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Abstract   In this paper, a transient, two-dimensional and nonlinear inverse heat conduction problem 
in solidification process is considered. Genetic algorithm is applied for the identification of the 
interfacial heat transfer coefficients during squeeze casting of commercial aluminum alloy (Al-
4.5wt%Cu) by assuming a priori information regarding the functional form of the unknown heat 
transfer coefficients found in open literature. In this work, simulated (noisy and filtered) temperatures 
are used instead of experimental data. The estimated temperatures are obtained from the direct 
numerical solution of a two-dimensional conductive model. A modified elitist genetic algorithm is 
used to minimize the least square objective function containing estimated and simulated temperatures. 
The accuracy of the proposed method is assessed by comparing the estimated with the pre-selected 
parameters.  
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. قرار گرفته است يمورد بررس ير خطيغ يدو بعد يتيق مسئله انتقال حرارت هداين تحقيدر ا   چكيده
 مس(وم ينياژ آلوميآل يند انجماد فشاريدر فرا يب انتقال حرارت مرزيبدست آوردن ضر يک برايتم ژنتيالگور

ب انتقال حرارت نا معلوم،  بر يه فرم تابع ضرينکه اطلاعات اوليبه کار رفته است، با فرض ا)  يوزن%  5/4
 يشگاهيآزما يهااستفاده از داده يق به جاين تحقيدر ا. شته بدست آمده استقات انجام شده در گذياساس تحق

م مدل انتقال يمستق ياز حل عدد ينيتخم يدماها. استفاده شده است) لتريز و فيبا نو( يه سازيشب يدماهااز 
تابع  ينه سازيکم يافته برايبهبود  يک نخبه گرايتم ژنتيالگور. بدست آمده است يدو بعد يتيحرارت هدا

روش  ييدقت و کارا. شده به کار گرفته شده است يه سازيو شب ينيتخم يدماهاحداقل مربعات هدف شامل 
  .شده است ين شده بررسييش تعيبدست آمده و از پ ينيتخم يسه پارامترهايبا مقا يشنهاديپ

  
 

1. INTRODUCTION 
 
Estimation of boundary conditions at the surface 
of a heat-conducting body from measured 
temperature profiles is typically called Inverse 
Heat Conduction Problem (IHCP). Boundary 
estimation problems have many applications in 
various branches of science and engineering when 
surface temperatures or heat fluxes need to be 
established in the unreachable areas of the surface 
from corresponding measurements at reachable 
areas. Specific examples are the determination of 
the extremely high thermal loads during 

atmospheric reentry of a space vehicle [1], the 
metal quenching process by array of jets [2], 
grinding process [3, 4], and the heat transfer 
between the casting and the mould [5].The 
solution to these inverse problems is not 
straightforward as the unavoidable noise in the 
data can produce large or even unbounded 
deviations in the results. This is due to the “ill 
posed” nature of the IHCP [6]. IHCP can be 
efficiently employed when some parameters, such 
as thermal conductivity or heat flux, are not 
precisely known. Zhou et al. [7] solved IHCP in a 
two-dimensional rectangular object by using the 
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conjugate gradient method (CGM) with 
temperature and heat flux measured at the 
boundary opposite to the heated boundary. In 
general, prediction of solution for the IHCP can 
be achieved via minimization of sum of squared 
error function, which is focused on the difference 
among the values of the measured temperatures 
and those obtained by an efficient computational 
method. The unknown thermal coefficients on the 
mathematical model (i.e., thermal properties, 
boundary or initial conditions) that dedicate an 
acceptable value for the aforementioned error 
function, based on the iterative regularization 
method, are the solutions of the IHCP. In order to 
solve the IHCP, there are several methods most 
noted of which are the sequential function 
estimation [6], the Tikhonov regularization [8], 
the conjugate gradient method [9-10], the variable 
metric method [11] and finally the evolutionary 
algorithms like Particle Swarm Optimization 
(PSO) [12] or Genetic Algorithm (GA) [13-17]. 
The GA and PSO are not, in essence, gradient-
based search methods and have recently received 
the most attention. Not being sensitive to the noise 
or the number of sensors are the most important 
features of these method.  
     Inverse problems are encountered in various 
branches of science and engineering, because it is 
very important for the engineers to gain a valuable 
insight into the comprehension of the evolution of 
the solidification process to predict correctly and 
to improve the quality of solidified materials in 
material processing [18]. As solidification 
progresses, the mold expands due to the 
absorption of heat and the solidified metal shrinks 
during cooling, as a result a gap develops because 
pressure becomes insufficient to maintain a 
conforming contact at the interface. This 
temporally and spatially varying air gap 
introduces an additional resistance to the heat 
flow from the metal to the mold. This thermal 
resistance has a considerable influence on the rate 
of solidification and thus, affects the 
microstructure formation [19]. Ranjbar et al. [18] 
indicated that during the solidification, the 
Interfacial Heat Transfer Coefficient (IHTC) 
between the cast and mould is one of the most 
important factors that influence the solidification 
process, the soundness of the cast product and the 
resulted mechanical properties. Squeeze casting is 

one of the improved casting techniques [20], used 
for the production of engineering components 
mostly in non-ferrous metals by the application of 
pressure on the cast metal to eliminate defects 
associated with shrinkage cavities and/or gas 
porosity. By squeeze casting operation, the liquid 
molten metal is compressed under pressure inside 
the mould cavity of a re-usable metal mould, 
usually made of steel (see Fig. 1). The advantages 
of the squeeze cast products are mainly near-zero 
gas porosity or shrinkage porosity, better 
mechanical properties and reduced metal wastage. 
Researchers have reported that the mechanical 
properties of a squeeze cast item can be as good as 
wrought products of similar composition [21-22]. 
     GA is a robust, non-gradient algorithm that 
belongs to the field of evolutionary algorithms. 
Garcia [16] developed an excellent GA code to 
optimize the experiment design for estimation of 
temperature-dependent thermal properties (TDTPs) 
of composite materials. Imani et al. [15] and Imani 
[17] defined a simple one-dimensional model and 
used temperature history taken from one sensor to 
simultaneously estimate thermal conductivity and 
heat capacity based on TDTPs. They used 
Modified Elitist Genetic Algorithm (MEGA) in 
order to minimize the Root Mean Square (RMS) 
resulted by temperature differences between 
estimated and reference temperatures. Ranjbar et 
al. [14] extended the former model in two 
dimensions and tested different forms of functions 
for thermal conductivity and heat capacity. Loulou 
et al. [23] experimentally studied and quantified 
the thermal contact resistance during the first stage 
of solidification. They claimed that the thermal 
contact resistance changed in stepwise manner 
during the first stage of solidification. Lau et al. 
[24] studied the interfacial heat transfer between an 
iron casting and a metallic mold. IHTC was found 
to drop rapidly during the first stage of 
solidification and then increase with the 
experimental results. Martorano and Capocchi [25] 
presented an analysis of heat flow across the 
metal-mold interface. Adili et al. [26] developed 
and used genetic algorithm to identify 
thermophysical properties of fouling deposited 
onto the internal surface of a heat exchanger. The 
results of the estimation procedure show on the 
one hand the efficiency and the stability of the 
developed genetic algorithm to estimate the 
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thermophysical properties of fouling and the high 
accuracy of the obtained results on the other hand. 
Santos et al. [27] determined IHTC for casting of 
various compositions of Al-Cu and Sn-Pb alloys. 
They represented IHTC as an exponential form 
and time dependent. Famouri [13] investigated on 
estimation of IHTC at the metal-mould interface in 
two dimensions during solidification of Sn-Pb 
alloys. He utilized MEGA to minimize the RMS. 
Aweda and Adeyemi [28] experimentally 
estimated IHTC during squeeze casting of 
Aluminum. He studied effects of applied pressures 
changes and metal solidification temperatures on 
the values of the heat transfer coefficients of 
molten aluminum in squeeze casting operation. 
Cho and Hong [29] studied heat transfer 
coefficients at the casting/die interface in squeeze 
casting and applied a single load (50 MPa) with 
die heating and concluded that heat transfer 
coefficient increases with the application of 
pressure. 

 
Figure 1. Schematic diagram of squeeze casting, 
sensor locations, main computational domain, 
interfaces and the connection with outside. 
 
     There are some published information on the 
study of the IHTC between cast and mould during 
the squeeze casting, as given above, but there is 
no published work yet on estimation of IHTC for 
molten aluminum in squeeze casting operation by 
evolutionary algorithm such as GA. The aim of 
the present work is to estimate IHTC based on 
MEGA. Present model is non-linear case and 

there is no analytical solution for this model. In 
this study, 5 sensors are used for temperature 
history and also the defined model is a two-
dimensional practical one with appropriate 
boundary conditions. Finite Difference Method 
(FDM) is used as the direct solution to obtain both 
simulated and estimated temperature based on pre-
selected and estimated IHTC, respectively. 
 
 
 

2. MATHEMATICAL MODEL 
 
The two-dimensional schematic view of problem 
is shown in Fig. 1. Interfaces and main 
computational domain are clearly defined in the 
figure. The whole computational domain is 
divided into three computational domains each of 
which has its own boundary conditions, initial 
conditions and origin as illustrated in Fig. 2. 
Implementing these boundary conditions at 
interfaces between the mold and the cast in 
convective terms is brought about the IHTC which 
are unknown. As the effects of fluid flow in the 
liquid phase are negligible, the convective heat 
transfer is neglected within the domains and 
therefore, the phase-change problem is formulated 
only in terms of heat conduction [9]. The 
governing equations and the boundary conditions 
for each computational domain - which are shown 
in the Fig. 2 - are as following: 
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Computational domain 2 (Mold): 
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Computational domain 3 (Mold): 
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where K, ρ, Cp, T, h, H, t are the thermal 
conductivity, density, specific heat, temperature, 
heat transfer coefficient, enthalpy and time, 
respectively. Subscripts M and C refer to mold and 
cast respectively. The hin2 (t), hin1 (t) and hair (t) are 
the heat transfer coefficients between the mold and 
cast (side and bottom surfaces of cast, 
respectively) and heat transfer coefficients 
between the mold and the environment. The 
change in the enthalpy of the casting material is 
considered as dHc=CpC dT. 
     The phase changing problem (Eq. (1)) during 
solidification was handled by the enthalpy method 
[30]. This equation subjects to the boundary and 
initial conditions along with other equations, are 
solved by Crank-Nicholson technique. In this 
study, Tinit and Tair are considered as 993 and 296 
K. Steel AISI304 is selected as the mold. The cast, 
metallic mold materials and their thermo-physical 
properties used in this simulation are summarized 
in Table 1 and some of them could be found in 
Garcia et al. [31]. 
     In this study, the unknown IHTCs are 
considered time dependent based on open 
literature [21, 23, 28, 32] and in the exponential 
form [18]. 
 

2
1 1( ) P

inh t p t=  (19) 
 

4
2 3( ) P

inh t p t=  (20) 
 
P1 to P4 are unknown parameters.  

 
3. MESUREMENT SIMULATION 

 
In order to simulate the experiment, we use the 
temperature histories taken from the sensors and 
denoted them by Yim (ti, Sensorm) ≡ Yim, i=1 to I 
and m=1 to M, where I denotes the number of the 
time readings and M is the number of sensors. We 
used 5 sensors in this study (I=5). The sensor 
locations have been shown in Fig. 1 and also all 
the exact position of each sensor is clear in Table 
2 for all the individuals. The measured 
temperature data, Yim, used in the present inverse 
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analysis can be determined from the exact 
temperature solution of the direct solidification 
problem with the given P1 to P4, Texact. Owing to 
experimental uncertainty, Yim contains the 
measurement error. Thus, Texact should be 
modified by Gaussian additive noise in order to 
simulate experimental measurements. With 
respect to the eight statistical assumptions in 
references [6, 9], Yim can be expressed as: 
 

( , )im exact i mY T t Sensor εσ= +  (21) 
 

 
 
Figure 2. The computational domains with their 
boundary conditions and connections 
 

TABLE 1. Material thermo-physical properties 
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Where σ the standard deviation of the temperature 
measurements and ε is a random variable ranging 
from -2.576 to 2.576 for normally distributed 
errors with zero mean and 99% confidence 
bounds. The product of εσ represents the 
temperature measurement error. 
 
 
TABLE 2. Exact sensors positions and the domains’ 
dimensions (indices 1, 2 and 3 stand for computational 
domains 1 to 3, respectively) 
 

Domains X-Length (mm) Y-Length (mm) 

1 Lx1=26 Ly1=76 

2 Lx2=26 Ly2=36 

3 Lx3=36 Ly3=112 

Sensors X-Position (mm) Y-Position (mm) 

1 x1=2 y1=2 

2 x2=2 y2=34 

3 x1=24 y1=38 

4 x3=2 y3=74 

5 x3=4 y3=74 

 
 
 

4. INVERSE HEAT CONDUCTION  
 

The solution of the inverse phase-change problem 
involving the estimation of metal-mold interfacial 
heat transfer coefficient is presented here. Inverse 
parameter estimation methods are based on the 
minimization of an objective function containing 
both estimated and measured temperatures [15]. 
Ordinary Least Squares (OLS) estimator is the far 
most frequently used method for the parameter 
estimation as no prior knowledge is needed [33]. 
OLS estimator was considered in this research. 
The associated objective function, the least 
squares error, S, is expressed by: 
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observation from the mth sensor; M and I are the 
number of sensors and observations, respectively. 
Tim(β) is the calculated temperature from the 
mathematical model governing (direct solution) 
the heat transfer phenomena with respect to the 
estimated parameter vector. 
     In using equation (22), the IHTCs are found by 
minimizing the sum of squared differences 
between the measured and calculated data. The 
minimization of equation (22) could conceivably 
be performed by any optimization technique. 
However, parameter estimation has generally been 
performed with only a few methods. The use of 
one method over another is often specific to a 
certain field of study. The approach investigated 
in the present work involves the use of a robust 
non-gradient method, namely the GA method, in 
the minimization procedure. The motivation for 
using GAs was to circumvent difficulties of non-
convergence in cases when the parameters are 
correlated or nearly so. 
 
 
 

5. GENETIC ALGORITHM 
 
GAs were developed by Goldberg [34]. The 
common feature of these algorithms is to simulate 
the search process of natural evolution and take 
advantage of the Darwinian survival-of-the-fittest 
principle. The more details about the GA used in 
present study could be found in these references 
[13-15, 17]. In short, an individual is a possible 
solution of an optimization problem with the 
objective function S(β), which is a scalar-valued 
function of an n-dimensional vector β. The vector 
β consists of n unknown parameters βj, with j=1 to 
n. The goodness of each individual is evaluated by 
a fitness function that is defined from the 
objective function of the optimization problem. 
To define a fitness function for minimization 
problems such as equation (22), it is necessary to 
change the objective function, because GA works 
according to the principle of the maximization of 
the fitness function, and so the fitness function of 
equation (22) is defined as: 
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     The square root function is included to 
moderate the selection pressure of the GA, and 
0.001 is added arbitrarily to limit the maximum of 
the fitness function and avoid the infinity. The 
present mechanism to select parents is the 
combination of Roulette Wheel Selection (RWS) 
and Tournament selection [35-36]. The modified 
elitist genetic algorithm started by a successive 
random search for elite individuals in which only 
the some first-ranked individual of each initial 
population is kept for an elite initial population. To 
do so, instead of Ns individuals, NN*Ns individuals 
have been randomized and Ns individuals would be 
selected out of the whole. A compression factor rc 
is then applied in some generations to reduce the 
parameters’ search space as follow:
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     There are many advantages of applying GAs to 
estimation problems. GAs are easily programmed. 
Their major strength is that they are derivative-free 
calculations and, as shown in this work, they do 
not need any initial guesses. Design of robust GAs 
is highly application-specific and their 
performance is difficult to predict. Another 
significant drawback is the high CPU cost. A 
mathematical function called f6 - as used in 
previous works [13, 15], was optimized to 
illustrate the performance of the MEGA. The 
expression of this function is: 

( )

2
2 2

2
2 2

sin .5
6( , ) .5

1.0 0.01

x y
f x y

x y

 + −  = −
 + × + 

 (25) 

    The goal is to optimize f6, e.g., to find values of 
x and y that produce the greatest possible value for 
f6. This function has some interesting features 
such as a single global optimum, which is f6(x=0, 
y=0) =1, strong oscillations, and a tiny fraction of 
the total area for the global regions. Fig. 3 shows a 
typical increase of both the fitness (function f6) of 
the best individual and the average fitness of the 
population obtained from MEGA for different 
runs.  
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Figure 3. Evolution of fitness function f6 for different 
runs (a) Average, (b) Best 
 
Accuracy of the present algorithm has been shown 
in Table 3. Present algorithm successfully finds 
the global optimum just with 100 generations 
whereby x and y errors are of (-4) to (-7) order. 
 

6. METHODOLOGY 

A flowchart of the proposed method for IHTCs 
estimation is shown in Fig. 4. A simulated 
experiment was performed with adding Gaussian 
white noise to the exact solution of the direct 
conductive model. To simulate the experiment, the 
pre-selected IHTCs are assumed for a case of 
dependency as:  
 

2 0.2291
1( ) 4050P

inh t p t t−= =  (26) 
 

4 0.2359
2 3( ) 4332P

inh t p t t−= =  (27) 
 
     A total of 1000 simulated measurements 
containing additive, uncorrelated, and normally 
distributed errors with zero mean and constant 
standard deviation of σ = 0.01Tmax were assumed 
available for the estimation procedure, where Tmax 
is the maximum of the exact temperature in the 
simulated experiment. Measurement interval is 
chosen as 1.5 s and the Tmax is considered as 723 
Cº. 
     Exact simulated temperature measurements for 
all sensors locations are presented in Fig. 5-(a). 
Actual measured data could be used for the inverse 
analysis as illustrated in Fig. 4. A three-point 
moving average filter is applied to reduce 
measurement errors. After data filtering, these 
measurements are used in MEGA to estimate the 
unknown IHTCs. Filtered temperatures for sensor 
No.2 and 3 are compared with noisy and exact 
measurements in Fig. 5-(c and d). It’s clear in Fig. 
5-(c and d) that the data filtering reduces the 
noises; this point is obviously shown in Fig. 5-(b).

 
TABLE 3. The average and best fitness function along with their own best x, y resulted by MEGA in different runs for f6 
 

Run x y Best FF Ave FF 

1 3.82082E-05 -6.60195E-05 0.99999999 0.996737 
2 1.32018E-04 4.47859E-05 0.99999998 0.997916 

3 2.37890E-05 5.86463E-05 1.00000000 0.995085 

4 -8.00218E-06 -1.36935E-07 1.00000000 0.997317 
5 6.72596E-05 4.12371E-05 0.99999999 0.996445 

GA 
Parameters 

NS= 100 PM= 0.1 Search Domain  
[-50,50] 

PR= 0.95 
NG= 100 RC= 0.95 NN= 40 
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7. RESULS AND DISCUSSION 
 
Genetic parameters could affect the convergence 
and performance of the MEGA. There are 
unfortunately few heuristics  to guide a user in the 
selection of appropriate operators and genetic 
parameter settings for a particular problem. What 
can be grasped  ، from the literature is that good 
GA performance requires the choice of a moderate 
population size, a high crossover probability, and 
a low mutation probability [15]. So, genetic 
parameters in the current research are chosen as: 
NS=100; NG=1000; Pc=0.99; Pm=0.1; Pr=0.95; 
rc=0.99 for 4 unknown parameters (NP=4). The 
valid ranges for the unknown parameters are 
specified to begin the MEGA search, e.g., P1, P3∈  
[100, 10000] and P2, P4∈  [0, -1]. 
     In this work, it is assumed that the form of the 
estimated IHTCs is priori unknown as in most 
real-world engineering applications. One may 
choose different forms of the unknown estimated 
IHTCs and calculate the RMS error between 
simulated and estimated temperatures to find 
minimum RMS error (maximum fitness function). 
In order to find exponential form of IHTCs, the 
problem is to find the best combination of 
parameters (P1, P2, P3 and P4) to achieve the 
maximum value of fitness function (minimum of 
RMS); therefore GA find the best combination of 
parameters as β vector (β≡[ P1, P2, P3, P4]) to 
gain the f(β) maximum. 
     The inverse estimation of IHTCs is first 
performed by assuming exact measurements. 
Then, analysis is repeated for the noisy 
measurements with σ=0.01Tmax. As randomness 
plays an important role in each run of the MEGA 
(two runs with different random seeds will 
generally produce different output). Figure 6 
shows the differences between exact (σ=0) and 
noisy (σ=0.01Tmax) measurements regarding the 
fitness function. Fitness functions for both cases 
are shown in the figures when one of the 
parameters varies around the pre-selected value of 
the parameter (e.g. β1∈P1± 0.05×P1, Fig. 6-(a)) 
and the others parameters hold exactly the pre-
selected value from the exponential estimation 
(Eq. (26-27)) (e.g. βi= pi). Actually, β1 stays on 
the x-axis and vary from β1= (1-0.05) ×P1 to β1= 

(1+0.05) ×P1 and it’s the difference between the 
cases in Fig. 6 and the best fitness sit on the y-
axis. In order to make it clear, it should be 
mentioned that β2≡P2± 0.05×P2, β3≡ P3± 0.05× P3 
and β4≡ P4± 0.05×P4 correspond Fig. 6 (b, c, and 
d), respectively. Moreover, each figure has one 
solid and three Dashed-Dot lines. The solid one 
corresponds to the σ=0 case while the Dashed-Dot 
lines are from different runs (random temperature 
error measurements) with σ=0.01Tmax. As 
demonstrated in the legend the solid line 
corresponds to the left hand y-axis and the other 
Dashed-Dot lines correspond to the right hand y-
axis. 
     Generally speaking, for the exact 
measurements case, fitness functions reach the 
maximum value (1000) as result of negligible 
error between the exact measurements and direct 
solution. But for the noisy measurements, fitness 
functions don’t exceed 0.008 due to noises at 
simulated temperature. Another point came from 
Fig. 6 is that the optimum parameter to achieve 
the maximum fitness function value, doesn’t 
exactly fit on the pre-selected value and the 
optimum point changes a little in different runs 
due to noisy random temperature. The curves slip 
and differential range of fitness functions show 
the satisfactory sensitivity of each parameter. 
Based on exact measurements three different runs 
are presented in Table 4. We have started with 
exact simulated measurements and tried to find 
the best parameters (β≡ [P1, P2, P3, P4]). The best 
and average fitness functions for the runs listed in 
Table 4 are also shown in figure 7-(a). In the exact 
measurements case, as it mentioned, due to 
negligible error between the exact measurements 
and estimated temperatures, we can access to 
value 1000 of fitness function that it is clearly 
shown in Fig. 7(a). 
The results obtained from the exact measurements 
(σ=0) (Table 4) show an excellent agreement 
between estimated and pre-selected IHTCs. As we 
can see, the RMS error between simulated and 
estimated temperatures is very small. For noisy 
measurement (σ=0.01Tmax), 5 different runs have 
been done and the results are shown in Table 5 
and Fig. 7-(b). The good agreement has been 
observed between the estimated and pre-selected 



 
IJE Transactions A: Basics                                                          Vol. 23, Nos. 3 & 4, November 2010 - 281 

parameter as well. The best and average fitness 
functions for noisy measurement have been shown 
in Fig. 7-(b). 
As for this case, due to the noise, the results are a 
bit different from the pre-selected parameters and 
also for different runs. As shown in the Table 5,  
in terms of Relative Error (R.E.), the estimated  
 
 
 
 

parameters have an acceptable error. Moreover, 
the mean estimated parameters have an excellent 
agreement with the pre-selected parameters. Also 
in the Fig. 8, the error between mean estimated 
and pre-selected parameters have been shown in 
terms of both IHTC and temperature. 
 

TABLE 4. The best fitness and estimated parameters resulted by MEGA for different runs based on exact measurements 
(σ=0) which are shown in figure 7-(a) 
 

Run 
P1 

(4050) 

P2 

(-0.2291) 

P3 

(4332) 

P4 

(-0.2359) 

Fitness 
Function 

RMS Error 

1 4049.99936 -0.22909996 4332.00065 -0.23590003 905.86 1.08E-08 

2 4049.99978 -0.22909998 4331.99994 -0.23589999 976.58 5.75E-10 

3 4049.99991 -0.22909999 4331.99993 -0.23589999 986.38 1.90e-10 

 
 

 
 
TABLE 5. The best fitness function and estimated parameters different runs resulted by MEGA based on noisy 
measurements (σ=0.01Tmax) 

Run 
P1 

(4050) 

R.E. 
(%) 

P2 

(-0.2291) 

R.E. 
(%) 

P3 

(4332) 

R.E. 
(%) 

P4 

(-0.2359) 

R.E. 
(%) 

Fitness 
Function 

1 4048.8 0.03 -0.23070 0.70 4347.4 0.35 -0.23670 0.34 7.17E-03 

2 4025.4 0.61 -0.22704 0.90 4395.3 1.46 -0.23926 1.43 6.80E-03 

3 4068.3 0.45 -0.22930 0.09 4264.4 1.56 -0.23343 1.05 6.84E-03 

4 4021.6 0.70 -0.22648 1.15 4325.4 0.15 -0.23532 0.25 6.91E-03 

5 4018.1 0.79 -0.22912 0.01 4306.2 0.60 -0.23534 0.24 7.16E-03 

Mean 4036.4 0.34 -0.22853 0.25 4327.7 0.10 -0.23601 0.05  
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Figure 4. Flowchart of the proposed method 
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Figure 5. Exact simulated measurements of temperature for sensors No. 1 to 5 (b) Error comparison between noisy and 
filtered temperature based on exact temperature of sensor No. 5 (c-d) Exact, noisy and filtered temperatures with 
σ=0.01Tmax for sensor No. 3 and 2 
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Figure 6. Variation of Fitness Functions versus estimated parameter for Exact (σ=0) and Noisy (σ=0.01Tmax) 
measurements for different runs, (a) f(β1≡P1),(b) f(β2≡P2), (c) f(β3≡P3) and (d) f(β4≡P4) 
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Figure 7. The best and average fitness functions versus the generations (a) Based on the exact measurements (σ=0) (b) 
Based on the noisy measurement (σ=0.01Tmax). 
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Figure 8. (a) Comparison of estimated and exact IHTC for both interfaces (hin1 and hin2) (b) Comparison of estimated 
and exact temperature for sensors No. 2 and 5 (prime stands for estimated values) 

 

8. CONCLUTION 

A two-dimensional IHCP is solved successfully by 
MEGA to estimate IHTCs. This estimation is 
performed for squeeze casting of Aluminum alloy 
and IHTCs have been estimated at Cast-Mold 
interfaces. Measurements are taken from sensors. 
The results show that the measurement errors do 
not considerably affect the accuracy of the 
estimates. The proposed method provides a 
practical and confident prediction in estimating the 
IHTC. This method is also applicable to other 
kinds of inverse heat transfer problems such as 
estimation of the directional thermo-physical 
properties, unknown heat flux estimation, inverse 
heat convection, and radiation problems. 
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