the potential flow solution as 

∞→r [11]. 
For the temperature field we have: 
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where k  is thermal conductivity of fluid and 

)(tTW  and )(tqW are temperature and heat flux at 
the wall cylinder, respectively.

 
A reduction of the Navier-Stokes equations is 
obtained by the following coordinate separation of  
the velocity field [14, 15]: 
 

),( τη
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Gav =
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where tk2=τ  and 2)(
a
r

=η are dimensionless time 

and radial variables and prime denotes 
differentiation with respect toη . Transformations 
(9) satisfy (1) automatically and insertion into (2), 
(3) and (4) yields a coupled system of differential 
equation in term of ),( τηF , ),( τηG and ),( τηH  
an expression for the pressure: 
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In these equations prime denotes differentiation 

with respect to η  and
ν2

Re
2ak

=  is the Reynolds 

number.   
From conditions (6) and (7), the boundary 
conditions for (10), (11) and (13) are as follows: 
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 in which, 
ak

US )(
)( 0 τ

τ =  is the dimensionless 

wall transpiration rate.  To transform the energy 
equation into a non-dimensional form for the case 
of defined wall temperature, we introduce 
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Making use of (9) and (15), the energy equation 
may be  
Written as: 
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with the boundary condition as: 
 

0),(,1),1( =∞Θ=Θ ττ     (17) 
 
For the case for defined wall heat flux, we 
introduce 
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Now, using equations (9) and (18), the energy 
equation may be written as: 
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with the boundary condition as: 
 

0),(,1),1( =∞Θ−=Θ′ ττ      (20) 
 
Here, equations (10), (11), (12), and (16) or (19) 
are for different forms of )(τS , )(τω , )(τV , 

)(τWT  or )(τWq functions and were solved 

numerically with Re and Pr as parameters. 
 
 
 

3. SELF-SIMILLAR EQUATIONS 
 

There are time-dependent transpiration and also the 
term in equation (10) cannot be reduced to a 
system of ordinary differential equation, But; 
equations (11), (12), (16) and (19) can be reduced 
to a system of ordinary differential equation f. So, 
we assume that the function ),( τηG  in(11), 

),( τηH  in(12) and ),( τηΘ in (16) and (19) are 
separable as: 
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Substituting these separation of variable into (11), 
(12), (16) and (19), correspondingly gives: 
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for defined wall temperature: 
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or for defined wall heat flux: 
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The general solution to the differential equations 
(22), (23), (24) and (25), with τ  as an independent 
variable are as the following: 
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for defined wall heat flux 
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Here, 1−=i andα , β ,b and c are constants. 
Substituting these equation into the differential 
equations in (26), (27) and (28) or (29) with η  as 
an independent variable results in: 
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The angular velocity boundary conditions are: 
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The axial velocity boundary conditions are: 
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For the above defined wall temperature and wall 
heat flux, respectively, the result was obtained: 
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Note that in (26) 0=b  correspond to the case of 
non-rotating cylinder, as presented by Wang [5]. If 

0≠b and 0== βα , (26) gives the case of 
uniformly rotating cylinder with constant angular 
velocity, as given by Cunning et al. [11]. 

0≠b , 0≠α  and 0=β  correspond to the case of 
a pure harmonic rotation of cylinder. The case of 
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0≠α , 0≠β , 0≠b  is the most general which is 
considered in this paper. In (27) 0=b corresponds 
to the case of cylinder with no axial movement, 
presented by Wang [5]. If 0≠b and 0== βα , 
(27) gives the case of uniformly moving cylinder 
with constant axial velocity [7]. 0≠b , 0≠α  and 

0=β  correspond to the case of a moving cylinder 
with harmonic velocity in its own plane, given by 
Gorla [9]. The case of 0≠α , 0≠β , 0≠b  is the 
most general which is considered in this paper. 
In (37) and (38) the cylinder surface temperature or 
its surface heat flux may have the same type of 
behavior as the cylinder motion.  To obtain 
solution of equations (30), (31) and (32), it is 
assumed that the function )(ηg , )(ηh and )(ηθ are 
complex functions as: 
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Substituting (30), (31) and (32) into (30), (31) and 
(32), respectively, the following couple differential 
equations are obtained: 
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The boundary conditions for functions F ,G , H  
and Θ become: 
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where, 
a

US
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τ  is the dimensionless wall 

transpiration rate which is time-dependent. Hence, 
the boundary condition sonfunctions 1h , 2h , 1g , 

2g , 1θ  and 2θ are: 
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The coupled system of  equations (43), (44) and 
(45), along with boundary conditions (48) and 
(49), were solved using the forth-order Runge-
Kutta method of numerical integration along with a 
shooting method as presente by Press et al.[13]. 
First, Eq. (9) was solved by guessing initial values 
for )1(F ′′  and integrating until the convergence 
reached. Then, the initial values of 

)1(1h′ , )1(2h′ , )1(1g ′ , )1(2g ′ and )1(1θ ′ , )1(2θ ′ [or )1(1θ
, )1(2θ ] were guessed and then integration was 
repeated until convergence was obtained. The value 
of )(1 ηh , )(2 ηh , )(1 ηg , )(2 ηg  and )(1 ηθ , 

)(2 ηθ  was assumed initially and then by repeating 
the integration of these three system of equations , 
final values were obtained. 
 
 
 

4. SEMI-SIMILLAR EQUATIONS 
 
Equations (9), (10), (11), (16) and (19) may be 
solved directly for every chosen )(τS , )(τω , 

)(τV , )(τWT  or )(τWq functions. These obtained 
solutions are called semi-similar solution. These 
equations along with boundary conditions, (14), 
(17) and (20) were solved by using a central finite-
difference method which lead to a tri-diagonal 
matrix. Assuming steady state for 0≤τ , the 
solution starts from )0(S , )0(ω , )0(V , )0(WT or 

)0(Wq  and marching through time, time-
dependent solution for 0>τ  were obtained. 
Sample axial and angular velocity profiles will be 
presented in later sections. 
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5. SHEAR STRESS 
 
The shear stress at the cylinder surface is 
calculated from [11]: 
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where, µ  is the fluid viscosity.  Using definition 
(9), the shear stress at the cylinder surface for 
semi-similar solution becomes: 
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Azimuthal surface shear stress for self-similar 
solutions is presented by the following relation: 
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Axial surface shear stress for self-similar solutions 
is presented by the following relation: 
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Some numerical values of real part of azimuthal 
and axial shear stress will be presented later for 
few examples of angular and axial velocities, 
respectively. Of course, it is noted that the real and 
imaginary parts of this quantity are actually the 

same but with a phase difference of
2
π

. 

 
 
 

6- PRESENTION OF RESULT 
 
In this section, the solution results to the self 
similar equations (30), (31) and (32) and the semi-
similar equations (10) to (12) and (16) to (19) 

along with surface shear stresses for different 
functions of axial/angular velocities and prescribed 
values of wall temperature or wall heat flux. Entire 
solution is presented for different Reynolds and 
Prandtl numbers and different values of 
dimensionless transpiration rate, )(τS . 
Figures (2)-(7) present the semi-similar solution 
for dimensionless transpiration rate, 1)( += ττS , 
in which the function ),( τηF  is shown in terms of  
 

 
 

Figure 2. Sample profiles of ),( τηF  function for  
)1()( += ττS , for selected values of non-             

dimensional time at Re=1.  
 

 
 Figure 3. Surface function  ),( τηF    for 

)1()( += ττs  1Re = . 
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η and for different non-dimensional time values at 
Re=1, 10, and 100. The process of obtaining this 
solution is explained in Sec.4. This function, for 
the first time, was solved by Wang [5] for the case 
of S=0 and later was presented by Cunning [11] for 
selected values  
of suction rate. It is evident for this figure that, as 
non-dimensional time values increase, the F 
function increases, because of the dimensionless 
transpiration rate is an ascendant function ofτ . On 
the other hand, as  

 
Figure 4. Sample profiles of ),( τηF  function for 

)1()( += ττS , for selected values of non- 
dimensional time at Re=10. 

 Figure 5. Surface function  ),( τηF    for  

)1()( += ττs  10Re = . 
 
dimensionless transpiration increases, the F function 
increases and if )(τS  decreases, the F function 
decreases.  
 

 
Figure 6. Sample profiles of ),( τηF  function for  

)1()( += ττS , for selected values of non- 
dimensional time at Re=100.  
 
 

 
Figure 7. Surface function  ),( τηF    for   

)1()( += ττs  100Re = . 
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Figures (8)-(11) presents the same function but for 
the transpiration rate of 1)1()( −+= ττS and 
selected values of Reynolds numbers.  Sample 
profiles of F ′′  function in terms of η  are depicted 
in Figs (12) - (15) for different values of 
transpiration rates and selected values of Reynolds 
numbers. Figures (16) –  
 

 
Figure 8. Sample profiles of ),( τηF  function for 

1)1()( −+= ττs and selected values of non-
dimensional time at Re=1. 
 
 
 

 
Figure 9. Surface function ),( τηF  for 

1)1()( −+= ττs  and  1Re =  

 
 
Figure 10. Sample profiles of ),( τηF  function for, 

for 1)1()( −+= ττs and selected values of non-
dimensional  time at Re=100 
 
 

 
Figure 11. Surface function ),( τηF  for 

1)1()( −+= ττs  and 1Re = 00 
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Figure 12. Sample profiles of F ′′  function for  
various function of dimensionless transpiration rate 
at Re=1 & 5.1=τ . 
 
 
 
 

 

 
 
Figure 13. Sample profiles of F ′′  function at different 
Reynolds number for 1)( += ττS & 5.1=τ  
 
 

 
 
Figure 14. Sample profiles of F ′′  function for  
various function of dimensionless transpiration rate 
at Re=100 & 5.1=τ . 
 
 
 
 

 
 
Figure 15. Sample profiles of F ′′  function for various 
function of dimensionless transpiration rate at Re=10 
& 5.1=τ  
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Figure 16. Sample profiles of ),( τηG function for 
cylinder with angular velocity, 1)( =τω , for selected 
values of non-dimensional time at Re=1, 

1)( += ττS  
 
 
 

 
   
 Figure 17- Function ),( τηG  in terms of η و  τ  for 
circular function 1)( =τω and 1Re =  
 
 
 

 
 
Figure 18. Sample profiles of ),( τηG function for 
cylinder with angular velocity, ττω =)( , for selected 
values of non-dimensional time at Re=1. 
 
 
 

 
 
Figure 19. Function ),( τηG  in terms of η و  τ  for  
circular function ττω =)( and 1Re =  
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Figure 20. Sample profiles of ),( τηG function for 

cylinder with angular velocity, 1)1()( −+= ττω , for 
selected values of non-dimensional time at Re=1. 
 
 
 

 
 
Figure 21. Function ),( τηG  in terms of η و  τ  for  

circular function 1)1()( −+= ττω and 1Re = . 
 
 

 

 
 
Figure 22 Sample profiles of ),( τηG function for 
cylinder with angular velocity )exp()( ττω = , for 
selected values of non-dimensional time at Re=1.  
 
 
 

 
 
Figure 23. Function ),( τηG  in terms of η و  τ  for 
circular function )exp()( ττω = and 1Re = . 
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Figure 24.Sample profiles of ),( τηG function for 
cylinder with angular velocity, )exp()( ττω −= , for 
selected values of non-dimensional time at Re=1. 
 
 
 

 
 
Figure 25. Function ),( τηG  in terms of η و  τ  for 
circular function )exp()( ττω −= and  1Re = . 

   
 
Figure 26. Sample profiles of ),( τηG function for   
cylinder with angular 
velocity, )sin().exp()( τττω −= , for selected values 
of non-dimensional time at Re=1. 
 
 
 

 
 
Figure 27  Function ),( τηG  in terms of η و  τ  for  
circular function )sin().exp()( τττω −= and  

1Re = . 
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Figure 28. Sample profiles of ),( τηG function for 
cylinder 
with angular velocity )sin().exp()( τττω =    for 
selected values of non-dimensional time at Re=1 
 
 
 

 
 
Figure 29. Function ),( τηG  in terms of η و  τ  for 
circular function )sin().exp()( τττω = and 1Re = . 

 
 
Figure 30. Sample profiles of ),( τηG function for 
cylinder with angular velocity )sin()( ττω =  in  terms 
of η  for  selected values of non-dimensional time at 
Re=1. 
 

 
 
Figure 31. Function ),( τηG  in terms of η و  τ  for 
circular function )sin()( ττω = and 1Re = . 
 
(31) present the function ),( τηG for cylinder with 
selected values of  angular velocity along with its 
corresponding surface function for different values of  
non-dimensional time at Re=1, and transpiration rate 
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of 1)( += ττS .  Different situations occur which are 
depicted in the diagrams.  
 
Figures (32) to (41) show sample profiles 
of ),( τηH function for cylinder with selected values of 
axial velocity in  terms of η and  for different values of 
non-dimensional time at Re=1and for transpiration rate 
of 1)( += ττS .  Different situations can be observed 
in these diagrams depending on the different factors. 
 

 
Figure 32. Sample profiles of ),( τηH function for 
cylinder with axial velocity,  ττ =)(V , in  terms of η  
and  for selected values of non-dimensional time at 
Re=1, 1)( += ττS . 
 

 
Figure 33.  Function ),( τηH in terms of η و  τ for 

axial 
velocity ττ =)(V and 1Re =  
 
 

 

 
 
Figure 34. Sample profiles of ),( τηH function for 

cylinder with axial velocity, 1)1()( −+= ττV , in  
terms of η and for selected values of non-dimensional 
time at Re=1. 

 
Figure 35. Function ),( τηH in terms of η و  τ  axial 

velocity 
1)1()( −+= ττV  and 1Re =  
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Figure 36 Sample profiles of ),( τηH function for 
cylinder bwith axial velocity,  )exp()( ττ =V , in  
terms of η and for selected values of non-dimensional 
time at Re=1. 

 
 

Figure 37. Function ),( τηH in terms of η و  τ  for 

axial velocity )exp()( ττ =V 1Re =  
 
 

 
 

 
Figure 38. Sample profiles of ),( τηH function for 
cylinder with axial velocity,  )exp()( ττ −=V , in  
terms of η and  for selected values of non-dimensional 
time at Re=1 

 
 
Figure 39.  Function ),( τηH  in terms of η و  τ  

and for axial velocity  )exp()( ττ −=V and 1Re =  
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Figure 40. Sample profiles of ),( τηH function for 
cylinder with axial velocity, )sin().exp()( τττ −=V  
in  terms of η and for selected values of non 
dimensional time at Re=1. 

 
Figure 41.  Function ),( τηH in terms of η و  τ for 
axial velocity )sin().exp()( τττ −=V  and 1Re = . 
 
  Figures (42) to  (53) present the effect of transpiration 
on tangential shear stress for the cylinder rotating with 
selected angular velocity and for different values of 
transpiration rate along with different values of 
Reynolds numbers.  

 

Figure 42.  Effect of transpiration on tangential 
shear stress for cylinder rotation with  1)( =τω  
 
 

 

 
Figure 43.  Effect of Reynolds number on tangential 
shearstress for cylinder rotation with 1)( =τω  
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Figure 44.  Effect of transpiration on tangential shear 
stress for cylinder rotation with ττω =)(  
 

 
Figure 45. Effect of Reynolds number on tangential 
shear stress for cylinder rotation with ττω =)(  

 
 
 

 
 

 

Fig.ure 46. Effect of transpiration on tangential shear 
stress for cylinder rotation with 1)1()( −+= ττω  
 

 
 
Figure 47. Effect of Reynolds number on tangential 
shear stress for cylinder rotation with 

ττω =)( 1)1()( −+= ττω
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Figure 48. Effect of transpiration on tangential shear 
stress for cylinder rotation with )exp()( ττω =  
 

 

 
Figure 49. Effect of Reynolds number on tangential 
shear stress for cylinder rotation with )exp()( ττω =  
 
 
 

 

 

Figure 50. Effect of transpiration on tangential shear 
stress for cylinder rotation with )sin()( ττω =  
 

 
 
Figure 51. Effect of Reynolds number on tangential 
shear stress for cylinder rotation with )sin()( ττω =  
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Figure 52. Effect of transpiration on tangential shear 
stress for cylinder rotation with 

)sin().exp()( τττω =  
 

 
 
Figure 53. Effect of Reynolds number on tangential 
shear stress for cylinder rotation with 

)sin().exp()( τττω =  
 
 
 Figures (54) to (67) show the effect of 
transpiration rate on axial shear stress for the 

cylinder moving in selected values of axial 
velocity and different values of Reynolds numbers. 
Finally, Figures (68) to (70) depict ),( τηΘ  
function for selected values of transpiration rate 
and different temperature functions. So in cooling 
process, high Prandtl number and Reynolds 
number fluid are preferred. Also, higher suction 
rates provide a means for cooling surface and 
higher blowing rates provide a means for heating 
the surface of the cylinder. Therefore in a defined 
wall heat flux case, to prevent high wall 
temperature, higher rates of suction can be 
provided and vice-versa.  

 
Figure 54. Effect of transpiration on axial shear stress 
for cylinder axial velocity of 1)( =τV  

 

Figure 55. Effect of Reynolds number on axial shear 
stress for cylinder axial velocity of 1)( =τV  
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Figure 56. Effect of transpiration on axial shear stress 
for cylinder axial velocity of   ττ =)(V  
 
 
 

 

Figure 57. Effect of Reynolds number on axial shear 
stress for cylinder axial velocity of ττ =)(V  

 
 
Figure 58. Effect of transpiration on axial shear stress 
for cylinder axial velocity of 

1)1()( −+= ττV  
 
 
 

 

Figure 59. Effect of Reynolds number on axial shear 
stress for cylinder axial velocity of 1)1()( −+= ττV
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Figure 60. Effect of transpiration on axial shear stress 
for cylinder axial velocity of )exp()( ττ =V  
 
 
 

 
 
Figure 61. Effect of Reynolds number on axial shear 
stress for cylinder axial velocity of )exp()( ττ =V  

 
 
 

 

 

Figure 62. Effect of transpiration on axial shear stress 
for cylinder axial velocity of )sin()( ττ =V  
 
 
 

 
 
Figure 63. Effect of Reynolds number on axial shear 
stress for cylinder axial velocity of  )sin()( ττ =V  
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Figure 64. Effect of transpiration on axial shear stress 
for cylinder axial velocity )sin().exp()( τττ =V  
 
 

 
 
Figure 65. Effect of Reynolds number on axial shear 
stress for cylinder axial velocity of 

)sin().exp()( τττ =V  
 

 
 
Figure 66. Effect of transpiration on axial shear stress 
for cylinder axial velocity )sin().exp()( τττ −=V  
 
 
 

 
 
Figure 67. Effect of Reynolds number on axial shear 
stress for cylinder axial velocity of 

)sin().exp()( τττ −=V  



 
310- IJE Transactions A: Basics                                                          Vol. 23, Nos. 3 & 4, November 2010 

 
Figure 68. ),( τηΘ function for 1)( += ττS and the 

case of =− wTT constant 
 
 
 

 
Figure 69. ),( τηΘ function for 1)1()( −+= ττS and 

the case of =− wTT )(τExp  

 
 
Figure 70. ),( τηΘ function for ττ cos)( =S and the 

case of =− wTT )( τ−Exp . 
 
 
 

6. CONCLUTION 
 
A numerical solution of the Navier-Stokes 
equations and energy equation is obtained for the 
problem of stagnation–point flow on a circular 
cylinder with time-dependent normal transpiration. 
A general semi-similar solution is obtained when 
cylinder has different forms of axial/rotational 
motions including: constant axial/angular velocity, 
exponential axial/angular velocity, pure harmonic 
movement/rotation, both accelerating and 
decelerating oscillatory motion. Since the heat 
transfer is axisymmetric in theθ  direction, the 
cylinder rotation has no effect on temperature field. 
Results for different time-dependent wall 
temperature and heat flux functions including: 
constant wall temperature or heat flux, exponential 
and oscillatory form of wall temperature or wall 
heat flux are presented.  Axial and azimuthal 
component of fluid velocity and surface axial and 
azimuthal shear stress on the cylinder are obtained 
in all above situations, and for different values of 
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Reynolds numbers and time-dependent 
transpiration. 
     Absolute value of axial /azimuthal shear 
stresses corresponding to all cases increase with 
the increase Reynolds number and suction rate. In 
defined wall temperature case, heat transfer 
increases with the increase of Reynolds number, 
Prandtl number and suction rate, where as the 
depth of the diffusion of temperature field 
decreases. So, an increase of suction rate can be 
used as means of cooling the surface and increase 
if blowing can be used as a means of heating 
surface. It is shown that by providing blowing on 
the surface of a cylinder, reduction of resistance 
against its axial/rotational movement inside a fluid 
can be achieved. It is also found that higher suction 
rates are means for cooling the surface and higher 
blowing rates are a means of heating the surface of 
cylinder. 
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